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As a widely known hormone in animals, melatonin (N-acetyl-5-methoxytryptamine) has
been more and more popular research topic in various aspects of plants. To summarize
the these recent advances, this review focuses on the regulatory effects of melatonin
in plant response to multiple abiotic stresses including salt, drought, cold, heat and
oxidative stresses and biotic stress such as pathogen infection. We highlight the
changes of endogenous melatonin levels under stress conditions, and the extensive
metabolome, transcriptome, and proteome reprogramming by exogenous melatonin
application. Moreover, melatonin-mediated stress signaling and underlying mechanism
in plants are extensively discussed. Much more is needed to further study in detail the
mechanisms of melatonin-mediated stress signaling in plants.
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INTRODUCTION

N-acetyl-5-methoxytryptamine (melatonin) was first identified in the pineal gland of cow (Lerner
et al., 1958, 1959). Later on melatonin was also discovered in plants (Dubbels et al., 1995;
Hattori et al., 1995). Thereafter, melatonin has been identified in almost all plant species,
although with different concentrations, including model plants (Arabidopsis, rice, tobacco), fruits
(banana, cucumber, apple, beestrawberry), and so on (Arnao and Hernández-Ruiz, 2014, 2015;
Reiter et al., 2001, 2014, 2015; Van Tassel et al., 2001; Simopoulos et al., 2005; Tan et al.,
2007, 2012, 2014; Shi and Chan, 2014; Shi et al., 2015b,d,e,a,c,f). In the meantime, melatonin
biosynthetic and metabolic pathways in plants have been revealed (Kang et al., 2010; Tan et al.,
2012, 2014; Arnao and Hernández-Ruiz, 2014, 2015; Wang L. et al., 2014; Wang P. et al.,
2014; Zuo et al., 2014; Reiter et al., 2015; Hardeland, 2016). Melatonin biosynthesis begins
from tryptophan through four sequential enzyme reactions, involving tryptophan decarboxylase
(TDC), arylalkylamine N-acetyltransferase (AANAT)/serotonin N-acetyltransferase (SNAT),
tryptamine 5-hydroxylase (T5H), N-aceylserotonin methyltransferase (ASMT)/hydroxyindole-O-
methyltransferase (HIOMT) (Tan et al., 2016; Wei et al., 2016). Thereafter, melatonin is converted
to 2-hydroxymelatonin by melatonin 2-hydroxylase (M2H) (Byeon et al., 2015).

Based on previous studies using exogenous melatonin treatment or transgenic plants with
higher or lower melatonin levels, some more general comprehension has been achieved as
to the involvement of the compound in seed germination, root development, fruit ripening,
senescence, yield, circadian rhythm, stress responses (Kolář and Macháčkova, 2005; Posmyk
et al., 2008, 2009a,b; Li et al., 2012, 2015; Wang et al., 2012, 2013, 2015; Park et al., 2013; Yin
et al., 2013; Zhang et al., 2013; Zhao et al., 2013; Bajwa et al., 2014; Lee et al., 2014, 2015;
Zhang H. J. et al., 2014; Zhang N. et al., 2014; Liang et al., 2015; Byeon and Back, 2016).
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Considering the new advances in recent 5 years (Tan et al., 2012,
2014, 2015; Lee et al., 2014, 2015; Kaur et al., 2015; Reiter et al.,
2015), we focus on the regulatory effects of melatonin in plant
responses to multiple abiotic stress factors and plant–pathogen
interactions (Table 1).

MELATONIN-MEDIATED STRESS
RESPONSES

Secondary messengers including calcium and hydrogen peroxide
(H2O2) play essential roles in plant stress responses by
linking upstream receptors and activating downstream signal
transduction (Shi et al., 2015b,d,e,a,c,f; Zhang et al., 2015). It has
been shown that nearly all stresses including salt, drought, cold,
heat, zinc sulfate, H2O2, anaerobic, pH, pathogen, and senescence
can cause a rapid and massive up-regulation of melatonin
production in various plants (Tan et al., 2012, 2014; Reiter et al.,
2015; Shi et al., 2015b,d,e,a,c,f), indicating the possible role of
melatonin as an important messenger in plant stress responses.

Most of previous studies focused on the effect of melatonin
on reactive oxygen species (ROS) metabolism, as well as the
alleviation of stress-induced ROS production and the activation
of antioxidants in melatonin-conferred stress resistance in plants
(Zhang et al., 2015). In recent years, more and more studies

have extended our understanding on the molecular mechanisms
of melatonin-mediated stress responses in plants. Based on
previous studies, plant transcription factors play important roles
in plant stress responses, by directly regulating the transcription
of stress-responsive genes and through acting in cross-talk
between multiple signaling pathways (Reiter et al., 2014, 2015;
Shi et al., 2015b,d,e,a,c,f). In Arabidopsis, we have found that
four transcription factors including Arabidopsis thaliana Zinc
Finger protein 6 (ZAT6) (Shi and Chan, 2014), Auxin Resistant
3 (AXR3)/Indole-3-Acetic Acid inducible 17 (IAA17) (Shi et al.,
2015d), class A1 Heat Shock Factors (HSFA1s) (Shi et al.,
2015e), and C-repeat-Binding Factors (CBFs)/Drought Response
Element Binding 1 factors (DREB1s) (Shi et al., 2015c), are
involved in melatonin-mediated signaling. Briefly, AtZAT6-
activated CBF pathway is essential for melatonin-mediated
freezing stress response (Shi and Chan, 2014); AtIAA17-
activated senescence-related Senescence 4 (SEN4) and Senescence-
Associated Gene 12 (SAG12) transcripts may contribute to
the process of natural leaf senescence (Shi et al., 2015d);
HSFA1s-activated transcripts of HSFA2, Heat-Stress-Associated
32 (HSA32), Heat Shock Protein 90 (HSP90), and HSP101
may contribute to melatonin-mediated thermotolerance (Shi
et al., 2015e); AtCBFs-mediated signaling pathway and sugar
accumulation may partially be involved in melatonin-mediated
stress response (Shi et al., 2015c). Moreover, the diurnal

TABLE 1 | The functions of melatonin in plant stress responses.

Plant species Stress responses Melatonin treatment or
transgenic plants

References

Arabidopsis Cold stress Melatonin treatment Bajwa et al., 2014; Shi and Chan, 2014

Arabidopsis Disease resistance against Pseudomonas
syringe pv. tomato

Melatonin treatment and
transgenic plants

Lee et al., 2014, 2015; Lee and Back, 2016;
Qian et al., 2015; Shi et al., 2015a,c, 2016;
Zhao et al., 2015a

Arabidopsis Leaf senescence Melatonin treatment Shi et al., 2015d

Arabidopsis Thermotolerance Melatonin treatment Shi et al., 2015e

Arabidopsis Salt and drought stresses Melatonin treatment Shi et al., 2015c

Arabidopsis Oxidative stress Melatonin treatment Weeda et al., 2014; Wang et al., 2015

Bermudagrass Salt, drought and cold stresses Melatonin treatment Shi et al., 2015b

Bermudagrass Oxidative stress Melatonin treatment Shi et al., 2015f

Nicotiana benthamiana Disease resistance against Pseudomonas
syringe pv. Tomato

Melatonin treatment Lee et al., 2014

Lupinus albus Disease resistance to fungal infection
(Penicillium spp.)

Melatonin treatment Arnao and Hernández-Ruiz, 2015

Rice Salt and cold stresses Transgenic plants Kang et al., 2010; Byeon and Back, 2016

Rice Herbicide-induced oxidative stress Transgenic plants Park et al., 2013

Rice Cadmium stress Transgenic plants Byeon et al., 2015

Rice Leaf senescence and salt stress Melatonin treatment Liang et al., 2015

Malus Disease resistance to Marssonina apple blotch Melatonin treatment Yin et al., 2013

Malus Salt stress Melatonin treatment Li et al., 2012

Malus Drought stress Melatonin treatment Li et al., 2015

Malus Senescence Melatonin treatment Wang et al., 2012, 2013; Wang P. et al., 2014

Cucumber Chilling stress Melatonin treatment Posmyk et al., 2009a

Cucumber Salt stress Melatonin treatment Zhang H. J. et al., 2014

Cucumber Drought stress Melatonin treatment Zhang N. et al., 2014

Red cabbage Copper ion Melatonin treatment Posmyk et al., 2008, 2009b

Tomato Drought stress Transgenic plants Wang L. et al., 2014
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changes of AtCBF/DREB1s expression may be regulated by the
corresponding change of endogenous melatonin level and be
involved in diurnal cycle of plant immunity (Shi et al., 2016).
Thus, these transcription factors may play important roles in
melatonin-mediated stress responses in plants.

Salicylic acid (SA) and NO are required small molecules
for plant disease resistance, and SA-deficient plants (NahG
overexpressing plants) and NO deficient mutants (noa1 and

nia1nia2) show increased sensitivity to bacterial pathogen.
Moreover, both of SA and NO confer enhanced disease resistance
against bacterial pathogen in Arabidopsis, and the cooperation
between them plays important roles in plant innate immunity
(Shi et al., 2012). Recently, we also found that melatonin
treatment increases the accumulation of sugars and glycerol,
and the elevated sugars and glycerol thereafter increase the
endogenous NO level, which confers an enhanced innate

FIGURE 1 | Hypothetical model explaining melatonin-mediated stress responses in Arabidopsis (A) and bermudagrass (B). (A) Under various stress
conditions, endogenous melatonin levels are quickly and significantly increased. Thereafter the induction of melatonin increases the transcripts of some
stress-related transcription factors (AtZAT6, AtCBFs, AtHSFA1s, and AtAXR3/IAA17), activates MAPK signaling, CWI, and vacuolar invertase (VI), up-regulates
carbohydrate metabolism especially the sugars. These affections in turn result in improved stress resistance in Arabidopsis. (B) In response to abiotic stress,
endogenous melatonin levels are significantly induced. The induction of melatonin increases the activities of antioxidant defense system, triggers the extensive
reprogramming of primary metabolites, transcriptome and proteome, resulting protective stress responses in bermudagrass. CAT, catalase; SOD, superoxide
dismutase; POD, peroxidase; GSH, glutathione; CHO, carbohydrate; PS, photosynthesis.
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immunity against bacterial pathogens via a SA and NO-
dependent pathway in Arabidopsis (Qian et al., 2015; Shi et al.,
2015a,f). Consistently, Yin et al. (2013) showed that melatonin
improves Malus resistance to Marssonina apple blotch, and
Lee et al. (2014, 2015) found that melatonin confers disease
resistance against pathogen attack in Arabidopsis and tobacco,
which may be related with endogenous SA level. Zhao et al.
(2015a) found that exogenous melatonin regulates carbohydrate
metabolism, increases cell wall invertase (CWI), increases
production of sucrose, glucose, fructose, cellulose, xylose and
galactose, and cellose deposition during pathogen infection.
They also found that melatonin-mediated sugar metabolism,
especially its metabolites exert significant promotional and
inhibitory effects, for instance on the growth of maize seedling,
as was demonstrated by treatment with different doses of
exogenous melatonin (Zhao et al., 2015b). Together with
previous studies suggesting that sugars are functional, well
compatible solutes for osmotic adaptation in response to abiotic
stress, being also involved in the protection against bacterial
pathogens (Thibaud et al., 2004; Shi et al., 2015a,f; Tsutsui
et al., 2015), the above studies highlight the important roles of
sugar metabolism in complex plant stress responses. Recently,
Lee and Back (2016) found that the mitogen-activated protein
kinase (MAPK) signaling through MAPK kinase (MKK) 4/5/7/9-
MPK3/6 cascades are also required for melatonin-mediated
innate immunity in plants.

Based on these results, a hypothetical model explaining
melatonin-mediated signaling in Arabidopsis is proposed
(Figure 1A). Under various stress conditions, endogenous
melatonin levels are quickly and significantly increased. As a
consequence, the induction of melatonin increases the transcripts
of some stress-related transcription factors (AtZAT6, AtCBFs,
AtHSFA1s, and AtAXR3/IAA17) and the underlying down-
stream genes, activates MAPK signaling, CWI and vacuolar
invertase (VI), up-regulates carbohydrate metabolism especially
the sugars. These induced affects in turn result in improved stress
resistance in Arabidopsis.

With the development of omics, several studies indicated
that melatonin triggers extensive reprogramming of primary
metabolites, transcriptome, and proteome in plants, further
confirming its involvement in plant signal transduction. Weeda
et al. (2014), Liang et al. (2015), and Shi et al. (2015b) identified
1308 differentially expressed genes (DEGs) (566 up-regulated
genes and 742 down-regulated genes), 3933 DEGs (2361 up-
regulated genes and 1572 down-regulated genes) and 457 DEGs
(191 up-regulated genes and 266 down-regulated genes) by
exogenous melatonin treatment in Arabidopsis, bermudagrass
and rice, respectively. Wang P. et al. (2014) and Shi et al. (2015f)
identified 309 and 63 differentially expressed proteins (DEPs)
after exogenous melatonin treatment in apple and bermudagrass,
respectively. MapMan and gene ontology (GO) analyses found
that that several pathways were enhanced by melatonin treatment
in bermudagrass, including nitrogen-metabolism, polyamine
metabolism, major carbohydrate (CHO) metabolism, hormone
metabolism, metal handling, photosynthesis (PS), redox status,
and amino acid metabolism. Notablly, all these transcriptome
and proteome studies identified a large number of transcription

factors as DEGs or DEPs, the functional identification of these
DEGs or DEPs may provide more valuable clues into melatonin-
mediated signaling. Additionally, both Wang P. et al. (2014)
and Shi et al. (2015f) indicated the possible role of melatonin
in epigenetic modification in plants. Based on our previous
studies (Shi et al., 2015b,f), we also propose a hypothetical model
explaining melatonin-mediated stress responses in bermudagrass
(Figure 1B). In response to abiotic stress, endogenous melatonin
levels are significantly induced. The induction of melatonin
activates antioxidant defense system, triggers the extensive
reprogramming of primary metabolites, transcriptome, and
proteome, resulting protective stress responses in bermudagrass.
The “omics” approaches can give some clues about the effect of
melatonin on plants, focusing on the extensive reprogramming
of gene transcripts, protein expression and metabolites, as well
as the relationship among them. This is just the beginning to
reveal melatonin signaling in plants, many questions need to be
investigated, including the crosstalk between melatonin and other
phytohomones, the interaction between melatonin and primary
or secondary metabolism.

CONCLUSION AND PERSPECTIVES

The objective of this review is to update the research on
melatonin-mediated stress signaling, and to encourage plant
researches to dissect further molecular mechanism and signaling
pathway. Although melatonin has continuously drawn the
attentions of plant biologists and some advances have been
made in recent years, melatonin-mediated complex signaling
pathways are largely unknown. Since melatonin shares the
common substrate (tryptophan) with IAA, the cross-talk between
melatonin and auxin signaling pathways needs to be further
investigated (Arnao and Hernández-Ruiz, 2014, 2015). Moreover,
unlike for animals (Jackers et al., 2008; Yu et al., 2014),
no specific melatonin-associated phenotype and no melatonin
receptor have been characterized in plants. Thus, these open
questions still prevent a full understanding of melatonin signaling
in plants (Reiter et al., 2015; Zhang et al., 2015). Therefore,
the identification of melatonin receptor or sensor and the
establishment of molecular link between melatonin sensing and
the regulators for plant stress responses will be an important next
step.

Moreover, several fundamental issues need to be resolved.
How is endogenous melatonin production regulated? How to
perceive and transfer melatonin signaling in plant cells? What are
the major or limiting steps in melatonin signaling transduction in
plants? Which genes are specifically regulated by melatonin and
underlying signaling pathways? Together with the development
of more new techniques, further studies will shed more light on
the global involvement of melatonin in plants and underlying
signaling pathway.
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