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During autophagy, cargo molecules destined for degradation are sequestrated into a
double-membrane structure called autophagosome, which subsequently fuses with the
vacuole. An isolation membrane structure (also called the phagophore) initiates from
the platform termed PAS (phagophore assembly site or preautophagosomal structure),
which then elongates and expands to become the completed autophagosome. The
origin of the membrane for autophagosome formation has been extensively investigated
but remains an enigma in the field of autophagy. In yeast and mammalian cells multiple
membrane sources have been suggested to contribute to autophagosome formation
at different steps, from initiation through expansion and maturation. Recent studies in
plants have provided a significant advance in our understanding of the conserved role of
autophagy and the underlying mechanism for autophagosome formation. Here, we will
discuss and evaluate these new findings on autophagosome formation in plants, with a
particular focus on the origin of plant autophagosomal membranes.
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INTRODUCTION

Macroautophagy (hereafter simply autophagy) is a conserved degradative pathway for the removal
of cytoplasmic materials in eukaryotic cells, and is characterized by the formation of a double-
membrane structure called the autophagosome (Mizushima and Komatsu, 2011). During the past
decades, our understanding of the physiological role of autophagy in plants has been greatly
extended, and now includes information on its primary function under stress or starvation
conditions for bulk degradation of cytoplasmic cargo (non-selective autophagy), and on its
emerging role in the specific degradation of defined macromolecules or organelles (selective
autophagy; Liu and Bassham, 2012). These studies support a conserved and essential role for
autophagy in the life of plants.

Autophagosome formation is orchestrated by a subset of autophagy-related (ATG) proteins,
which are coordinated in a spatio-temporal manner with most of the components being dissociated
and recycled back from the completed autophagosome (Lamb et al., 2013). In yeast and mammals,
diverse membrane sources have been proposed to contribute to autophagosome formation,
including the endoplasmic reticulum (ER), mitochondria, ER-mitochondria contact sites, the ER-
Golgi intermediate compartment (ERGIC), Golgi apparatus, ATG9 vesicles, recycling endosomes,
and the plasma membrane (PM; Axe et al., 2008; Hayashi-Nishino et al., 2009; Matsunaga et al.,
2010; Ravikumar et al., 2010; Yamamoto et al., 2012; Ge et al., 2013; Hamasaki et al., 2013; Puri
et al., 2013).
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In plants, a number of core autophagy-related (ATG)
counterparts have been implicated in selective and/or non-
selective autophagy (Liu and Bassham, 2012). Conserved
autophagosome-related structures, including the phagophore
and the completed double-membrane autophagosome, have been
characterized at the ultrastructural level in plants (Isono et al.,
2010; Zhuang et al., 2013; Le Bars et al., 2014; Gao et al., 2015;
Lin et al., 2015; Spitzer et al., 2015). However, the underlying
mechanism(s) of autophagosome biogenesis in plants remain
largely unexplored. Here we focus on selected recent studies into
autophagosome biogenesis in plants especially in regard to the
origin of its membrane.

AUTOPHAGOSOME INITIATION: ER
INVOLVEMENT?

The origin of autophagosome is divergent as derived from studies
in different organisms. In yeast, it has been reported that ATG9
vesicles are essential for the nucleation of the phagophore,
while in mammalian cells, an “omegasome” structure that arises
from an ER subdomain appears to be responsible for the
phagophore initiation (Mizushima et al., 2011; Lamb et al., 2013).
The formation of the omegasome requires the recruitment of
phosphoinositide 3-kinase (PI3K) complex for the production
of phosphatidylinositol 3-phosphate (PI3P) which then recruits
its downstream effectors to facilitate the membrane remodeling
process (Matsunaga et al., 2010). In contrast, information
about PAS in plants is limited. For example, whether the
plant autophagosome utilizes a de novo assembly model as
described in yeast, or the maturation model that suggested
the autophagosome is derived from a pre-existing membrane
in animals, remains unclear. Additionally, some of the ATG
counterparts for phagophore initiation have not been identified
or characterized, in particular those distributed on the initiation
site of the phagophore such as ATG14 and ATG16.

Despite the limited information in plant autophagosome
biogenesis, recent findings provide new evidence that
plant autophagosomes might originate from the ER
(Figure 1). Observations made under ER stress show that
the autophagosomal membrane is associated with the ER (Liu
et al., 2012; Yang et al., 2016), although this kind of association
could reflect the possibility that the ER is being engulfed in
autophagosome for subsequent degradation. Further evidence
for the involvement of the ER in autophagosome biogenesis was
provided by tracing the dynamics of ATG5-GFP upon autophagic
induction (Le Bars et al., 2014). In this study, it is nicely shown
that the ATG5-labeled toroidal domain develops into crescent-
like expanding phagophore at the outer surface of the ER,
although a direct connection exists between phagophore and
the ER is still uncertain. Moreover, a close association between
the ER membrane and another autophagosome-related protein,
SH3P2, has been observed during autophagosome formation
(Zhuang et al., 2013; Zhuang and Jiang, 2014). Electron
microscopy analysis shows that SH3P2-positive phagophores
are often accompanied with ER fragments on both sides. This is
quite reminiscent of the PI3P-enriched omegasome structures

FIGURE 1 | Schematic illustration of autophagosome biogenesis in
plant cells, highlighting the possible membrane sources for
phagophore formation: (1) ATG9 vesicles, (2) endoplasmic reticulum
(ER)-chloroplast contact site, (3) ER, and (4) ER-mitochondria contact
site. Potential protein complex responsible for the ER-chloroplast contact site
and ER-mitochondria contact site are labeled with the question mark.

described in animals, from which cup-shaped ER cisternae are
formed and invaginated to produce the isolation membrane (Axe
et al., 2008). Consistent with this is the observation that the PI3P
inhibitor wortmannin abolish the formation of either ATG5-GFP
or SH3P2-GFP labeled punctae, suggesting a conserved role
for PI3K complex function during autophagy. Although the
molecular mechanisms of most ATG proteins have not been
well investigated in plants, characterization of the subcellular
localization of ATG proteins during autophagy should provide
significant insights into the process of phagophore formation,
as well as demonstrating membrane continuity between
the phagophore and the ER. In addition, COPI and COPII
machineries for trafficking between ER and Golgi have been
implicated to be involved in autophagosome formation (Razi
et al., 2009). It is possible that autophagosome formation may
require these ER-related machineries as well, like the recently
identified plant-unique COPII machinery (Zeng et al., 2015).

AUTOPHAGOSOME EXPANSION AND
MATURATION: CROSS TALK WITH
ENDOSOMES?

In mammalian cells, autophagosome undergoes a further
maturation step by fusing with endosomes to form an amphisome
(Lamb et al., 2013). In plants, such a fusion event between
autophagosome and endosome has not been reported, but a
crosstalk between endosomes and autophagosomes has been
suggested (Zhuang et al., 2015). In several ESCRT-related protein
mutants, accumulation of autophagosomes has been observed
(Isono et al., 2010; Gao et al., 2015; Spitzer et al., 2015).
Recently, it was reported that FREE1 or FYVE1, a unique
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ESCRT component that regulates MVB morphology (Gao et al.,
2014; Kolb et al., 2015), interacts with the autophagosome-
related protein SH3P2 to play a dual role in autophagosome
formation (Gao et al., 2015). In wild-type Arabidopsis plants,
the fusion event between the MVB and autophagosome is rarely
detected. While in free1 mutant there is a dramatic increase
in the overlapping signals between autophagosome marker and
MVB marker. In addition, the delivery of autophagosomes into
the vacuole is blocked in free1 mutant. It is therefore suggested
that this crosstalk between the ESCRT component FREE1 and
SH3P2 may promote the fusion between the autophagosome and
endosome for autophagosome expansion or maturation.

Additionally, other studies indicated recycling endosomes
may contribute to autophagosome maturation. Retromer, which
is known to regulate receptor recycling from endosomes to
the trans-Golgi network (TGN) in animals, has recently been
reported to be involved in autophagy (Orsi et al., 2012; Popovic
and Dikic, 2014; Zavodszky et al., 2014). It is claimed that
autophagy defects in the retromer mutant might be caused by the
missorting of ATG9 vesicles between the PAS and non-PAS pool,
which is dependent on the functional retromer. Although the
location and function of retromer in plants remains controversial
(Oliviusson et al., 2006), recent study showed that the vacuolar
delivery of autophagosome is impaired in the absence of a
retromer subunit VPS35 (Munch et al., 2015). In addition,
another study in the pathogen Magnaporthe oryzae provides a
novel insight into the role of the retromer complex in recycling
of lipidated MoAtg8 during autophagosome formation (Zheng
et al., 2015). In this study, deletion of one retromer subunit,
MoVPS35, leads to the mislocalization of RFP-MoAtg8 into
the vacuole and failure in recycling from the autolysosome.
Intriguingly, MoVps35 interacts with MoAtg8 and localizes to
the periphery of vacuoles/autolysosomes with other retromer
subunits including MoVps26 and MoVps29.

Other fusion regulators that are involved in autophagy for
either endosome or vacuole have also been reported, including
Rab-GTPase (RABG3f) and SNARE proteins (VTI family; Surpin
et al., 2003; Kwon et al., 2013). Future investigations may reveal
how these conventional endosomal regulators cooperate with the
autophagic machinery during autophagosome formation, as well
as whether endosomes would contribute as the autophagosomal
membrane source in plants.

ATG9 VESICLES

ATG9 vesicles are another potential membrane source for
autophagosome formation that have been extensively
characterized in yeast and mammalian cells (Lamb et al.,
2013). As the sole membrane-spanning protein, it is suggested
that ATG9 may play a role in delivering membrane/lipid onto
the nascent phagophore, as ATG9 deficient mutants in yeast
or mammal fail to form autophagosomes (Mari et al., 2010;
Orsi et al., 2012; Yamamoto et al., 2012). In both yeast and
mammalian cells, ATG9 is often found on Golgi-derived vesicles
in the cytoplasm. Upon autophagic induction, ATG9 vesicles
accumulate at the PAS in an ATG1-dependent manner (Mari

et al., 2010; Yamamoto et al., 2012). In animals, ATG9 vesicles
transit from the Golgi to PAS during autophagy, which recruit
ATG8 and the PI3P effector, ATG18 (WIPI in animals). In
addition, mammalian ATG9 was found to traffic via the PM onto
recycling endosomes and colocalize with ATG16L1 (Puri et al.,
2013). In addition, a number of regulators that are involved in
the trafficking of ATG9 have been identified, and disruption
of ATG9 trafficking between PAS and non-PAS pool interferes
with autophagosome formation (Lamb et al., 2013). Recently,
evidence showing that ATG9 vesicles together with ER tubules
make up a tubulo-vesicular platform for the origin of the
autophagosome, places ATG9 at an early event in the nucleation
of the phagophore at the ER membrane (Karanasios et al., 2016).

In plants, a homolog of ATG9 has been identified and atg9
mutants also display an early leaf senescence phenotype that is
similar to other atg mutants (Hanaoka et al., 2002; Guiboileau
et al., 2012). In the atg9 mutant, less autophagic bodies were
detected when cells were treated with inhibitors to block vacuolar
degradation (Inoue et al., 2006; Shin et al., 2014). It therefore
seems that ATG9 is not required for the entire autophagic flux
during nitrogen starvation, as knockouts of ATG9 only partially
suppress the turnover of YFP-ATG8a (Shin et al., 2014). However,
the identity of ATG9 vesicles in plant has not been clarified as
yet. It would be interesting to know if ATG9 vesicles would play
a role in nucleating phagophore and/or contribute membranes
to the growing autophagosome in plants (Figure 1). Moreover,
how ATG9 coordinates with other molecules to function in
autophagosome formation remains unexplored in plants. These
are the essential questions to be addressed in the future to advance
our understanding of the role of ATG9 in plant autophagosome
biogenesis.

AUTOPHAGOSOME MEMBRANE ORIGIN
IN SELECTIVE AUTOPHAGY:
MEMBRANE CONTACT SITES?

A role for selective autophagy in plants has been established
in recent years, especially in the degradation of the ER,
mitochondria, chloroplasts, peroxisomes, and exocyst-positive
organelle as well as TSPO-binding proteins for cellular
homeostasis (Wang et al., 2010; Floyd et al., 2012; Li and
Vierstra, 2012; Michaeli and Galili, 2014; Veljanovski and
Batoko, 2014; Lin et al., 2015; Xie et al., 2015). However,
the mechanism of autophagosome initiation for selective
autophagy has not been well characterized. Recent studies in
yeast and animals revealed the involvement of ER-mitochondria
membrane contact sites (MCS) in mediating selective/non-
selective autophagy (Hamasaki et al., 2013; Bockler and
Westermann, 2014). In regarding to the essential role of the
MCSs in lipid delivery and membrane tethering, the MCSs may
serve as an ideal platform for the autophagosome initiation
during selective autophagy (Phillips and Voeltz, 2016). Extensive
contacts that ER makes with other organelles in plants has
also been observed, as well as plant-specialized MCS structure
(Hawes et al., 2015; Perez-Sancho et al., 2016). For example,
chloroplast is dynamically connected with the ER via extending
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stromules (Mitsuhashi et al., 2000; Schattat et al., 2011). Recently,
plant specific regulators for plasmodesmata, the ER-PM contact
site, have been reported (Wang et al., 2016). In the following
parts, we will use mitophagy and chlorophagy as examples to
discuss the potential role of the MCS for selective autophagy in
plants.

MITOPHAGY: ER-MITOCHONDRIA
CONTACT SITE?

In yeast, ER-mitochondria contact is mediated by the ER-
mitochondria encounter structure (ERMES), which is composed
of Mmm1, Mdm10, Mdm12, and Mdm34 (Kornmann et al.,
2009). Recent study suggested that ERMES is an important
factor contributing to selective degradation of mitochondria
through mitophagy (Bockler and Westermann, 2014). Upon
autophagic induction, ERMES colocalizes with autophagic
machinery proteins such as ATG5 and ATG8. Intriguingly,
mutants lacking functional ERMES subunits show strong defects
in mitophagy but not bulk autophagy, indicating a specific
role for ER-mitochondria contacts in mitophagosome formation.
ERMES have also been suggested to have a role in lipid transfer
between membranes (Voss et al., 2012). It is speculated that
ERMES may promote lipid delivery from the ER to the growing
phagophore surrounding the mitochondria to provide sufficient
membrane materials.

Recent studies in mammalian cells further demonstrate the
importance of ER-mitochondria contact in mitophagy. Impaired
mitochondria are found to be associated with the ER, while LC3
recruitment onto the ER-mitochondria contact regions is also
observed (Yang and Yang, 2013; Wu et al., 2016). Previously, it is
reported that ATG14, a key component for phagophore initiation,
mobilizes to the mitochondria-associated ER membrane (MAMs)
fraction together with the omegasome marker DFCP1 and the
ER-resident SNARE protein syntaxin 17 (STX17; Hamasaki et al.,
2013). Moreover, inhibition of the translocation of ATG14 and
DFCP1 on the MAM compartment by interfering with the
ER-mitochondria contact site prevents proper autophagosome
formation. These findings support that the ER-mitochondria
contact site serves as an essential platform for autophagosome
formation, particularly during mitophagy.

Recent evidence indicates that a conserved association
between ER and mitochondria occurs in plant as well (Jaipargas
et al., 2015; Mueller and Reski, 2015). Based on live-cell imaging
data in Arabidopsis, it is suggested that membrane continuity
between ER and mitochondria exist, as the mitochondrial
morphology is dependent upon the fusion and fission events
which are correlated with ER dynamics (Jaipargas et al., 2015).
In regard to the cooperative role of ER and mitochondria in
biosynthetic pathways and the exchange of phospholipids, it is
possible that plant ER-mitochondria contact site might play a
role during mitophagy for phagophore formation as observed
in yeast and animals (Figure 1). Interestingly, a recent study
showed that Arabidopsis ATG11 colocalizes with the mito-tracker
and plays a direct role in mitophagy by interacting with ATG8
as a cargo receptor (Li et al., 2014). In yeast, ATG11 interacts

with the membrane protein ATG32 and the mitochondrial
fission machinery during mitophagy (Mao et al., 2013). Since
there is no homologs of yeast ERMES identified in plants yet,
identification of the molecular machinery that regulates the ER-
mitochondria connectivity as well as their correlation with the
ATG machinery would definitely provide valuable information
for plant mitophagy.

CHLOROPHAGY: ER-CHLOROPLAST
CONTACT SITE?

The degradation of damaged chloroplasts and the subsequent
recycling of nutrients is important for plants to cope with
stress and different developmental stages, especially during leaf
senescence (Wada et al., 2009; Ishida et al., 2014). Leaf starch
degradation during the night is also reported to be mediated by
the autophagic machinery, and silencing of autophagy-related
genes such as ATG6 results in excess starch accumulation
(Wang et al., 2013). Up till now, multiple degradation pathways
have been proposed for the turnover of chloroplast proteins.
These include the senescence-associated vacuole (SAV) pathway
(Otegui et al., 2005; Martinez et al., 2008), the chloroplast
vesiculation (CV) containing vesicle pathway (Wang and
Blumwald, 2014), the Rubisco-containing body (RCB) pathway
(Chiba et al., 2003; Ishida et al., 2008; Izumi et al., 2010), the ATI-
plastid (ATI-PS) body pathway (Michaeli et al., 2014), and the
whole-chloroplast autophagy pathway (Wittenbach et al., 1982;
Minamikawa et al., 2001). In the following section, we will focus
on discussing the autophagy-dependent RCB pathway.

The RCB is a double-membrane bound structure derived from
the chloroplast, which contains chloroplast stromal proteins but
not thylakoids. RCBs are commonly found in senescent leaves
in which they will be delivered to the vacuole for degradation
and thus piecemeal degradation of chloroplasts via RCB is
achieved (Chiba et al., 2003; Ishida et al., 2008; Wada et al., 2009;
Izumi et al., 2010). Molecular mechanism for the formation of
RCB is still not available, but the degradation of stromal and
photosynthetic proteins has been suggested to be dependent on
the autophagic machinery, which is evidenced by compromised
degradation of these proteins in atg4a4b-1, atg5, and atg7 mutants
(Wada et al., 2009; Lee et al., 2013; Sakuraba et al., 2014).
On the other hand, arrested phagophores and RCB-like vesicles
accumulated in the cytoplasm in the ESCRT machinery subunit
chmp1 mutant (Spitzer et al., 2015). In addition, autophagosomal
marker ATG8 was reported to be associated with chloroplast
protrusion and stromules (Ishida et al., 2008; Spitzer et al.,
2015). Interestingly, chloroplast protrusions and stromules are
found to be more abundant in atg5 mesophyll than in wild-type
plants (Ishida et al., 2008), indicating sequestration of protruding
stromules via the isolation membrane may contribute to RCB
formation.

Several studies have indicated a dynamic association between
the chloroplast and ER, which is evidenced by the observation
of the branched ER tubules at chloroplast surface or extending
stromule branching coincides with the ER tubules (Mitsuhashi
et al., 2000; Schattat et al., 2011). It raises the possibility that the
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ER-chloroplast contact site may function as a platform for RCB
biogenesis (Figure 1). Therefore, disruption of the autophagic
machinery leads to protruding stromules, which are unable to
form RCB, while suppression of autophagosome maturation
in the chmp1 mutant results in accumulation of phagophores
associated with the chloroplast. ER-chloroplast contact sites
have been proposed to be essential for lipid trafficking, which
is supported by the observation that several lipid processing
enzymes such as PC synthase, TGD2 and TGD4 are detected at
ER-chloroplast membrane junctions (Wang et al., 2012). It would
be interesting to test whether disruption of ER-chloroplast lipid
trafficking will affect the RCB formation.

CHALLENGE AND FUTURE
PERSPECTIVE IN PLANT
AUTOPHAGOSOME BIOGENESIS

Although studies on plant autophagy have only got started,
tremendous progress has been made on different aspects from its
physiological role to the identification of unique plant autophagy
machineries and their regulators. Multiple lines of evidence
have suggested that the plant autophagosome is probably
developed from the ER or ER-related membranes. The MCS
between ER and other organelles such as mitochondria and
chloroplast may provide platform for autophagosome biogenesis.
However, there are still many questions waiting to be solved

on plant autophagosome biogenesis: What is the nature of
the phagophore and ATG9 vesicles in plants? Do different
membrane sources contribute to autophagosome formation in
a condition-dependent manner? Future efforts in elucidating
the molecular mechanism among the autophagy networks and
in-depth investigations into autophagosome-related structures
should provide important insights into our understanding of
plant autophagosome biogenesis.
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