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Morphometric analysis of organisms has undergone a dramatic renaissance in
recent years, embracing a range of novel computational and imaging techniques to
provide new approaches to phenotypic characterization. These innovations have often
developed piece-meal, and may reflect the taxonomic specializations and biases of
their creators. In this review, we aim to provide a brief introduction to applications
and applicability of modern morphometrics to non-vascular land plants, an often
overlooked but evolutionarily and ecologically important group. The scale and physiology
of bryophytes (mosses, liverworts, and hornworts) differ in important and informative
ways from more “traditional” model plants, and their inclusion has the potential to
powerfully broaden perspectives in plant morphology. In particular we highlight three
areas where the “bryophytic perspective” shows considerable inter-disciplinary potential:
(i) bryophytes as models for intra-specific and inter-specific phenotypic variation, (ii)
bryophyte growth-forms as areas for innovation in architectural modularity, and (iii)
bryophytes as models of ecophysiological integration between organs, individuals, and
stands. We suggest that advances should come from two-way dialog: the translation
and adoption of techniques recently developed for vascular plants (and other organisms)
to bryophytes and the use of bryophytes as model systems for the innovation of new
techniques and paradigms in morphogeometric approaches.
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INTRODUCTION

Morphology and its geometric underpinnings have long formed an important part our
understanding of plant biology at all scales, through Goethe’s traditional work (Goethe,
1790), Traditionally considered in a structural or systematics point of view (e.g., Sneath
and Sokal, 1973; Oldeman, 1977; Hallé et al., 1978; Dickinson et al., 1987; MacLeod, 2002)
highlighting of geometric patterns is now built into a dynamic approach aiming to understand
biological integration and modularity in the broadest sense, at all scales and levels, from
development, physiological ecology to evolution (Castellanos et al., 1989; Jones, 1993; Pigliucci,
2003; Eble, 2005; Lüttge, 2012; Murren, 2012; Ambruster et al., 2014; Klingenberg, 2014).
Mathematical advances in the latter half of the 20th century, such as topological techniques
for disentangling shape from size and multivariate statistics provided the groundwork for
modern geometric morphology. Recent innovations in modeling and image analysis have
greatly expanded the power of morphometric analyses (Kaandorp and Kübler, 2001; Le
Bot et al., 2009; Schindelin et al., 2012; McKay, 2013), opening up new avenues for
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applications such as high-throughput phenotyping and effective
canopy modeling (e.g., Araus and Cairns, 2014; Bucksch et al.,
2014; Puttonen et al., 2016).

The majority of recent innovations in plant geometric and
morphometric analysis have focused on seed plants (angiosperms
and gymnosperms). Although this bias reflects a majority of
species of economic interest, it leaves aside much the overall
range in land plant morphologies and functional forms. Our
objective is to provide a perspective from one of those side-lines,
bryophytes, in the hope that greater attention to non-vascular
plants in morphometry will not only advance studies of those
overlooked groups, but also contribute novel perspectives and
emphases to plant morphologists.

Although quite morphologically and taxonomically diverse
(∼20,000 species worldwide; Shaw et al., 2011), evolutionarily
informative (Ligrone et al., 2012) and ecologically important
(Lindo and Gonzalez, 2010), bryophytes are often unmentioned
in modern morphometric reviews (e.g., Jensen, 2003; Diggle,
2014). This mini-review seeks to provide an overview of recent
developments in the geometric and morphometric analysis of
non-vascular plants. After a brief introduction to bryophytes, we
present three key scales of analysis at which closer integration
between plant morphometry and bryology stands to benefit both
fields: organ geometry, branching patterns, and canopy-stand
integration.

WHY BRYOPHYTES?

Bryophytes are often treated as a unit; however, they are a
paraphyletic group of at most three major clades (liverworts,
mosses, and hornworts) that differ greatly in their morphology
and physiology (Figure 1). They are united primarily by the
dominance of haploid (gametophytic) stages of the life-cycle
and a tendency toward poikilohydry (and often dessication
tolerance) rather than internal water conduction (with notable
exceptions such as Dendroligotrichum; Hébant, 1977; Atala,
2011). The former may make them particularly plastic to genetic
or environmental changes, while the latter encourages a wide
array of morphological and physiological responses to water
availability. Despite these differences, and a deep evolutionary
history of divergence (∼450 million years), many developmental
pathways are shared with other land plants (e.g., Rensing et al.,
2008; Jones and Dolan, 2012; Xu et al., 2014). Indeed, several
bryophyte species have a long history of use as model systems
in plant biology: the thalloid liverwort Marchantia polymorpha
and the ephemeral moss Physcomitrella patens in particular have
been used widely in plant molecular biology and development
(e.g., Prigge and Bezanilla, 2010; Bonhomme et al., 2013; Bowman
et al., 2016).

All of the above provide clear motivations for closer
incorporation of bryophytes into plant morphological geometry.
Morphologists may find value in the wide range of morphologies
presented by bryophytes, and in the challenge of accommodating
a wider spectrum of plant forms. Developmental and molecular
biologists will benefit from improved phenotyping techniques
for these evolutionarily important model organisms. Functional

ecologists have much to learn from groups in which morphology
at multiple scales closely influences local micro-environment
and poikilohydry tightly couples form to function. And
lastly, bryologists will gain from the cross-application of
novel techniques to what remains a small and understudied
discipline.

Geometries of Bryophyte Organs:
Models for Inter- and Intra-Specific
Variation
Bryophytes have long been known for their striking intra- as
well as inter-specific variation, in particular in response to
environment (e.g., Davy de Virville, 1927–1928; Birse, 1957). This
plasticity is uneven: gametophytes often display a high degree
of polymorphism while sporophytes remain less variable, being
especially conserved among liverworts and hornworts (Schuster,
1966; Vanderpoorten and Goffinet, 2009). The causes of this high
variability at the individual level can be linked to ecological,
geographical and evolutionary factors (e.g., Forman, 1964; Glime
and Raeymaekers, 1987; Vanderpoorten et al., 2003; Buryová
and Shaw, 2005; Medina et al., 2012, 2015), and the majority
of traditional morphometric studies focused on interpreting this
variability.

Gametophytic plasticity presents a challenge to the
development of clear and shared species delimitations; Schuster
(1966) noted that “ideally, experimental data must be a frame
of reference”, paving the way for experimental or integrative
taxonomy (using “common gardens” of putatively different
species to eliminate environmental effects; McQueen, 1991;
Dayrat, 2005; Cano et al., 2006). At the peak of numerical
taxonomy in 1970s–1980s, morphometry was a popular tool
supporting morphological species delimitation (Hewson,
1970; Bischler-Causse, 1993), in particular helping to make
decisions on species hypotheses for problematic taxa, where
cryptic species may have been previously overlooked. In
bryology, traditional morphometry involves measurements
of gametophyte organs (leaves, stem, cells, including minute
ornamentation), and sporophytes (seta, capsule, and peristome
measurements). Measurements are made on living plants
(Cano et al., 2006; Gonzalez-Mancebo et al., 2010; Yu et al.,
2012), from single digitized images (De Luna and Gomez-
Velasco, 2008), or from shallow image stacks (Renner et al.,
2013b).

Today, at the inter-specific level, traditional morphometrics
results analyzed from univariate or multivariate methods are
compared to molecular species delimitations. For example,
Braunia andrieuxii and B. secunda are discriminated by length
of recurved margin and size of upper cells; the variation is
always greater between species than within each species (De Luna
and Gomez-Velasco, 2008) In the Tortula subulata complex,
morphometrics recognize four species but not two of the
previously known varieties (Cano et al., 2006). However, other
species complexes show no clear morphological discontinuities
(e.g., Vanderpoorten et al., 2003) and even greater intra- than
interspecific variation (Renner et al., 2013a). Variations within
populations of a single species (infra-specific level) have also
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FIGURE 1 | Phylogenetic tree (adapted from Crandall-Stotler et al., 2008; Buck and Goffinet, 2009; Chang and Graham, 2011) showing the three main
clades of bryophytes: liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthoceratophyta) as well as their relationship to vascular
plants (Tracheophyta). The images (scale bar 1 cm) illustrate a few examples of the wide diversity of morphologies found both within and across clades. All images
by CR or DS.

been explored through traditional morphometry, showing strong
correlations with geographical and ecological factors (Pereira
et al., 2013). Finally, morphometrics have been incorporated
into citizen science in an ongoing initiative at the Field
Museum in Chicago1. From images of the leafy liverwort
Frullania, the public is asked to measure leaves and lobules
to build a huge dataset for analysis at intra- or inter-specific
levels.

Geometric morphometry, which includes shape analysis
through coordinates analysis of homologous points (landmarks;
Bookstein, 1991) or outline analysis (elliptical Fourrier analysis;
Ferso et al., 1985), allows to one quantify shapes and to
explore their dependence on size (allometry) via combination
of quantification with multivariate analysis. We will highlight
two recent applications in bryology that have used geometric
morphometry to unlock nuanced evolutionary understandings

1http://microplants.fieldmuseum.org/

of form and development: liverwort lobules (Renner et al., 2010,
2013b; Renner, 2015) and moss sporophytes (Rose et al., 2016).

In the first example, the morphological variation in
the lobule of the compound liverwort leaf, was linked to
developmental heterochrony (Renner et al., 2013b), correlated
with biogeographical and historical hypotheses (Renner, 2015).
Beginning with species delimitation (including intra-specific
variation; Renner et al., 2010) they broadened the issues to
evolutionary questions, linking morphometrics to ontogenetic
and phylogenetic analysis (Renner et al., 2013; Renner et al.,
2013b; Renner, 2015). Univariate and multivariate analysis
were combined with evolutionary methods: ontogenetic
calibration, reconstruction of ancestral states for shape and
duration of growth, reconstruction of phylomorphospace, and
Bayesian analysis of macroevolutionary mixtures (BAMM).
This led not only to confirmation of inter-specific variation
but also an understanding of pitfalls associated with these
methods: for example, only measurements of mature lobules
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recovered informative patterns. Furthermore, convergences
in morphospace lead to testable hypotheses of functional and
historical explanations of lobule morphologies (Renner, 2015).

In mosses, Rose et al. (2016) similarly combined geometric
morphometric analyses (in this case harmonic amplitudes as
descriptors of sporangium shape) with evolutionary hypothesis
testing. They found strong correlations between shape and
habitat indicative of repeated functional shifts. Shifts in
sporangium shape were also found to correlate with increases
in speciation rates, but not always in conjunction with shifts in
habitat.

These adoptions of geometric morphometry in bryology show
how several properties of bryophytes make them particularly
amenable to such studies. The revival properties of bryophytes
provide a constant and relatively easy availability of material, even
from herbarium specimens; the usually huge number of objects in
a single sample and the ease of manipulating digitalized images
ensure perennial perspectives in morphometrics applications.

BRANCHING PATTERNS

Above the organ-level, a different type of morphometrics,
inspired by graph theory and modularity, has proven productive.
Bryophytes tend to be organized into two broad morphological
types: leafy, erect or prostrate shoots with associated leaf-like
flattened organs (mosses and some liverworts) and thalloid,
lacking the differentiation between shoots and leaves (hornworts
and some liverworts). Although outwardly quite different, both
of these morphologies are based in modular development, arising
from repetition of the same structure at different levels.

The ontogeny of leafy bryophyte shoots, including formation
of stem, leaves, and branching, has been studied for over a
century (Clap, 1912; Berthier, 1970; Renzaglia, 1982; Mishler
and De Luna, 1991). Branching patterns reflect ramification
characteristics of shoots. They are directly linked to modularity,
each ramification signaling the formation of a new module.
Two types of branching patterns are recognized in bryophytes
(La Farge, 1996; Goffinet and Buck, 2013): (i) sympodial,
consisting of connected modules of the same level and (ii)
monopodial, consisting of one module, itself connected to
independent modules of different levels (Figure 2). Integration
at the individual level, considered then as an architectural unit,
defines growth-forms which depend also of perichaetial position
and direction of growth (orthotropic or plagiotropic).

Modular lateral branching allows plant architecture and
space filling to respond to environmental constraints, making it
important to detect specific patterns (morphological modularity)
in order to understand their relationship to development,
environment and evolutionary history. Control of branching
of the sporophyte is well known in flowering plants but
conservation of the mechanisms in bryophyte gametophytes have
been only briefly explored (Ashton et al., 1979; Fujita and Hasebe,
2009; Bennett et al., 2014). Using both cultivation experiments
and modeling of branching patterns, Coudert et al. (2015) showed
that branch initiation is patterned in the model moss P. patens.
They highlighted regulation mechanisms by auxin, cytokinin and

strigolactone. The moss shoot was represented as a connected
graph with vertex and connecting edges (VVe modeling; see
Abley et al., 2013); a vertex represents a metamer or an apex.
Growth was simulated by periodically adding new vertices
and by constraining different parameters: apical inhibition over
branching via auxin; apical source of auxin, and transportation to
neighboring metamers implying different concentrations in each
metamer that can be calculated.

Analysis of branching patterns and morphometric characters
can also be used for integrative taxonomy, for example in thalloid
liverworts, in which phenotypic variability makes landmark-
based morphogeometric approaches nearly impossible (Reeb,
2014). This approach was inspired by work on branched
organisms, such as corals and sponges (Kaandorp, 1999;
Kaandorp and Kübler, 2001; Kruszynski, 2010). The thallus is
described as a connected graph, ordered using Horton–Strahler’s
law (Strahler, 1952; Tarboton, 1996) and consequently each
marker is defined as either vertex (junction or apex) or edge.
A thallus is considered as a tree rooted by a terminal vertex of
maximum order, and branches of order n treated as sub-trees
rooted by a vertex of order n-1. Following these definitions,
all lengths, widths, distances, and angles can be measured on
a single thallus with a precise, reliable and repeatable method.
Although impossible to do by eye, two software programs
(2D and LeafSnake) have been developed that automatically
acquire measurements from digitized images of thalli. Statistical
analysis show that specific branching patterns, typical of a
species or group of species, can be identified (Reeb, 2014).
These approaches are complementary to those conducted on
fixed animals (Kaandorp and Kübler, 2001), but also in medicine
(neuronal or blood webs, e.g., Grueber et al., 2002), in geology
(river catchment areas, e.g., Zanardo et al., 2013), and even in
data-mining (email networks, e.g., Guimera et al., 2006) reflecting
universal and mathematical laws driving such constructions.

The branching patterns of bryophytes and other early land
plants are also of interest to studies of plant allometry. Some
attributes of bryophyte sporophytes scale allometrically in a
manner similar to vascular plants (Niklas, 1994), but this is not
universal. Vascularization imposes different constraints on tissue
investment during growth, and since bryophytes vary greatly in
the nature and specialization of water conducting tissues (Ligrone
et al., 2000), they may not all be constrained in the same manner.
Interestingly, one of the tallest moss species known, the internally
conducting Dendroligotrichum dendroides, does show branching
allometries consistent with those of other vascular plants (Atala,
2011; Atala and Alfaro, 2012).

SHOOTS AND CANOPIES:
WHOLE-PLANT APPROACHES

A key consideration in any comparison vascular and non-
vascular models of plant architecture (allometric or otherwise)
is that of scale. The individual modular units of bryophytes
combine to determine form and function at larger physical
scales, as branching patterns are integrated at the individual level
(“growth-form”) and at the population level (“life-form”). The
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FIGURE 2 | Major branching forms in bryophytes: sympodial (top) with connected modules of same level, and monopodial (bottom). Red dots indicate
the locations of the active apical meristems at each of the levels of organization. Each of these branching forms can be found in a range of growth-forms (e.g.,
orthotropic, plagiotropic, etc.) and perichaetial positions (locations of sex organs, not shown). Growth and branching forms adapted from La Farge (1996).

biophysical scales at which many bryophytes operate are small
enough that phyllids are not adequate analogs for vascular leaves;
instead, functional analogies to vascular leaves must include
some combination of leaf, shoot, and canopy properties (Waite
and Sack, 2010). While this may initially seem constraining,
the explicit need for cross-scale integration presages some of
the current directions in vascular plant modeling, where the
ecophysiological and biophysical consequences of shoot and
stand structure are only beginning to be considered.

The shoot and stand scales can be particularly difficult
to disentangle in bryophytes. In many bryophyte species,
particularly acrocarpous mosses, the individual shoots grow
tightly packed into turves or cushions. These can be multiple
shoots of the same individual, closely related individuals or even
multi-species mixes. This life-form modifies the impact of any
given shoot architecture on light penetration, water retention
and gas-exchange: in a study of 22 subarctic bryophyte species,
Elumeeva et al. (2011) found that shoot density was a better
predictor of water retention than anatomical properties such
as cell wall thickness. Shoot density can be environmentally
variable within species, and the extent of its dependence on shoot
architecture remains unresolved.

In cushion-forming species of mosses, the size of the cushion
alone can strongly determine physiological function, determining
water balance and gas exchange (Zotz et al., 2000; Rice and
Schneider, 2004). Simple geometric relationships between surface
area and volume allow larger cushions to remain hydrated, and,
therefore, gain carbon, for much longer periods. These scaling
relationships appear to be partially species-specific; cushions
can vary from hemispherical (Leucobryum glaucum; Rice and
Schneider, 2004) to flattened (Grimmia pulvinata; Zotz et al.,

2000). How cushion shape relates to shoot architecture and/or
environment has yet to be explored more widely, despite the
relative simplicity of the geometric methods required.

The surface-area relationship described by cushion size
and shape is a coarse-grain simplification. The individual
shoot canopies aggregate to create a rough canopy layer,
analogous to that of a forest. Surface roughness has large
effects on boundary-layer properties, and thus on the gas-
exchange properties of a moss clump. Surface roughness
has traditionally been measured by contact surface probes
(Rice et al., 2001), but more efficient laser scanning methods
(Rice et al., 2005) and stereoscopic image analysis (Krumnikl
et al., 2010), drawing on analogies to LIDAR scanning of
forests. Uptake of these methods in bryology has to date
been limited (although see Acosta-Mercado et al., 2012), but
their application, in conjunction with shoot- and leaf-scale
architectural characterizations, shows great potential (Rice and
Cornelissen, 2014).

An important distinctive feature of bryophyte canopies is that
many of the surface properties are highly dynamic. Shoot and leaf
structure are strongly determined by hydration state, allowing
bryophytes to rapidly adjust to changing water availability. The
leaves of the desert moss Syntrichia caninervis change angle
by over 40◦ within seconds of rehydration, increasing exposed
surface area (Wu et al., 2014). Such changes have the potential to
be documented using laser-scanning approaches, as in vascular
plants (Puttonen et al., 2016), providing a direct link between
shoot scale dynamics and canopy surface roughness. Due to their
small size, bryophytes are also particularly amenable to imaging
chlorophyll fluorescence approaches (e.g., Coe et al., 2012;
Stanton et al., 2014; Malenovský et al., 2015), making it possible to
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combine architectural imaging and photosynthetic measurement
into synchronous evaluations of physiological activity.

PROMISING DIRECTIONS

Bryophytes offer a number of promising avenues for future
research. The small size and high plasticity of bryophytes
make them particularly amenable to large replication at low
cost, especially as improvements in image processing allow
for increasing automatization. A future expansion from two-
dimensional to three-dimensional image processing and analytics
will unlock applications to a wide range of organisms where
branching has recently been shown to be ecologically informative,
such as algae (Koehl et al., 2008; Demes et al., 2013) and lichens
(Stanton and Horn, 2013; Esseen et al., 2015).

Although there have been numerous recent applications of
innovative geometric approaches to bryophytes (e.g., Reeb, 2014;

Rice and Cornelissen, 2014; Coudert et al., 2015; Renner, 2015;
Rose et al., 2016), the field is still very young and ripe for further
exploration. We suggest that advances should come from two-
way dialog: the translation and adoption of techniques developed
for vascular plants (and other organisms) to bryophytes and
the use of bryophytes as model systems for the innovation of
new techniques and paradigms in morphogeometric approaches.
This will require bryologists to adopt or adapt some terms and
concepts used for vascular plants, but also for researchers more
familiar with vascular plants to acknowledge and incorporate
the complexity of bryophyte form and function, rather than
misleadingly characterizing them as “primitive and boring”.
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