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The precise disassembly of the extracellular matrix of some plant species used as
feedstocks for bioenergy production continues to be a major barrier to reach reasonable
cost effective bioethanol production. One solution has been the use of pretreatments,
which can be effective, but increase even more the cost of processing and also lead to
loss of cell wall materials that could otherwise be used in industry. Although pectins
are known to account for a relatively low proportion of walls of grasses, their role
in recalcitrance to hydrolysis has been shown to be important. In this mini-review,
we examine the importance of pectins for cell wall hydrolysis highlighting the work
associated with bioenergy. Here we focus on the importance of endopolygalacturonases
(EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing
that most sequences, as well as the scarce structural work performed with EPGs, are
from fungi (mostly Aspergillus niger). The comparisons among the EPG from different
microorganisms, suggests that EPGs from bacteria and grasses display higher similarity
than each of them with fungi. This compilation strongly suggests that structural and
functional studies of EPGs, mainly from plants and bacteria, should be a priority of
research regarding the use of pectinases for bioenergy production purposes.
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INTRODUCTION

Bioenergy can be produced from several species and in different ways. The basic idea is to
transform hydrocarbons produced by plants and algae –mostly in the form of sugars and lipids–
into compounds similar to gasoline, diesel, and ethanol. In the latter case, there are only a handful
of plant species that have been considered or effectively used for bioenergy production in large
scale. Among these there are the ones that produce high concentrations of sucrose (e.g., sugarcane
and sugar beet), starch (e.g., maize), lignocellulose from woody materials (e.g., poplar and willow)
or grasses (e.g., corn stove, switchgrass, miscanthus, and sugarcane) (De Souza et al., 2013a). Other
residues, such as apple pomace, citrus, and sugar beet, which are rich in pectins have been suggested
as possible sources of carbon for bioethanol production (Edwards and Doran-Peterson, 2012).

Maize (Zea mays) and sugarcane (Saccharum sp.) are the main feedstocks used in large scale for
bioethanol generation, with the USA and Brazil being the world’s largest producers (RFA, 2015).
The bioethanol from sugarcane can be produced at lower costs in comparison to maize (Méjean
and Hope, 2010) probably due to the energy balance in the production process which has been
optimized since the early 20th century (De Souza et al., 2013a; Loqué et al., 2015).

Frontiers in Plant Science | www.frontiersin.org 1 September 2016 | Volume 7 | Article 1401

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.01401
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2016.01401
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01401&domain=pdf&date_stamp=2016-09-20
http://journal.frontiersin.org/article/10.3389/fpls.2016.01401/abstract
http://loop.frontiersin.org/people/321010/overview
http://loop.frontiersin.org/people/96633/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01401 December 14, 2017 Time: 18:20 # 2

Latarullo et al. Polygalacturonases and Bioenergy

The first generation bioethanol (1G) consists in fermenting
sucrose from the juice. Sucrose is extracted from large vacuoles
present in cells of the stem (Figures 1A,C). Sucrose is then used
in fermentation tanks to produce ethanol using Saccharomyces
cerevisiae (Amorim et al., 2011). Although this process became
extremely efficient along decades of engineering development,
some of the sucrose is still lost during the process due to difficulty
to open all sucrose-storage cells of the culm. These cells cannot
all be broken probably due to the strength of the cell walls as well
as their junctions (the middle lamellae), so that groups of cells
can resist to the mechanical forces involved in the milling and hot
water extraction during the 1G industrial process (Figures 1B,D).

Second Generation (2G) bioethanol production consists in
using different strategies to extract the sugars present in the
cell walls. For this purpose, some suggested feedstocks are
woody materials (e.g., poplar, willow, eucalyptus), grass stems,
that contain proportionally more cell walls than sucrose (e.g.,
miscanthus and switchgrass) and also from plant residues, such
as corn stover, wheat straw, sugarcane bagasse, sugar beet, citrus,
and apple residues.

The 2G processes have been designed to include biomass
pretreatment (Soccol et al., 2010; Pu et al., 2013; Martins et al.,
2015; Pereira et al., 2015) aimed at granting access to cellulose.
Pretreatments are known to cause losses of hemicelluloses and
pectins (DeMartini et al., 2013; Pu et al., 2013), decreasing yield.

The raw material employed in 2G technologies is the plant cell
wall, a complex conglomerate of three polysaccharide domains
(pectins, hemicelluloses, and cellulose) which are cross-linked
with lignin (Buckeridge et al., 2015). This Mini-review aims to
look on the role of pectins on cell wall recalcitrance to hydrolysis
and the potential of pectinases for bioenergy purposes. We
revised the literature about the use of pectinases to understand
cell wall hydrolysis and show that research made on these
enzymes is quite limited since only a few have been purified
and characterized. Here we focus on endopolygalacturonases,
which are the most well known among the pectinases. Increasing
knowledge about the structural and functional aspects of these
enzymes might bring new possibilities for their use in biomass
hydrolysis and bioethanol production.

CELL WALLS, PECTINS, AND
BIOENERGY

Cell walls are composites made of polymers with diverse
structures that are attached by covalent and non-covalent
linkages, forming an extremely complex network that constitutes
the Glycomic Code (Buckeridge and de Souza, 2014; Buckeridge
et al., 2015; Tavares and Buckeridge, 2015)

Among the grasses used for bioenergy purposes, maize
(Carpita, 1984), sugarcane (De Souza et al., 2013b), and
miscanthus (De Souza et al., 2015) are among the most
profoundly studied species. The architecture of the walls of
grasses is named Type II, which has arabinoxylans as the main
hemicellulose and relatively low proportions of pectins (ca.
2–10% of the wall in sugarcane and miscanthus) (Mohnen,
2008; Vogel, 2008; De Souza et al., 2013b, 2015). Maize

and sugarcane are known to form “packages” of cellulose
microfibrils (macrofibrils) bound to xyloglucan and xylans,
whereas pectins seem to form a separate domain with more
soluble polysaccharides into which the other cell wall domains are
embedded (Ding et al., 2012; Buckeridge et al., 2015). Despite its
low content in grasses, pectins are possibly involved in bindings
with lignin in sugarcane and miscanthus, conferring recalcitrance
to hydrolysis (De Souza et al., 2013b, 2015).

It is also widely known that pectins are the main components
of the middle lamella. Thus, besides hampering wall hydrolysis
and thus preventing efficient release of sugars for 2G bioethanol,
the presence of pectins in the middle lamella can also be a barrier
to the release of cells from tissues in 1G processes, interfering in
sucrose extraction (De Souza et al., 2013b, 2015).

The hydrolysis step required for disassembly of cell walls and
their polymers is regarded as one of the major bottlenecks for
2G ethanol production. Thus, understanding the mechanisms
of breakdown of the cell walls will help to determine the most
efficient strategies to reduce costs of production (Turumtay,
2015). Considering what is known about the structure and fine
structure of the pectic and hemicellulosic polymers in the walls
of sugarcane and miscanthus, the degradation of the cell walls of
sugarcane, for instance, is thought to require at least 18 different
types of enzymes, several of them related to pectin attack (De
Souza et al., 2013b).

Pectins are composed mainly of three polysaccharides,
including homogalacturonan present within the middle
lamella, which can be acetylated and/or methylated. Rhamno-
galacturonans I and II present a more complex structure,
composed of a main chain of galacturonic acid interspaced
with residues of rhamnose which are branched with chains of
arabinans, galactans, and arabinogalactans.

Usually referred to as accessory enzymes, the main required
enzymes to hydrolyze pectins are endopolygalacturonases
(EPGs), acetyl and methylesterases, α-arabinofuranosidases
and β-galactosidases. The fact that some linkages between
carbohydrates and phenylpropanoids would have to be broken in
order to allow attack to pectin, possibly more enzymes than what
is currently known might be involved in the complete hydrolysis
of this polysaccharide (Rytioja et al., 2014).

Experiments have been performed with pectin-rich materials
such as citrus waste (Edwards and Doran-Peterson, 2012; Awan
et al., 2013). Employing this biomass, a mixture of S. cerevisiae
and Candida parapsilosis have been successfully fermented. Also,
the use of enzymes from Xanthomonas axonopodis (a Gram
negative pathogen that confers canker to citrus) led to high
efficiency in ethanol production.

The effort on prospecting pectinases has been mostly on
fungal enzymes whereas some plant enzymes have also been
studied in systems of agronomic importance. Conversely, in
plants, the attack upon the pectins of cell wall and middle
lamella have been largely described for abscission zone formation
(González-Carranza et al., 2002), fruit ripening (Prasanna et al.,
2007) and aerenchyma formation (Gunawardena et al., 2001).
As a result, relatively little is known about the structural
and functional diversity of pectinases in plant and microbe
metabolisms.
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FIGURE 1 | Biomass units of sugarcane stem (culm) with cells bound by middle lamellae. (A,C) Stele, the vascular bundle showing Fibers (F), Phloem (Ph),
Xylem (X), sucrose-storage parenchyma (sP). (B) Macerated tissue showing a detail of an isolated stele that still maintains adhesion among cells. (D) Cells of
sugarcane stem without the binding of middle lamellae. Cells are named as in (A). The cell separation was prepared according to Franklin (1945) and cells were
stained with toluidine blue (B,D) and iodine-potassium iodide (A,C). Bars represent 100 µm.

The roles of pectin in biomass yield and processing for
bioenergy have been recently reviewed (Xiao and Anderson,
2013). Since pectins represent the class of polysaccharides
responsible for adhesion to neighbor cells, it could be decreased
due to pectinase activity. Another important role is the control
of penetration of other enzymes into the biomass network, since
pectins are thought to be responsible for determination of cell
wall porosity (Baron-Epel et al., 1988), limiting the size and
dimensions of enzymes allowed to penetrate the wall (Buckeridge
et al., 2015). A search in the CAZy databank gave 210 sequences
of EPGs (GH28 family, EPG 3.2.1.15), 46 pectin acetyl esterases
(CE12 and CE13 families, PAE 3.1.1.) and 44 pectin methyl
esterases (CE8 family, PME 3.1.1.11) (Lombard et al., 2014).
Thus, EPGs are by far the best-known enzyme family associated
to the homogalacturonan hydrolysis.

POTENCIAL USE OF PECTIN AND
PECTINASES FOR BIOENERGY

Depolymerases such as polygalacturonases are classified as
endo- or exopolygalacturonases according to their mode of
action. Exopolygalacturonases attack the non-reducing end of the
polymer, generating the monosaccharide galacturonic acid. EPGs
hydrolyze inner linkages within homogalacturonan molecules,
originating oligogalacturonides of different sizes.

Endopolygalacturonases play important roles in fruit ripening.
Smith et al. (1990) found that down-regulation of EPG expression

led to a reduction in enzyme activity between 5 and 50%,
increasing ripe fruit shelf life. Similar results were observed for
apple and strawberry fruits. Moreover, microscopic analysis of
transgenic fruits revealed smaller inter-cellular spaces and higher
cellular adhesion (Atkinson et al., 2012; Posé et al., 2013).

Because the proportion of pectins in grasses is rather low,
studies are scarce about their effect on saccharification. Some
evidence from experiments with dicot plants produced promising
results. The addition of pectinases to enzyme cocktails can
increase biomass hydrolysis in Arabidopsis (Lionetti et al., 2010).
Supplementing the commercial enzyme cocktail Celluclast 1.5 L
(which is mainly composed of cellulases) with fungal EPG or
overexpression of endogenous pectin methyl esterases, increased
the efficiency of enzymatic hydrolysis of cell walls. It is not yet
known by which mechanisms this process takes place, but it
is probable that these are related to the attack performed by
pectinases in general, which results in the removal of pectins that
prevent other enzymes to act. Thus, pectin connections in the cell
wall matrix can affect saccharification and pretreatment, so that
EPGs could eliminate the need for acid pretreatment, reducing
costs and environmental impacts.

Concerning microbe EPGs, Aspergillus niger is by far the most
studied fungi species and at least seven different types of the
enzyme have been described and classified as EPG I, II, A, B, C, D,
and E (Bussink et al., 1992), producing substrates with different
degrees of polymerization (DP). EPGI produces large amounts
of oligogalacturonides with DP 5, whereas EPG II products
range from DP 6 to 15 (Cook et al., 1999). Moreover, they
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FIGURE 2 | Homology of deduced amino acid sequences from the
most represented plant and microbe EPG among the characterized
enzymes from CAZy GH28. Predicted EPGs from grasses (Setaria italica,
Sorghum Bicolor, and Zea mays – not yet characterized) were added to the
alignment. The arabic numbers indicate bootstrap values and phylogenetic
groups identified, respectively. The maximum likelihood tree was chosen
accordingly to the highest ranked substitution model (Tajima-Nei) and 1000
bootstrap replications. NCBI GenBank numbers are indicated in each
sequence.

have distinct properties regarding optimal pH and temperature,
substrate specificity and molecular weight. This wide variety of
pectinases found in A. niger reflects the high complexity of cell
wall architecture (i.e., the Glycomic Code) within and among cell
walls of different plant species.

Currently, it is possible to find in the literature the
characterization of different EPGs produced by fungi, bacteria,
archaea, plants, insects, and nematodes. The most studied
organisms are fungi and plants and only fungi EPGs had their

3D structure characterized (van Santen et al., 1999; Pouderoyen
et al., 2003).

THE DIVERSITY OF EPGs IN
MICROORGANISMS AND PLANTS

In order to evaluate the diversity of characterized EPGs, all 210
sequences classified as such (3.2.1.15) were selected from the
GH28 family (Lombard et al., 2014). From those, 177 protein
sequences harboring predicted GH28 and pectin lyase domains
were identified according to InterPro database (Marchler-Bauer
et al., 2014). As a result, a total of 122 (68%), 39 (22%), 12
(0,8%), and 4 (0,2%) represented fungi, plant, bacteria, and other
eukaryotes EPGs, respectively.

The most represented phylum among fungi was Ascomycota
(70 sequences), mainly composed of Aspergillus species (21
sequences). Among the Aspergilli, those from A. niger were
the most abundant (five sequences). Following Ascomycota,
Oomycota was the second most represented fungi phylum,
presenting nine sequences, all from Phytophthora parasitica.
Concerning bacteria, the most common sub-order was
Enterobacteriaceae, with two sequences from Pectobacterium
carotovorum.

Plant sequences were from Solanaceae (10 sequences): nine
from Solanum lycopersicum and one from Nicotiana tabacum.
Among plant species, the families better represented within
GH28 (Solanaceae, Rosaceae, Leguminosae) do not have large
application in the biofuel industry. Although the grasses
are more established as promising feedstocks for biofuel
production (Somerville et al., 2010), according to CAZy, no grass
endopolygalacturonase figure among the characterized GH28.

In order to compare similarities among plants, bacteria and
fungi, the sequences from the above mentioned species (only the
most represented from each mentioned fungi phylum, bacteria
sub-order or plant family) were aligned using MUSCLE available
from MEGA v. 7 (Kumar et al., 2016). Due to the role played
by grasses as feedstocks for bioenergy, all GH28 grass EPGs were
added to the alignment (20 sequences from Z. mays, one sequence
from Sorghum bicolor and one from Setaria italica). Next, a
phylogenetic tree derived from the alignment was constructed
using Maximum Likelihood as a model and Tamura-Nei method
(Tamura and Nei, 1993) with 1000 bootstrap replications.

The phylogenetic tree in Figure 2 shows that plant EPG
diversity appears to be higher than the one observed for
fungi. Whereas microbes and grasses (including three out of 20
Z. mays sequences) EPG are clustered separately, the majority of
Z. mays sequences are allocated in two major clades, one among
the grass sequences and another among S. lycopersicum EPG
sequences. S. lycopersicum EPGs play important roles during fruit
ripening, germination and leaf and flower abscission. Although
S. lycopersicum sequences divergence is not well supported by
bootstrap (<70), they are described below as two different
clusters in order to better organize the presentation of functional
and transcriptional information.

Increased galacturonic acid levels along with increased
accumulation of LeXPG1 mRNA, suggests that this enzyme
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(AAF61444.1) is required for radicle protrusion (Sitrit et al.,
1999), whereas another tomato enzyme (AAA34178.1) has a fruit
ripening-specific pattern (Bird et al., 1988). The majority of the
remaining S. lycopersicum sequences (AAC28905.1, AAC28906.1,
AAC28903.1, AAC28947.1, AAB09575.1, AAB09576.1) is related
to abscission zone formation within leaves and flowers (Kalaitzis
et al., 1997; Hong and Tucker, 1998). The specificity of these
enzymes seems to be a relevant issue since divergent sequences
are thought to play different biological roles (Bird et al.,
1988), besides displaying different temporal expression patterns
(Kalaitzis et al., 1997). It is hard to speculate which roles might
be played by Z. mays sequences that were clustered together
with S. lycopersicum ones. However, it is important to note that
protein sequence identity between Z. mays (ACF85710.1) and
S. lycopersicum range from 47 to 50%. This level of similarity is
higher than the one observed among different S. lycopersicum
EPG expressed on abscission zones compared to the ones
expressed in fruit tissue (38–41%) (Kalaitzis et al., 1997). On the
other hand, the identity between those related to leaf and flower
abscission was much higher, 76–93%.

Fungi EPG characterization does not cover the same aspects
addressed in plant EPG. Reports on functional characterization
are available, concerning optimum pH, temperature and mode
of action upon homogalacturonans with different degrees of
polymerization. Although sugar beet pectins have been used to
induce enzyme production, the activity of purified/heterologous
EPG upon substrates derived from plants used as bioenergy
feedstocks have not been reported. The change of substrates
for yeast fermentation from monosaccharides (e.g., galacturonic
acid or rhamnose) to polysaccharides (polygalacturonic acid)
did not result in increased expression of A. niger EPG pgaA
and pgaB and authors suggested that fungi metabolism was
not promptly adapted to the new carbon source (Pařenicová
et al., 2000a). The processivity of A. niger pgaD was precisely
and elegantly described upon lemon pectins (Pařenicová et al.,
2000b) and polygalacturonan (Pařenicova et al., 1998). However,
studies like these have not yet been performed using structurally
well characterized polysaccharides from Z. mays, sugarcane or
miscanthus (Carpita et al., 2001; De Souza et al., 2013b, 2015).

Interestingly, one clade exclusively composed of grass EPG
is located separately from S. lycopersicum and from other
Z. mays sequences, which might represent an interesting target
for biotechnology research. These predicted proteins seem to be
more closely related to microbial ones than to other proteins of
plant species, although this divergence is not well supported by
bootstrap values and might require further research in order to
be confirmed.

Whereas the physiological roles of plant EPGs are reasonably
well described, fungi EPG characterization does not cover the
same functional aspects addressed in plants. Conversely, reports

on plant EPG do not characterize target enzymes in respect of
their activity upon a large range of substrates.

Evidently, all efforts toward enzyme prospection have a high
value for bioenergy, providing new alternatives to create enzyme
cocktails and complement the existing ones. Research on plant
EPGs plays an important role in deciphering how they act during
physiological processes in which the cell wall is modified and/or
hydrolyzed. However, very few of these approaches fill the gap
concerning how plant and microbe EPG act upon carbohydrates
from bioenergy feedstocks.

CONCLUDING REMARKS

Although in small proportion in walls of grasses and wood
biomass feedstocks, pectins can play an important role to
circumvent cell wall recalcitrance to hydrolysis.

The literature on EPG focusing on mechanisms of hydrolysis
as well as the catalogs of related genes are quite limited, being
restricted mainly to fungi (overall, A. niger) and a few species of
bacteria and plants. The focus on comparisons among pectinases
from different microorganisms, suggests that EPGs from bacteria
and grasses display higher similarity than each of them with
fungi. The fact that the structural and functional properties of
EPGs are scarce suggests that such studies should be regarded as
a priority in bioenergy research.

Due to the role of pectins on cell wall porosity and cell
adhesion, hydrolysis of bioenergy feedstocks with EPG might aid
significantly to decrease recalcitrance to hydrolysis, helping both
1G and 2G bioethanol production processes.
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