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Charophytes are the group of green algae whose ancestral lineage gave rise to land
plants in what resulted in a profoundly transformative event in the natural history of the
planet. Extant charophytes exhibit many features that are similar to those found in land
plants and their relatively simple phenotypes make them efficacious organisms for the
study of many fundamental biological phenomena. Several taxa including Micrasterias,
Penium, Chara, and Coleochaete are valuable model organisms for the study of cell
biology, development, physiology and ecology of plants. New and rapidly expanding
molecular studies are increasing the use of charophytes that in turn, will dramatically
enhance our understanding of the evolution of plants and the adaptations that allowed
for survival on land. The Frontiers in Plant Science series on “Charophytes” provides
an assortment of new research reports and reviews on charophytes and their emerging
significance as model plants.
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INTRODUCTION

Charophytes or basal Streptophytes; (Becker and Marin, 2009; Leliaert et al., 2012) constitute
a diverse taxonomic assortment of extant freshwater and terrestrial green algae that display
a wide array of unicellular, filamentous, and “parenchymatous” forms (Graham, 1993; Lewis
and McCourt, 2004). An ancestral lineage of charophytes emerged onto and colonized land
450–500 million years ago. These organisms adapted to terrestrial conditions, became capable
of surviving and reproducing when fully exposed to the atmosphere, and some members
ultimately evolved into land plants (Zhong et al., 2013; Delwiche and Cooper, 2015). This
“terrestrialization” of green plants represented a keystone biological event that forever changed
the biogeochemistry and natural history of the planet. The subsequent proliferation of land
plants changed atmospheric and further altered soil conditions and allowed for the emergence
of other diverse life forms onto land. Land plant evolution also transformed human history
most significantly through the innovation of agriculture and the consequential creation of
modern human civilization. Partly due to their evolutionary significance, charophytes have
received significant attention from plant biologists over the past decades (Pickett-Heaps and
Marchant, 1972; Pickett-Heaps, 1975; Mattox and Stewart, 1984; Becker and Marin, 2009;
Harholt et al., 2016). However, as additional new data has been gathered regarding the biology
of these algae, they have become important models for understanding basic phenomena in
biochemistry, cell biology, developmental biology, ecology and increasingly, molecular biology
(Delwiche and Cooper, 2015; Lemieux et al., 2016). The Frontiers in Plant Science series on
“Charophytes” illustrates the importance of these organisms in several specific areas of plant
biology research. This mini-review highlights the attributes of charophytes as model organisms
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in diverse areas of research. It also will hopefully provide
encouragement for a new generation of scientists to expand the
use of these algae in basic research and to initiate screening of
other taxa that, in turn, may lead to the identification and use of
new model charophytes.

THE “LINE-UP” OF CHAROPHYTES

During the 1970s and 1980s, ultrastructural (e.g., cell division
mechanism, flagellar apparatus substructure) and biochemical
(e.g., enzyme profiles) data were the main criteria for the
inclusion of a green alga in the charophyte lineage (Mattox
and Stewart, 1984; Lewis and McCourt, 2004; Leliaert et al.,
2012). From the 1990s to today, studies focused on molecular
analyses of chloroplast and nuclear genomes and transcriptomes
have reaffirmed and refined earlier taxonomic and phylogenetic
schemes (Timme et al., 2012; Delwiche and Cooper, 2015).
This has further been supplemented by detailed biochemical,
immunological and cell biology-based analyses of charophyte cell
walls and hormone biosynthetic and signaling pathways (Popper
and Fry, 2003; Popper, 2008; Sørensen et al., 2010, 2011, 2012;
Zhang and van Duijn, 2014; Ju et al., 2015; O’Rourke et al., 2015).
Extant charophytes display a relatively low percentage of diversity
in comparison with other green algal taxa and encompass 13
families and 122 genera (Becker and Marin, 2009; Leliaert et al.,

2012). Current phylogenetic opinion places the charophytes in
six classes (Figure 1; Delwiche and Cooper, 2015). The basal
class, the Mesostigmatophyceae, is represented by a single known
genus, Mesostigma. This alga is a unicellular biflagellate with
a unique asymmetric shape (i.e., like a flattened lifeboat) and
is covered by layers of ornately designed scales (Manton and
Ettl, 1965; Becker et al., 1991; Domozych et al., 1991, 1992).
The second class, the Chlorokybophyceae, also consists of a
single known type, Chlorokybus atmophyticus. This rare alga
forms a sarcinoid packet of cells surrounded by a thick gel-
like covering (Rogers et al., 1980). It should be noted that
alternative phylogenies place Mesostigma and Chlorokybus as
sister lineages that together are sister to all other Streptophytes
(Rodríguez-Ezpeleta et al., 2007). In the six class phylogeny, the
third class, the Klebsormidiophyceae, consists of three genera
that form simple unbranched filaments (Sluiman et al., 2008)
that often are members of “biological crusts” growing upon
surfaces of various terrestrial habitats. Several species in this
class can even withstand significant desiccation stress when part
of desert crusts (Mikhailyuk et al., 2008, 2014; Holzinger and
Karsten, 2013); others are tolerant to the desiccation stresses
associated with low temperature environments (Stamenkovic
et al., 2014; Herburger and Holzinger, 2015). These first three
classes constitute the “early divergent” charophytes. The “late
divergent” lineage also includes three classes. The Charophyceae,
or stoneworts, are commonly found in freshwater ecosystems

FIGURE 1 | Extant Charophytes. Extant Charophytes are divided into early and late diverging taxa. The early diverging taxa include the Mesostigmatophyceae, the
Chlorokybophyceae, and the Klebsormidiophyceae and the late diverging taxa include the Charophyceae, the Coleochaetophyceae, and the Zygnematophyceae.
Representatives of each group are Mesostigma (Mesostigmatophyceae), Chlorokybus atmophyticus (Chlorokybophyceae), Klebsormidium flaccidum
(Klebsormidiophyceae), Chara (Charophyceae), Coleochaete scutata (Coleochaetophyceae), and Micrasterias (Zygnematophyceae).
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and possess macroscopic multicellular thalli consisting of
aggregations of branched filaments made of exceptionally
elongate cells (Lewis and McCourt, 2004). Members of this
group exhibit oogamy-based sexual reproduction that includes
motile sperm and non-motile eggs both produced in multicelled
gametangia. The Coleochaetophyceae consist of taxa that
have multicellular thalli made of branched filamentous or
parenchyma-like thalli (Graham, 1993; Delwiche et al., 2002).
These organisms also display distinct oogamy-based sexual
reproduction. The Coleochaetophyceae are typically found at
the interface of freshwater and terrestrial habitats, often as
epiphytes. Finally, the largest and most diverse group of
charophytes, the Zygnematophyceae, consists of unicells and
unbranched filaments (Gontcharov et al., 2003; Guiry, 2013).
The distinguishing feature of this group is the presence of
conjugation-based sexual reproduction that requires complex
cell–cell signaling and adhesion (Abe et al., 2016). The
zygnematophycean algae are common inhabitants of freshwater
habitats, sometimes occurring in spectacular ephemeral blooms,
as well as in moist terrestrial substrates.

CHAROPHYTES AS MODEL
ORGANISMS

Several charophytes have been used extensively as model
organisms in the study of basic biological processes. Their small
and simple thalli (i.e., when compared to land plants) and ease
in experimental manipulation are just two of their attributes that
make them attractive model organisms. Recent evidence has also
demonstrated that many charophytes have several remarkably
similar features to those of land plants including the presence
of biosynthetic pathways for many growth regulators (Figure 2;
Boot et al., 2012; Hori et al., 2014; Wang et al., 2014, 2015;
Holzinger and Becker, 2015; Ju et al., 2015) and multiple cell
wall polymers (Popper, 2008; Sørensen et al., 2010, 2011, 2012;
Mikkelsen et al., 2014). These two characteristics have made
charophytes efficacious in such areas of study as plant molecular
development and stress physiology. While many charophytes
have been used in a wide array of biological studies, the following
taxa are most notable for their extensive use in multiple areas of
study as models:

Desmids: The Symmetrical Models
The Zygnematophyceae have recently been shown to most likely
be the closest living ancestors of land plants (Wodniok et al.,
2011; Delwiche and Cooper, 2015). Unicellular members of
the inclusive placoderm desmid group have become important
models for elucidating many fundamental principles of
plant cell biology and development. Large cell size, notable
symmetry/shape, distinct cell wall architecture and elaborate
endomembrane/cytoskeletal systems are just a few of the
characteristics that make them excellent cell systems for
studying cell physiology and development. The recent
establishment of stable transformed lines and soon-to-be
sequenced genomes/transcriptomes of select desmids have
further enhanced their value in botanical studies. Two taxa,

Micrasterias and Penium, have emerged as the most well studied
of the desmids.

Micrasterias has been the most popular desmid for cell
biology research for the past 50 years due to its unique features
(Meindl, 1993; Lutz-Meindl, 2016). The Micrasterias cell exhibits
a bilateral symmetry that is often highlighted by a spectacularly
dissected (i.e., multilobed) periphery. New daughter semicells
produced by cell division do not have this complex morphology
but rather are spherical in shape. A complex post-cytokinetic
developmental program that employs multiple sets of highly
coordinated subcellular mechanisms subsequently generates the
multilobed phenotype during daughter semicell expansion. This
program also is responsible for deposition of polymers for the
production of both a primary and secondary cell wall. These
events are centered on a large network of Golgi bodies and
associated vesicles that yield a complex secretory mechanism.
This process, in turn, is targeted to specific cell surface sites
that generate a multipolar cell expansion and the concurrent
secretion of cell wall macromolecules and extracellular mucilage
(Kim et al., 1996; Lutz-Meindl and Brosch-Salomon, 2000;
Oertel et al., 2004; Aichinger and Lutz-Meindl, 2005). The
delivery of secretory components to precise cell surface loci
requires an elaborate actinomyosin-based cytomotile system and
is controlled by several signal transduction cascades (Meindl
et al., 1994; Oertel et al., 2003). Furthermore, cell morphogenesis
is highly sensitive to external stress (e.g., oxidative stress, salinity,
heavy metals) that leads to major changes in cell differentiation
(Darehshouri et al., 2008; Affenzeller et al., 2009; Andosch et al.,
2012). Micrasterias is an outstanding organism for analyzing
these subcellular features as it is easy to maintain and manipulate
in the laboratory and it lends itself especially well for acquisition
of high resolution imaging using light and electron microscopy
including immunocytochemistry, Focused Ion Beam-Scanning
Electron Microscopy (FIB-SEM) and Electron Energy Loss
Spectroscopy (EELS) imaging (Lutz-Meindl, 2007; Eder and
Lutz-Meindl, 2008, 2010; Wanner et al., 2013; Lutz-Meindl et al.,
2015). Furthermore, initial molecular analyses including the
production of transformed cell lines have further enhanced the
use of Micrasterias especially in the molecular dynamics of cell
wall processing (Vannerum et al., 2010, 2011, 2012).

Over the past decade, the desmid, Penium margaritaceum, has
also become a valuable model organism (Domozych et al., 2009,
2014; Sørensen et al., 2014; Rydahl et al., 2015; Worden et al.,
2015). Unlike Micrasterias, Penium has a simple cylindrical shape,
possesses only a primary cell wall and deposits wall polymers at
two specific loci of the cell surface during expansion (Domozych
et al., 2011). This relative simplicity is highly attractive for
elucidating fundamental principles of plant cell development
including cell wall development, cell expansion and secretion
dynamics (Domozych et al., 2005, 2014; Ochs et al., 2014).
One of its main attributes is that it has wall polymers similar
to those present in many land plants (e.g., cellulose, pectins,
hemicelluloses) and that these polymers can be labeled with
monoclonal antibodies. After labeling of live cells, these can be
returned to culture where subsequent cell expansion and wall
deposition events can be monitored (Domozych et al., 2009;
Rydahl et al., 2015). Penium is also easily maintained in the
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FIGURE 2 | Current model Charophytes. Several Charophytes including Klebsormidium, Micrasterias, Penium, Spirogyra, Chara, and Coleochaete are used as
models; each has specific attributes that make it a particularly suitable model for specific physiological and biochemical processes.

laboratory and its fast growth rate under precisely controlled
conditions makes it an excellent specimen for large-scale
concurrent microarray screenings of many chemical agents (by
growth in multi-well plates) and for assessment of their specific
effects on expansion/wall development (Worden et al., 2015).
This significantly aids in revealing the role of specific subcellular
components and processes in the expansion/differentiation.
Recently, the isolation of stable transformed lines (Sørensen et al.,

2014) has further enhanced the potential of this alga in future
plant cell studies.

Chara and Nitella: Cellular Giants for
Plant Physiology
Species of Chara and Nitella (Charophyceae) have long been
used as specimens for a variety of biological investigations
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especially those dealing with cellular dynamics, expansion and
cytoplasmic streaming (Green, 1954; Probine and Preston,
1962). Their macroscopic thalli are distinguished by nodes,
where branches and gametangia arise, and internodal regions
that consist of exceptionally elongate cells. Internodal cells
exhibit a clearly notable stratification of subcellular components
whereby helical-oriented chloroplasts define a stationary cortex
that surrounds an endoplasm where the fastest recorded
actinomyosin-generated cytoplasmic streaming occurs. The
cytoplasm contains diverse endomembrane components that
participate in dynamic membrane trafficking networks (e.g.,
endocytosis and exocytosis) that are controlled by complex
signal transduction cascades (Foissner and Wastenys, 2000,
2012, 2014; Sommer et al., 2015; Foissner et al., 2016). The
internodal cells possess cell walls rich in cellulose and the pectin,
homogalacturonan (HG). Turgor is the main driving force for
expansion and pectin is most likely the load-bearing component
controlling wall expansion. Cyclic, non-enzymatic modulation
and concurrent calcium complexing of the HG is the mechanism
responsible for controlling wall modulations that lead to cell
expansion (Proseus and Boyer, 2007, 2008, 2012; Boyer, 2016).
One of the technical advantages of Chara and Nitella in cellular
research is that internodal cells can be individually removed;
endoplasm and cell walls can be “dissected out” and then used
as acellular systems for experimental manipulation.

Other thallus components like rhizoids have organized polar
organization of the cytoplasm. These cells contain sedimentable,
mineral-rich statoliths located at the apex that function in gravity
perception (Hodick et al., 1998; Braun, 2002; Braun and Limbach,
2006). This feature has made Chara the first charophyte in
space. During TEXUS rocket parabolic flights, it was shown
that the statoliths exert tensional forces on actin filaments.
A balance of forces (i.e., gravity and the counteracting force
of actin filaments) is responsible for the correct positioning
of the statoliths in the rhizoid that, in turn, guarantee the
ability to respond to the gravity vector (Braun and Limbach,
2006). The use of laser tweezers and slow rotating centrifuge
microscopy has demonstrated that statolith sedimentation is not
sufficient to cause gravitropic bending of the rhizoid tip. Rather,
the mineral-rich statoliths must settle onto specific regions of
the plasma membrane for gravitropic morphological effects to
proceed (Braun, 2002). Chara has also been used to study
other phenomena including electrophysiology and the role and
movement of hormones (Belby, 2016).

Coleochaete for Developmental Studies
and Pattern Development
The formation of a multicellular thallus (i.e., tissue, organ) of
a plant requires precise, spatially regulated cell division planes
that are controlled by multiple sets of genes expressed at specific
points during development (Besson and Dumais, 2011; Umen,
2014). Directed in both 3-dimensional space and time, thallus
morphogenesis also modulates in response to external stress
factors. In plants, these developmental programs are made even
more complex by the presence of cell walls that do not allow
for cell migration or tissue flexibility. The elucidation of the

specific events that are central to the manifestation of thallus
shape and size is often difficult to decipher in land plants
where resolution of specific cell behaviors are often poorly
resolved when embedded in highly complex and expansive
tissues/organs. The use of organisms with simpler thallus designs
has been advantageous for understanding basic developmental
phenomena and the charophyte genus Coleochaete is one such
example. Certain species (e.g., C. orbicularis, C. scutatum)
produce a parenchymatous discoid thallus that grows outward
by a combination of anti- or peri- clinal cell divisions and
subsequent expansion of its outermost cells (Brown et al., 1994;
Cook, 2004). The plane of division of any cell follows simple rules
that are based upon cell size, cell shape and geographic location
in the thallus (Dupuy et al., 2010; Besson and Dumais, 2011). This
characteristic allows for the construction of mathematical models
that can then be used to interpret multicellular morphogenesis
(Domozych and Domozych, 2014; Umen, 2014) and yield critical
insight into the evolution, biomechanics and physiology of
organs and whole organisms. Furthermore, some Coleochaete
species have been extensively studied to determine the structural
and functional modulations that occur to a thallus under
desiccation conditions (Graham et al., 2012), i.e., key features
in understanding early land plant evolution and plant growth
dynamics during droughts.

Insights from Genomic and Gene Studies
Similarly to many other technologies, molecular tools have
the ability to impart new information of importance for
many areas of research, including physiology and development.
For example members of the MADS-box gene family have
been isolated and characterized from three charophytes, Chara
globularis, Coleochaete scutata, and Closterium peracerosum-
strigosum-littorale (Tanabe et al., 2005). The expression pattern
of the MADS-box genes in the charophytes suggests that they
play a role in haploid development and reproduction (Tanabe
et al., 2005). They are thought to have been recruited into
the diploid generation, and their roles in development further
diversified, during land plant evolution (Tanabe et al., 2005).
To date Klebsormidium flaccidum is the only charophyte for
which a near complete nuclear genome is available (Hori et al.,
2014); although chloroplast and mitochondrial genomes have
been sequenced for representatives of each of the six classes of
charophytes and ESTs (expressed sequence tags) are available
for some charophytes (Delwiche, 2016). The Klebsormidium
genome has already revealed the presence of genes for the
synthesis of several plant hormones and signaling intermediates,
mechanisms for protection against high light intensity (Hori
et al., 2014), and the presence of Group IIb WRKY transcription
factors that were previously thought to have first appeared
in mosses (Rinerson et al., 2015). Several charophyte genome
sequencing projects are currently underway (Delwiche, 2016) and
will enable more detailed comparative analyses including a larger
number of charophytes and potentially give new insight into
the evolutionary relationships between species and genes. The
unique position of charophytes as the earliest diverging group
of Streptophytes makes them a particularly powerful tool for
evolutionary-developmental studies and emerging technologies
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such as the recent achievement of stable transformation in
Penium (Sørensen et al., 2014) will enable the function of specific
genes to be explored.

FUTURE USES OF CHAROPHYTES AS
MODEL ORGANISMS

A critical next step in charophyte research is the analysis of
the genomes of inclusive taxa and comparative studies with
those of land plants. Not only will this work yield key insight
into the adaptive mechanisms that charophytes evolved when
emerging onto, and successfully colonizing, terrestrial habitats
but will further refine and expand the use of current model
organisms in fundamental plant research. Although molecular
studies will support many areas of research, two areas that
will immediately benefit will be cell wall biology and the
dynamics of growth regulators in growth and development. In
the former, charophytes could provide clarification to many basic
yet poorly resolved phenomena including pectin- and cell wall
protein- biosynthesis, the controlled secretion, deposition and
post-secretory modulations of wall polymers and the specific,
interactive membrane trafficking networks in plant cells. In the

latter, charophyte models would help decipher the molecular
signaling, cell biology and developmental dynamics of growth
and development associated with hormones like ethylene and
auxin. Recent ecophysiological studies with charophytes also
offer a potential bonanza of critical data in determining how
plant cells adapt to stress, including desiccation and salt tolerance
(Holzinger and Karsten, 2013; Pichrtová et al., 2014; Herburger
et al., 2015; Holzinger and Becker, 2015; Holzinger and Pichrtová,
2016; Kondo et al., 2016). The future of charophyte research is
indeed very bright and will consequentially become a boon for all
of plant biology.
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