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Rusts, a fungal disease as old as its host plant wheat, has caused havoc for over

8000 years. As the rust pathogens can evolve into new virulent races which quickly

defeat the resistance that primarily rely on race specificity, adult plant resistance (APR)

has often been found to be race non-specific and hence is considered to be a more

reliable and durable strategy to combat this malady. Over decades sets of donor lines

have been identified at International Maize and Wheat Improvement Center (CIMMYT)

representing a wide range of APR sources in wheat. In this study, using nine donors

and a common parent “PBW343,” a popular Green Revolution variety at CIMMYT,

the nested association mapping (NAM) population of 1122 lines was constructed to

understand the APR genetics underlying these founder lines. Thirty-four QTL were

associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR

and LR resistance. Three chromosomal regions, associated with known APR genes

(Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34), were also identified, and 13

previously reported QTL regions were validated. Of the 18 QTL first detected in this

study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D.

The present investigation revealed the genetic relationship of historical APR donor lines,

the novel knowledge on APR, as well as the new analytical methodologies to facilitate

the applications of NAM design in crop genetics. Results shown in this study will aid

the parental selection for hybridization in wheat breeding, and envision the future rust

management breeding for addressing potential threat to wheat production and food

security.
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INTRODUCTION

The global wheat (Triticum aestivum L.) demand is expected to
increase by 60–110% to feed the population in 2050 (Tilman
et al., 2011). Higher yield gains are required to meet the
projected demand posed by increasing population and against
the increasing production challenges from a host of biotic and
abiotic stresses (Rajaram and Braun, 2008). Globally, the three
wheat rusts, stem rust (SR), yellow rust (YR), and leaf rust
(LR) are the most economically damaging diseases of the crop,
inflicting losses of 60% or more, and are the constant threats
to food security (Rajaram and Braun, 2008). This is due to
their wide distribution, capacity to form new virulent races,
ability to move long distances, and potential to develop rapidly
under optimal environmental conditions. The UN Food and
Agriculture Organization (FAO) estimates that 31 countries in
East and North Africa, the Near East, Central and South Asia,
accounting for more than 37% of global wheat production area,
are at risk of wheat rust diseases. Furthermore, as wheat growing
mega-environments shift with changing climate, there is risk of
more severe rust infection in varieties suffering environmental
stress emanating from hostile soil, pests and pathogens from
remnant vegetation and other constraints.

The wheat SR, caused by fungus Puccinia graminis f. sp.
tritici (Pgt), has historically been a menace to wheat production
worldwide (Khan et al., 2013). A considerably newer Pgt race,
TTKSK detected in Uganda in 1999 and commonly referred as
Ug99, overcame the widely deployed resistance genes of wheat
origin (Pretorius et al., 2000). Over the last decades, several
variants of Ug99 were detected in Kenya (Jin et al., 2009), South
Africa (Pretorius et al., 2010), and many other wheat growing
countries of North- and South-Eastern African countries (Singh
et al., 2015). The original race spread out into Yemen and
Sudan in 2006, in Iran in 2007 and in Egypt in 2014 (Nazari
et al., 2009; Singh et al., 2015). This has raised concern of
a major epidemic that could cause damage in wheat growing
countries on all continents as most popular varieties grown
currently are susceptible to Ug99 race group. The wheat YR,
caused by P. striiformis f. sp. tritici (Pst), affects up to 40%
of the wheat production in countries such as Mexico, India,
Pakistan, Bangladeshi, and China (Khan et al., 2013). Recent
investigation by Beddow et al. (2015) has indicated that YR is
one of the deadliest threats to global wheat production as the
pathogen continues to rapidly evolve and spread across globe
making nearly 88% of world’s wheat susceptible and causing an
estimated loss of 5.47 million tons of wheat grains annually.
Recent YR epidemics across different continents have been
mainly observed due to rapid adaptation of pathogen to newer
geographical regions and relatively higher temperature, and due
to rapid breakdown of widely deployed major genes (ICARDA,
2011; Basnet et al., 2014). The wheat LR, caused by Puccinia
triticina (Pt), is also one of the most widely distributed diseases
of wheat in the world, and can cause yield losses of up to 40% in
susceptible cultivars by decreasing kernel number per spike and
kernel weight (Khan et al., 2013).

In general, the rust resistance can be classified into two
major types i.e., race-specific and race non-specific. Race specific

resistance is often conferred by a single major gene which is
inherited in simple Mendelian fashion. Such resistance is often
detected at early seedling stage of plant growth and remains
effective throughout whole life cycle, and hence it is also called
“seedling or all-stage resistance.” In contrast, race non-specific
resistance is conferred by multiple additive genes possessing
quantitative inheritance and is expressed during post-seedling
stage of plant growth. So, the race non-specific resistance is
synonymously called as “Adult plant resistance (APR)” or “slow
rusting resistance.” As APR is generally conferred by multiple
additive genes, it is not subjected to regular “boom and bust
cycle” of disease epidemics. Sources of quantitative resistance in
crop plants, readily detected in post-seedling growth stages and
associated with race non-specific resistance, have proven to be
durable, making APR an important breeding target for long-
term rust resistance (Knott, 1982; Parlevliet, 2002). Therefore,
it is critical to deploy APR genes to rust diseases in high
yielding varieties. The Global Wheat Program at International
Maize and Wheat Improvement Center (CIMMYT), initiated
to identify APR genes for wheat rust in early 1980’s. But due
to their small effects, it is difficult to follow them in breeding
programs. Over decades prominent sets of donor lines have been
identified as important sources of APR to wheat rusts which
were more rigorously utilized after the inception of Durable Rust
Resistance Wheat (DRRW) Project in 2005 under the umbrella
of Borlaug Global Rust Initiative (BGRI). Series of bi-parental
populations were developed by crossing these APR donor lines
with the most popular Green Revolution variety, PBW343. These
populations provided a solid foundation for APR resources to
rusts resistance (including Ug99) wheat breeding program of
CIMMYT. Although numerous rust resistant elite germplasm
have been developed using these crosses, clear understanding
of complex genetics underlying these APR donors still remains
elusive.

Till now, almost all the genetic studies on rust resistance
has relied on linkage analysis using bi-parental populations
and association mapping in hundreds of wheat breeding lines
(Rosewarne et al., 2013; Li et al., 2014; Yu et al., 2014). Several
resistance genes have been identified and few of them (such as
Sr2, Lr34, Lr46, and Lr67) are well characterized and widely used
in breeding (Rosewarne et al., 2013; Li et al., 2014; Yu et al.,
2014; Moore et al., 2015). Nested association mapping (NAM)
design pioneered in maize (Buckler et al., 2009) combines the
advantages of linkage analysis and association mapping through
the development of a large number of recombinant inbred lines
(RILs) from diverse founders for identifying QTL. It has been
successfully used to dissect the genetic architecture of complex
traits in maize including flowering time (Buckler et al., 2009),
leaf traits (Tian et al., 2011), male and female inflorescence
(Brown et al., 2011), and various disease resistance and quality
traits (Poland et al., 2011; Cook et al., 2012). Thus, NAM is
a powerful design to study the genetic architecture of complex
traits. More recently, Bajgain et al. (2016) used a spring wheat
NAM population, composed of 852 lines, to conduct a join
linkage analysis for SR resistance QTL.

One of the goals of the wheat breeding program at CIMMYT is
to develop new high yielding germplasm with durable resistance
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to rusts. Identification and transfer of new sources of race-
specific resistance from various wheat relatives is also underway
to enhance the diversity for resistance. Several sources of APR to
Ug99 were identified in CIMMYT spring bread wheat germplasm
and mapping studies have identified genomic regions that
contribute to APR (Yu et al., 2011; Singh et al., 2013). Developing
and use of molecular markers for APR can speed up selection
processes and also provide opportunities to focus on other
important traits simultaneously. The objectives of our study were:
(1) to evaluate the genetic relatedness and phenotypic diversity of
APR donor lines; (2) to map QTL associated with APR to SR, YR,
and LR in the CIMMYTNAM population; (3) to identify the new
resistance loci that could be useful in diversifying the current set
of resistance genes by In silico analysis of QTL flanked marker
sequences; and (4) to investigate the new analytical methodology
for facilitating the applications of NAM design in crop genetics.

MATERIALS AND METHODS

CIMMYT Wheat NAM Population
The CIMMYT wheat NAM population was composed of 1122
RILs derived from the crosses of a common parent (PBW343)
with each of nine diverse founders. The nine founder lines
were Diniza, Crosbill, Juchi, Kenya Swara, Kingbird, Kenya
Kudu, Pavon76, Muu, and Kenya Nyangumi (Figure 1). The
common parent, PBW343, was crossed to the other nine
founders, and F1 plants were selfed to generate nine segregating
F2 populations. Out of each F2 population, 80, 87, 90, 177,
88, 89, 178, 146, and 187 RILs were derived through single-
seed descent with repeated selfing to the F5 of F6 generation
for the nine families, respectively (Supplementary Table 1). To
facilitate the illustration throughout the paper, the names of nine
individual families are abbreviated as PB/DZ, PB/CB, PB/JC,
PB/KS, PB/KB, PB/KK, PB/P76, PB/MU, PB/KN, respectively,
and the nine founder lines, other than PBW343, are mentioned
as “non-PBW343” in general. Moderately susceptible bread
wheat (Triticum aestivum) key parent PBW343, is a selection
(GID2430154) from CIMMYT line Attila with the pedigree
Nord Deprez/VG9144//Kalyansona/Bluebird/3/Yaco/4/Veery#5
(Table 1). The nine non-PBW343 wheat lines carried high levels
of APR to SR (Table 2) despite being susceptible to Ug99 race
group in seedling growth stage.

Evaluating SR, YR, and LR Severity
The 10 founder parents, highly susceptible bread wheat check
variety “Cacuke” and the CIMMYT wheat NAM population
were evaluated for SR severities at the Kenya Agricultural
Research Institute (KARI) in Njoro during four crop seasons:
main season 2009, main and off-seasons 2010, and main season
2011, hereafter denoted as SR-MS2009, SR-MS2010, SR-OS2010,
and SR-MS2011, respectively (Supplementary Table 1). The RILs
and parents were sown using a randomized complete block
design with two replicates. Field plots consisted of two 1-m rows
spaced 20 cm apart with a 0.5-m pathway. Approximately 60–
70 seeds were sown in each plot. The experimental block was
surrounded by a spreader row consisting of varieties differentially
susceptible to the Sr24 virulent variant race TTKST. Hill plots

of spreaders were also planted in the middle of the pathway
on one side of each plot to facilitate uniform disease build-up
and spread. On at least two occasions just prior to booting,
freshly collected urediniospores suspended in distilled water
were injected into culms in the spreader plots (1–3 plants/m)
using a hypodermic syringe. Disease response in the field was
assessed twice. First when the susceptible check variety Cacuke
displayed 50–60% SR severity and subsequently at peak disease
development, when Cacuke displayed 100% SR at the mid-dough
stage of plant growth. Percent disease severity was scored using
the modified Cobb Scale (Peterson et al., 1948). The second
rating was considered as the phenotype in this study. All the
nine families were evaluated for APR to SR during two seasons of
2010 (Supplementary Table 1). Five of them (i.e., PB/CB, PB/KB,
PB/KK, PB/P76, and PB/MU) were screened for APR to SR at
SR-MS2009, while two of them (i.e., PB/CB and PB/MU) were
screened for APR to SR at MS-2011.

Parents and population lines were evaluated for YR under field
conditions in rust nurseries operated by CIMMYT near Toluca,
Edo. Mexico, Mexico, and in Njoro, Kenya, in 2010 and 2011,
which are denoted as YR-T2010, YR-T2011, YR-K2010, and YR-
K2011, respectively (Supplementary Table 1). Two replicates of
parents and RILs were assessed in each trial. YR severity in each
plot was visually scored (anthesis - milk stage) using the modified
Cobb Scale (Peterson et al., 1948). All the nine families were
evaluated for APR to YR at YR-T2010 (Supplementary Table 1).
Five of them (i.e., PB/DZ, PB/CB, PB/JC, PB/KB, and PB/MU)
were screened for APR to YR at YR-K2010, while only one of
them was screened for APR to YR at each of YR-T2011 (i.e.,
PB/KK), and YR-K2011 (i.e., PB/MU).

For LR screening, parents and RILs were evaluated in field
nurseries operated by CIMMYT in Ciudad Obregon, Sonora,
Mexico, in 2010, 2011, and 2012, denoted as LR-2010, LR-2011,
and LR-2012, respectively (Supplementary Table 1). Replicated
trials with parents and RILs were grown in Obregon. Each plot
was visually scored around early-dough stage for LR severity with
the percentage of leaf covered with disease infection calculated as
described for YR. Five of the nine families (i.e., PB/DZ, PB/CB,
PB/JC, PB/P76, and PB/KN) were evaluated for APR to LR at LR-
2010 (Supplementary Table 1), four of them (i.e., PB/CB, PB/KB,
PB/KK, and PB/MU) were screened for APR to LR at LR-2011,
and two of them (i.e., PB/KS and PB/KK) were screened for
APR to LR at LR-2012. Phenotypic distributions of rust resistance
of CIMMYT NAM population are shown in Supplementary
Figure 1.

Heritability in Broad Sense
An analysis of variance for phenotypic variance (σ 2

P ) of the three
rust resistances were estimated by mixed linear model using
PROC MIXED of SAS software (Release 9.4; SAS Institute, Cary,
NC, USA). Genotype, trials, and genotype by trial interactions
were all considered as random effects, their variance were
denoted as σ

2
G, σ

2
E , σ

2
GxE, respectively. It is generally agreed that

environmental variance should not be included in the calculation
of heritability (Holland et al., 2003). Phenotypic variance per plot
in multi-trials can be written as σ

2
P = σ

2
G + σ

2
GxE + σ

2
ε
, where

σ
2
ε
is the variance of residual. Heritability in broad sense on an
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FIGURE 1 | Genetic relatedness among 10 founders: PBW343, Diniza, Crosbill, Juchi, Kenya Swara, Kingbird, Kenya Kudu, Pavon76, MUU, and Kenya

Nyangumi.

TABLE 1 | Detailed information of released year and country, and pedigree of the ten founder lines.

Founder line Released country, year Pedigree

PBW343 India, 1995 Nord Desprez/VG9144//Kalyansona/Bluebird/3/Yaco/4/Veery#5

Diniza Mexico, 1999 Huac/Ti-R/3/Atr*2/7C//Nac/4/Sara/5/2*Parula/Vee#6//Myna/Vul

Crosbill Mexico, 1999 Cndo/R143//Ente/Mexi_2/3/Aegilops squarrosa (taus)/4/Weaver/5/2*Kauz/6/Fret2

Juchi Mexico, 1999 Kite/Bobwhite/3/Mon//Sis/Can

Kenya Swara Kenya, 1972 PI59284/3/PP-Aus//Ifife/Etawah*2/4/Swd/T.timopheevii//K*2/3/Y59.2.B

Kingbird Mexico, 1999 TAM200/Tui/6/Pavon 76//CAR422/Ana/5/Bobwhite/Crow//Buc/Pavon 76/3/Yr/4/Trap#1

Kenya Kudu Kenya, 1966 Fife/2*White Naples//Ifife/Eden/3/A8/4/Kr/Mq//Kenya 73D

Pavon76 Mexico, 1976 Vcm//CNO67/7C/3/Kal/Bb

Muu Mexico, 1999 Pfau/Weaver*2/11/Weaver/9/Kt/Bage// Fn/U/3/Bza/4/Trm/5/Aldan/6/Seri/7/Vee#10/8/Opata/10/Borlaug95

Kenya Nyangumi Kenya, 1979 Tzpp//Ske/LR64A/3/Afm/4/Kenya Swara/K4500

individual plot basis was thus calculated as (Holland et al., 2003),

H2 =
σ
2
G

σ
2
G + σ

2
GxE + σ 2

ε

.

Molecular Analysis
DNA was extracted from lyophilized leaf tissue following the
procedure described by Singh and Bowden (2011). A Nano-Drop
ND8000 spectrophotometer (Thermo Fisher Scientific Inc, USA)
was used for quantification of DNA samples. For Diversity Arrays
Technology (DArT) genotyping, 500–1000 ng of restriction
grade DNA, suspended in TE with a final concentration of
50–100 ng/µL were sent to Triticarte Pty. Ltd., Canberra,
Australia (http://www.diversityarrays.com) for genome profiling
(Neumann et al., 2011). Loci were scored as present (1) or absent
(0). The overall call rate for the population was approximately
95% and the Q-values (estimates of marker quality) for most
markers were above 80%.

Linkage Map and Consensus Map
Construction
For constructing a linkage map, there are two general steps,
grouping and ordering. For marker grouping, the agglomerative
hierarchical clustering algorithm (Day and Edelsbrunner, 1984)
was used, with the significance of recombinant frequency
between markers as the statistics to evaluate the relatedness
among markers. After all markers were grouped, within
each group nearest neighboring algorithm was used for map
construction and two-opt was used for map improvement
(Muyldermans et al., 2005). Finally, the linkage map was fine-
tuned by permutation of a window of m markers (m = 5 in
this study) and comparison of all m! possible maps. SARF (Sum
of Adjacent Recombination Frequencies) (Falk and Chakravarti,
1992) was used as the rippling criteria.

For the consensus map construction in the CIMMYT NAM
population, a similar strategy as used in the maize NAM
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and Arabidopsis NAM populations (McMullen et al., 2009; Li
et al., 2011) was adopted by grouping and ordering algorithms
described above. The PBW343 allele was designated as the
“A” allele, the other nine non-PBW343 parent alleles were
designated as the “B” allele, and the heterozygous loci were
converted to missing data. Markers that were non-polymorphic
in a particular family were converted to missing data. A total of
2193 genetic markers showed polymorphism between PBW343
and the other nine non-PBW343 parents (Supplementary
Figure 2). 830 markers polymorphism in at least 3 families
were used to construct the consensus map. 53 of 830 markers
cannot be linked with the rest of markers, so were deleted
from the dataset. Software JoinMap (Stam, 1993) and QTL
IciMapping (Li et al., 2007) were used to validate the nine
linkage maps and consensus map as well. Genotypic similarity
was calculated by Flapjack (Milne et al., 2010; downloaded
from https://ics.hutton.ac.uk/flapjack/). 272 SSR markers
(Supplementary Table 2) were used to calculate the similarities
among 10 founders. 777 DArT markers on the consensus
map were used to calculate the similarities of CIMMYT NAM
population.

QTL Mapping in Single Family
QTL were mapped in each of the single CIMMYT NAM family
using inclusive composite interval mapping (ICIM), which was
implemented in QTL IciMapping (Li et al., 2007). ICIM first
determined a set of cofactors using stepwise regression to fit
individual marker, and then scanned the entire genome at 1
cM intervals using maximum likelihood to test putative QTL at
each point. In stepwise regression, the probability for marker
effects entering into the model was set as 0.01, which was
determined by 1000 times of permutation test and quantile-
quantile (QQ) plot (Supplementary Figures 3, 4). The probability
of a marker moving out of the model was set at twice the
probability of a marker moving into the model. The LOD
threshold to declare the existence of a QTL was calculated by
1000 times of permutation test using SR-MS2010 in nine RIL
families. Permutation tests revealed LOD thresholds of 3.43,
3.46, 3.43, 5.19, 4.69, 4.31, 3.37, 3.14, and 3.35 for PB/DZ,
PB/CB, PB/JC, PB/KS, PB/KB, PB/KK, PB/P76, PB/MU and
PB/KN, respectively. Considering that thresholds retained from
permutation tests are always conservative (Anderson and ter
Braak, 2003), a LOD threshold of 2.5 was used to report QTL
and determine common QTL across trials and populations.
The phenotypic variance explained (PVE) by each QTL within
each RIL family was calculated as described in Li et al.
(2008).

Joint QTL Linkage Mapping on CIMMYT
NAM Population
Joint inclusive composite interval mapping (JICIM; Li et al.,
2011) was used to map QTL on CIMMYT NAM population,
which was implemented in QTL IciMapping as well. The basic
idea of JICIM was similar as that of ICIM, but in the first step
a family main effect was fit first in the joint stepwise regression
model followed by the selection of marker effects to enter or
exit the model. In the joint stepwise regression, marker effects

entered or exited the model based on the significance level
chosen from running a permutation procedure 1000 times to
control the Type I error rate at α = 0.05 (Anderson and ter
Braak, 2003). The resulting 1000 P-values were sorted, and the
50th smallest P-value was selected as the empirical α = 0.05
entry threshold. Since for traits across trials the population size
was different (Supplementary Table 1), permutation test was
conducted per trait per trial. In this sense, the 50th smallest
P-value was retained for 11 traits/trials, 8.9 × 10−5, 1.5 ×

10−4, 8.6 × 10−5, 8.5 × 10−5, 6.9 × 10−5, 9.7 × 10−5, 9.7 ×

10−5, 8.6 × 10−5, 8.6 × 10−5, 8.4 × 10−5, and 6.5 × 10−5

for SR-MS2009, SR-MS2010, SR-OS2010, SR-MS2011, YR-T2010,
YR-K2010, YR-T2011, YR-K2011, LR-2010, LR-2011, and LR-
2012 (Supplementary Table 1), respectively. Therefore, 1.0 ×

10−5 was set as the probability for markers moving into the
model. The probability of a marker moving out of the model
was set at twice the probability of a marker moving into the
model.

The LOD threshold to declare the existence of a QTL
was calculated by permutation tests as well. Permutation tests
revealed LOD thresholds of 4.50, 5.50, 3.50, 3.50, 3.50, 3.50,
3.50, 3.53, and 3.51 for SR-MS2009, SR-MS2010, SR-OS2010, SR-
MS2011, YR-T2010, YR-K2010, YR-T2011, YR-K2011, LR-2010,
LR-2011, and LR-2012 (Supplementary Table 1), respectively. An
LOD threshold of 4.0 was used to report QTL and determine
common QTL across trials and populations. QTL, having LOD
score in the range of 3.0–4.0, and with pleiotropic effect with
other QTL having LOD score higher than 4.0, were also reported.
The PVE by each QTL in the NAM population was calculated as
described in Li et al. (2011).

Epistasis
For epistatic QTL mapping, we tested all possible pairs of
scanning positions by ICIM (Li et al., 2008). That is to say, we
can detect digenic interactions regardless of whether the two
interacting QTL have significant additive effects or not. Due to
the large amount of variables in digenic QTL mapping, we used
a much stricter probability (1.0 × 10−4) of a marker moving
into the model. The probability of a marker moving out of the
model was set at twice the probability of a marker moving into
themodel. An empirical LOD threshold of 4.0 was used to declare
the existence of epistatic QTL.

Pleiotropy
A central issue in evaluating pleiotropy in linkage populations is
determining whether correlated effects are the product of linked
loci or the same gene. In this study, we determined pleiotropy
by the co-localization of the QTL and the correlations of effects
estimated at each locus to evidence that the same QTL were
responsible. If two QTL were within 20 cM apart from each other,
they were declared as the co-localized QTL. We correlated the
effects at each locus against one another for each rust disease.
Those with significantly correlated effects are likely to have the
same genes and allele series that are producing the correlation.
Counts of significant correlation were determined with P =

0.05, however, the significant loci were frequently much more
significant.
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Prediction
We used the significant NAM QTL additive effect estimates to
predict the rust resistance of the non-PBW343 founder lines

(Buckler et al., 2009) by equation P̂j = µ +

q∑

i= 1
aij, where P̂j is

the predicted phenotype of the jth non-PBW343 founder in the
jth family (j = 1, ..., 9 in this study), µ is the population mean, q
is the number of QTL, and aij is the additive effect estimate of ith
QTL in jth family, and equals to 0 if the additive effect estimate
was not significant in some families.

In silico Analysis
The sequences of the DArT markers were used as the query
for BLAST in IWGSC portal (https://urgi.versailles.inra.fr/blast/
blast.php) to retrieve the contigs. Top 5 hits with similarity
percentage of the query were used as query in BLASTX
searches in NCBI database querying wheat (Triticum aestivum
L.), Brachypodium (Brachypodium distachyon (L.) P. Beauv),
Hordeum vulgare L., and rice (Oryza sativa L.) databases. R
genes encoding proteins that recognize pathogen effectors or
their modified host targets were used to narrow down the results.
For example, proteins characterized by the presence of motifs
such as leucine-rich repeat (LRR), NBS-LRR (nucleotide binding
site containing LRR), RLP (receptor like proteins coupled with
extracellular LRR), resistance gene analogs (RGA) and RLK
(receptor like kinase) were targeted.

RESULTS

Phenotypic Variability
Across the CIMMYT NAM population, the largest phenotypic
variance was observed for SR, followed by YR, and LR
(Tables 2–4; Supplementary Figure 1). The ten founder lines
showed a wide range of phenotypic variation, especially for
resistance to SR. Each family was evaluated for SR at least
twice across different growing seasons in Kenya (Table 2). The
common reference parent, PBW343, was moderately susceptible
to SR compared with the other nine founders. The three
families with the highest mean SR severity (%) were PB/KK,
PB/JC, and PB/DZ. Transgressive variation was observed in
all the nine families. SR had moderately high broad sense
heritability (H2) across the nine families, indicating the sufficient
statistical power and precision for QTL mapping and effect
estimation. The highest heritability (H2 = 0.78) was estimated for
family PB/KS.

YR was evaluated for 2 years in Toluca, Mexico (YR-
T2010 and YR-T2011) and in Kenya (YR-K2010 and YR-
K2011) (Supplementary Table 1). PBW343 had higher YR
severity compared to Pavon76 (Table 3). The highest mean YR
severity (%) was recorded in PB/P76. Similar to SR (Table 2),
transgressive variation was observed in all the nine families.
For PB/KK, H2 for YR reached the highest, 0.89, but for the
other families, H2 was fairly low and could have been due
to the smaller variations for disease severity between RILs in
these families. LR was evaluated in Obregon, Mexico for three
consecutive years (LR-2010, LR-2011, and LR-2012). PBW343
was more resistant to LR, as compared to Kenya Kudu (Table 4).

Since the CIMMYTNAMpopulation was not originally designed
to study LR, fewer QTL could be identified for LR as compared
with SR.

Marker Distribution on the Consensus Map
On the consensus map, 777 polymorphic DArT markers covered
2661.8 cM of the genetic distance of the wheat genome
(Table 5; Supplementary Table 3), with an average inter-marker
distance of 3.58 cM and 87.9% (683 out of 777) of unique
positions (Supplementary Figures 5, 6). Due to the lack of
evenly distributed polymorphic markers on wheat genome, the
number of linkage groups for the consensus map was 34;
there were no markers on chromosomes 1DL, 3DL, 4D, 5AL,
and 5D; and less than 10 markers on each of chromosomes
1BL, 2AL, 2D, 3DL, 4AS, 4B, 5A, 6BL, and 7BS. The A, B
and D genomes covered the genetic distances of 898.0 cM,
1475.0 cM, and 288.8 cM, respectively. The length of marker
intervals ranged from 0 to 29.65 cM. The 489 marker intervals,
corresponding to 75.4% of total marker intervals by 683 unique
positions, were ranged from 0 to 5 cM in length (Supplementary
Figure 6).

Genetic Relatedness of Ten Founder Lines
and the CIMMYT NAM Population
The 10 founder lines of CIMMYT NAM population had high
genetic diversity, but with different genetic distance (Figure 1).
Kenya Kudu, Kenya Swara, and Kenya Nyangumi were the
three varieties released in Kenya in 1966, 1972, and 1979,
respectively (Table 1). Kenya Kudu and Kenya Swara shared the
same origin of Ifife landrace, and Kenya Swara is in the pedigree
of Kenya Nyangumi (Table 1). Therefore, the genetic distances
among Kenya Kudu, Kenya Swara, and Kenya Nyangumi were
closer as compared with others (Figure 1). Juchi, Kingbird, and
Pavon76 were released in 1999, 1999, and 1976 from CIMMYT,
Mexico. Juchi and Kingbird shared a parent Bobwhite, and
Pavon76 was one of the parental lines of Kingbird (Table 1).
So these three varieties are nearby in Figure 1, and Kingbird
is in the middle of Juchi and Pavon76. Diniza, Crosbill, and
Muu were released in 1999 from CIMMYT, Mexico. Parula
is in the pedigree of Diniza, while Crosbill and Muu shared
Weaver in their pedigrees, one of whose parental lines was Parula
(Table 1). However, these founders were not genetically close
in the plot (Figure 1), which could be partly due to the fact
that the 272 SSR markers were not enough to uncover their
relatedness.

The nine bi-parental RIL families can be clearly separated,
except for PB/KB, PB/JC, and PB/P76 (Figure 2). From
the pedigree analysis (International Wheat Information
System, IWIS version 2, CIMMYT), PBW343 (ATTILA),
Kingbird, Juchi, and Pavon 76 share the common origin, and
three founders released from Kenya, Kenya Swara, Kenya
Kudu, and Kenya Nyangumi were genetically close (Table 1).
Therefore, in Figure 1 PBW343, Kingbird, Juchi, and Pavon
76 were clustered, while Kenya Swara, Kenya Kudu, and
Kenya Nyangumi were grouped together. Due to the genetic
relatedness of founders, the derived RIL families from PBW343,
Kingbird, Juchi, and Pavon 76 had less genetic variation than

Frontiers in Plant Science | www.frontiersin.org 6 November 2016 | Volume 7 | Article 1674

https://urgi.versailles.inra.fr/blast/blast.php
https://urgi.versailles.inra.fr/blast/blast.php
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li et al. Wheat Rust NAM Analysis

TABLE 2 | Parents’ performance, means, ranges, and the heritability in the broad sense (H2) of stem rust severity in nine families of the CIMMYT NAM.

Family Parent mean Progeny H2

PBW343 Non-PBW343 No. RILs No. trials Mean Std. Range

PB/DZ 63.2 15.0 80 2 35.6 19.0 5–85 0.55

PB/CB 63.2 12.1 87 4 24.1 19.1 1–75 0.57

PB/JC 63.2 22.5 90 2 36.1 17.7 2–90 0.45

PB/KS 63.2 10.0 177 2 27.2 23.2 0–100 0.78

PB/KB 63.2 7.0 88 3 31.7 19.3 1–80 0.68

PB/KK 63.2 10.0 89 3 37.4 19.9 1–85 0.51

PB/P76 63.2 6.6 178 3 26.9 17.8 1–80 0.54

PB/MU 63.2 5.0 146 4 28.4 19.5 0–100 0.53

PB/KN 63.2 5.0 187 2 29.6 23.4 0–90 0.62

Std. is the standard deviation of the phenotype for each family.

TABLE 3 | Parents’ performance, means, ranges, and the heritability in the broad sense (H2) for yellow rust severity in nine families of the CIMMYT NAM.

Family Parent mean Progeny H2

PBW343 Non-PBW343 No. RILs No. trials Mean Std. Range

PB/DZ 19.6 11.0 80 2 21.3 19.4 0–75 0.16

PB/CB 19.6 7.5 87 2 16.3 13.4 0–70 0.45

PB/JC 19.6 12.5 90 2 18.9 16.0 0–60 0.49

PB/KS 19.6 0.0 177 1 27.5 25.8 0–100 NA

PB/KB 19.6 0.5 88 2 16.7 12.4 0–50 0.29

PB/KK 19.6 0.0 89 2 20.9 25.7 0–100 0.89

PB/P76 19.6 40.0 178 1 39.9 18.4 5–100 NA

PB/MU 19.6 8.3 146 3 15.2 9.5 0–60 0.23

PB/KN 19.6 5.0 187 1 22.8 19.2 1–90 NA

Std. is the standard deviation of the phenotype for each family.

TABLE 4 | Parents’ performance, means, ranges, and the heritability in the broad sense (H2) for leaf rust severity in nine families of the CIMMYT NAM.

Family Parent mean Progeny H2

PBW343 Non-PBW343 No. RILs No. trials Mean Std. Range

PB/DZ 4.9 20.0 80 1 10.1 8.7 0–50 NA

PB/CB 4.9 7.5 87 2 11.8 8.4 0–40 0.10

PB/JC 4.9 15.0 90 1 8.2 8.8 0–40 NA

PB/KS 4.9 0.0 177 1 33.8 32.3 0–100 NA

PB/KB 4.9 15.0 88 1 7.8 5.3 1–30 NA

PB/KK 4.9 40.0 89 2 29.9 29.7 1–100 0.66

PB/P76 4.9 20.0 178 1 8.3 9.0 0–50 NA

PB/MU 4.9 5.0 146 1 7.4 5.4 1–30 NA

PB/KN 4.9 5.0 187 1 30.8 32.0 0–100 NA

Std. is the standard deviation of the phenotype for each family.

these derived from PBW343, Kenya Swara, Kenya Kudu,

and Kenya Nyangumi. Thus, the genetic distances among

PB/KB, PB/JC, and PB/P76 were close, while the genetic
distances among PB/KS, PB/KK, and PB/KN were far away

(Figure 2).

Segregation Distortion Loci across the
Whole CIMMYT NAM Population
In total, 182 (23.4%) of 777 DArT markers showed evidence
of segregation distortion at a 0.05 significance level. The most
significant (i.e., −logP) segregation distortion regions (SDRs)
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TABLE 5 | Summary statistics of consensus linkage map for the CIMMYT NAM population.

Chr. Number of

linkage groups

Number of

markers

Number of unique

positions

Number of markers

on the short arm

Number of markers

on the long arm

Genetic distance

(cM)

1A 2 59 43 22 37 193.5

1B 1 162 135 157 5 209.1

1D 1 14 14 14 0 85.3

2A 3 12 10 10 2 138.3

2B 2 50 47 29 21 272.3

2D 1 7 7 5 2 43.6

3A 3 24 23 13 11 143.7

3B 1 98 85 75 23 422.6

3D 1 26 16 26 0 6.3

4A 1 36 31 6 30 79.6

4B 2 7 7 4 3 26.6

5A 1 3 3 3 0 7.8

5B 3 42 40 18 24 311.7

6A 1 93 86 65 28 196.5

6B 2 30 30 24 6 84.2

6D 2 11 9 4 7 57.0

7A 2 30 29 18 12 138.7

7B 2 31 30 4 27 148.5

7D 3 42 38 28 14 96.7

A 13 257 225 137 120 898.0

B 13 420 374 311 109 1475.0

D 8 100 84 77 23 288.8

Total 34 777 683 525 252 2661.8

FIGURE 2 | Genetic relatedness among 1122 individuals in CIMMYT NAM population.

were observed on chromosomes 7A, where −logP reached
to 20.05, and selection favored alleles were from PBW343
(Supplementary Figure 7). Another large SDR was observed

on chromosome 1B, where the selection favored alleles were
from non-PBW343 parents. This region corresponds to the Rye
chromosome 1RS translocation to wheat in PBW343. Some of
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the significant SDRs were also observed on chromosomes 1A,
6A, 7B, 3D, and 7D. No significant SDRs were found around
well characterized resistance genes Sr2, and Lr34. For nine RIL
families, PB/KS has the highest number of markers in segregation
distortion (53.50% at a 0.05 significance level), while PB/DZ has
the lowest number of segregation distortion markers (11.79%
at a 0.05 significance level). For the rest of seven RILs, the
averaged ratio of segregation distortion markers was 27.37%
(Supplementary Tables 4–13).

QTL Controlling APR to SR, YR, and LR,
and In silico Analysis of QTL
Thirty-four identified QTL contributed to APR to SR, YR, and
LR, with 9, 18, and 7 of them located on A, B, and D genomes,
respectively (Tables 6–8; Figure 3; Supplementary Figure 8).
There were 65.7, 52.2, and 57.1% of the resistance alleles were
contributed by non-PBW343 parents for SR (Figure 4A), YR
(Supplementary Figure 9), and LR resistance (Supplementary
Figure 9), respectively. These results suggested transgressive
variations for the three rust resistances in the CIMMYT NAM
population (Tables 2–4; Supplementary Figure 1).

Six out of the 34 QTL had pleiotropic effects on SR, YR,
and LR resistances; eight QTL had pleiotropic effects on SR and
YR resistances; four QTL had pleiotropic effects on SR and LR
resistances; and two QTL had pleiotropic effects on YR and LR
resistances. Of the 34 QTL, three QTL were identified in regions
where well characterized APR genes (marked in red in Figure 3),
have been reported earlier. These QTL were q1BL, q3BS-1,
and q7DS in the known genomic regions of Sr58/Yr29/Lr46,
Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34, respectively (Tables 6–8).
Among them, q3BS-1, overlaps the gene Sr2/Yr30/Lr27 region on
chromosome 3BS (Table 7), was the largest one, explaining up
to 43.7% of the phenotypic variance. This chromosome region
had pleiotropic effects on SR, YR, and LR resistances, and the
significant resistance alleles were contributed by non-PBW343
parents.

Thirteen QTL were in the same regions with QTL published
or reviewed before (Rosewarne et al., 2013; Yu et al., 2014).
Three of them (i.e., q6AS-2, q2BS-1, and q2BL, marked in orange
font in Figure 3) were validated by In silico analysis in this
study by blasting the sequences of the QTL flanking markers
against to the NCBI database querying wheat (Triticum aestivum
L.), Brachypodium (Brachypodium distachyon (L.) P. Beauv),
Hordeum vulgare L., and rice (Oryza sativa L.) databases. The
marker wPt-730591 can be mapped to SR resistance protein
(Rpg1) gene and Triticum turgidum subsp. durum defense
precursor (PRPI-10) gene (Supplementary Table 14); and the
marker wPt-730591 was 1.79 cM up-stream of the marker wPt-
6520, which was the left flanking marker of q6AS-2 (Table 6;
Supplementary Table 3). In this sense, q6AS-2 was mapped onto
rust resistance gene regions. Its significant resistance alleles were
contributed by Kenya Swara (Table 6). The significant resistance
alleles of most of the 10 published QTL, marked in green font in
Figure 3, were contributed by non-PBW343 parents.

Eighteen QTL are not published yet, which were viewed as
novel QTL detected by the CIMMYT NAM population in this

study. Three of them (i.e., q1AL, q1BS-1, and q1DS-2 marked
in blue in Figure 3) were well confirmed by In silico mapping.
q1AL had pleiotropic effects on SR, YR, and LR resistance,
and explained 7.7–30.3% of the phenotypic variance. One of
the salient features of NAM design is that we could order the
resistance alleles by common parent’s allele as reference (Buckler
et al., 2009). For q1AL, its resistance alleles from strong to weak
can be ordered as Muu allele, PBW343 allele and Kenya Swara
allele. That is to say, compared with Kenya Swara and Muu
at this locus, the resistance alleles came from Muu with size
20.2 (i.e., 10.7 + 9.5 in Table 6), which is consistent with the
SR resistance phenotype of Kenya Swara and Muu (Table 2).
The resistance alleles controlling YR and LR resistance of q1AL
were all contributed by PBW343 in PB/KN. Fifteen out of 18
novel QTL need to be validated further (marked in black font
in Figure 3). Seven of them were pleiotropic QTL (i.e., q3AS,
q3BS-4, q3BL-1, q6BL, q3DS, and q6DL).

In general, single family linkage analysis has less precision
and statistical power than joint linkage analysis for identifying
common QTL (Li et al., 2011). In the present study, 21
QTL (61.7%) identified by joint linkage mapping (Tables 6–8)
were also identified by single family mapping. The number of
significant QTL identified in each family was 7, 8, 14, 23, 7, 30,
9, 17, and 13 for PB/DZ, PB/CB, PB/JC, PB/KS, PB/KB, PB/KK,
PB/P76, PB/MU, and PB/KN, respectively (Supplementary Table
15). The highest number of QTL were detected in PB/KK,
maybe due to the large genetic distance between PBW343
and Kenya Kudu (Figure 1), and the large phenotypic distance
between PBW343 and Kenya Kudu and the large phenotypic
variance in their RIL progenies for all three rust resistance traits
(Tables 2–4).

Regarding effect estimation, joint linkage analysis allowed us
to estimate a separate effect at each QTL for all nine families
(Tables 6–8; Figure 4). The SR resistance varied by 60% among
10 APR donors, and by 100% among the whole NAM population
(Table 2); the YR resistance varied by 40% among 10 donors,
and by 100% among the population (Table 3); and the LR
resistance varied by 40% among 10 donors, and by 100% among
the population (Table 4). All the 10 parents were found to be
susceptible to YR and LR at seedling stage showing score of
8 or 9 on a 0–9 scale except Crossbill for YR which scored 6
(intermediate) on the 0–9 scale. Relative to PBW343, the largest
SR resistance effect of QTL allele had an additive effect of 20.2%
(Figure 4A), while the largest YR and LR resistance effects were
24.9% and 16.3%, respectively (Supplementary Figure 9). A total
of 56 alleles out of 362 SR resistance alleles were significant (LOD
score > 2.5). The resistance significant alleles for four QTL in
chromosome 3BS were all contributed by non-PBW343 parents
(Figure 4B). We searched for the presence of epistatic interaction
in the CIMMYT NAM population by testing all pairwise marker
combinations. No significant epistasis was identified.

Prediction
The significant additive effect estimates of SR resistance QTL
were able to predict parental SR by R2 = 0.41 (Figure 5).
Considering that the heritability of SR across nine RIL families
were in the range of 0.45–0.78 (Table 2), the prediction power
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FIGURE 3 | Identified chromosomal regions harboring APR to stem, yellow, and leaf rust resistances. Numbers in the chromosome segments were the

linkage group IDs. QTL in red font were in the same regions with well characterized APR genes; in green font were the QTL regions already published but cannot be

validated by in silico mapping; in orange font were QTL already published and also can be validated by in silico mapping; in blue font were novel QTL regions, and also

can be validated by in silico mapping; and in blank font are the novel QTL regions which need to be further validated.

was enough to provide further evidence that epistasis is relatively
unimportant in this population for SR resistance. The predicted
YR and LR resistances of founders from the CIMMYTNAMQTL
were low (results not shown), partly because the marker density
was low, and the YR and LR resistances diversities of founders for
this CIMMYT NAM population was narrow (Tables 3, 4), and
then did not have vigor to detect all possible QTL related to the
YR and LR resistances and to estimate their effects accurately.

DISCUSSION

Extensive Genetic Understandings of the
APR Donor Lines
Characterizing diverse APR sources are critical to maximize
the genetic variability, to produce the superior recombinant
genotypes, and to pyramid the resistances into improved wheat
lines. Since last century, Global Wheat Program at CIMMYT has
taken efforts for breeding minor, slow-rusting genes based APR,
which was the field based selection in conjunction with other
traits and the high returns from investments due to long-term
effectiveness. During these efforts, the nine historical APR donor
lines utilized in this study, were identified to cover a wide range of
APR genetic diversity, and used as one of the parents to develop
genetic mapping populations in wheat. However, the genetic
knowledge of the APR donors was limited to further strategize the
rust management in breeding programs. The genetic relationship

revealed in this study (Figure 1) showed the highly genetic
similarities of three founders lines released in Kenya (i.e., Kenya
Swara, Kenya Kudu, and Kenya Nyangumi). Three varieties
released in Mexico, 1999 (i.e., Diniza, Juchi, and Kingbird) were
more genetically similar with Pavon76, which was released in
Mexico, 1976, rather than Muu, which was released at the same
year and same place with Diniza, Juchi, and Kingbird (Table 1).
Crosbill was genetically far away from the other eight APR
donor lines and PBW343. The genetic knowledge of the APR
donor lines learnt from this study would aid the identification
of genotypes with promising and desirable rust resistances, and
agronomic traits for hybridization in wheat breeding.

The pedigree information of the nine donors was clear and
available from germplasm curator, but it does not necessarily
reflect the underlying genetics (Soleimani et al., 2007). In
addition, genetic relatedness calculated by pedigree information
does not take into account the effects of selection, mutation
and genetic drift, and requires several simplifying assumptions
that are generally not met. In contrast, molecular markers
allow the assessment of relatedness directly at the DNA level
by estimation of the proportion of alleles that are identical
by state. In this sense, the extent of the information that
they can provide might depend on the nature and number
of markers (e.g., level of homoplasy, mutation rate), the
genome coverage and distribution, and the population under
investigation (Maccaferri et al., 2003). In this study, 272 SSR
markers were utilized to investigate the genetic relatedness
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FIGURE 4 | QTL allele effect size distributions for stem rust resistance. (A) All QTL allele effects distribution. The ratio of resistance alleles was shown above

the line, and the ratio of negative alleles was shown below the line. (B) Heat map for significant alleles controlling stem rust resistance by QTL and allele donor. The

nine APR donor lines were sorted by the phenotype of stem rust resistance.

of nine APR donors, which will be further evaluated by
markers explored through genotyping-by-sequencing (Li et al.,
2015).

Utilizing the NAM Genetic Design to
Facilitate the Gene Identification for Rust
Resistance
NAM design had power to reveal QTL which otherwise was
undetected in previous studies (Buckler et al., 2009; Bajgain et al.,
2016). Maize NAM population has been used extensively for
dissection of complex traits (Buckler et al., 2009; Brown et al.,
2011; Poland et al., 2011; Tian et al., 2011; Cook et al., 2012). The
CIMMYT NAM population reported in this study is the largest
publicly available platform for rust resistance dissection in wheat.
Most recently, Bajgain et al. (2016) use a spring wheat NAM
panel composed of 10 RIL families with 852 lines to conduct
joint linkage analysis for SR resistance. Fifty-nine additive QTL,
explaining 1–20% of the phenotypic variance were identified, and
no epistatic QTL was detected. q2AS-1, q2BL, q3AL, q4BS, and
q5BL identified in this study were likely in the same regions of
five QTL reported by Bajgain et al. (2016). However, as indicated

by Bajgain et al. (2016), due to the de novo marker system and
the lack of sequence alignment for the markers they used, it is
hard for us to have a position-based definitive comparisons for
QTL detected by Bajgain et al. (2016) and by this study. Further,
comparisons have been made with previous studies based on
linked markers as presented in Tables 6–8 (reference reports
presented in the last column). To facilitate this head-to-head
comparison and uncover candidate genes, it is necessary to have
the functional annotation and high density genomic maps for the
published wheat genome. Then, more work could be done for
having both traditional marker types (like SSR and DArT) and
sequenced-based markers anchored to the physical map.

In this study, the successful demonstration of the power
of the CIMMYT NAM population is exemplified not only by
correspondence of QTL previously identified in wheat, but also
by identification of novel QTL. Chromosomal regions associated
with three well characterized APR genes (i.e., Sr58/Yr29/Lr46,
Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34) and 13 previously reported
QTL were successfully identified (Tables 6–8), and 18 QTL were
first detected in this study. Through in silico mapping, we have
found that the three novel QTL showed sequence similarities
with R like genes in Triticum aestivum, Triticum turgidum
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FIGURE 5 | Predicted stem rust resistances of 10 founder lines based

on additive QTL model.

subsp. durum, Triticum turgidum ssp. dicoccoides, Brachypodium
distachyon,Hordeum vulgare, andOryza sativa encoding proteins
(Tables 6–8). Of all the 34 QTL identified, 14 were identified by
high resolution with their marker-interval lengths within 5 cM;
and 20 have pleiotropic effects on SR, YR, and LR resistances.
Rather than inferring multiple alleles at each testing locus as in
multiple-parent design, NAM reduced the testing to exact bi-
allelic contrasts across the whole population. All allele effects
were estimated by PBW343 allele as a reference. Therefore,
phenotypes of the CIMMYT NAM founders could be predicted
by the estimated QTL allele effects adding to the observed
PBW343 phenotype. The prediction ability for SR resistance QTL
was 41.6%, which was close to the heritability in the broad sense
of SR resistance (Table 2). This indicated that the additive QTL
for SR (Tables 6–8) were reliable and epistatic variance was not
significant.

Marker Density and Distribution of the
Consensus Map
The consensus map in this study was constructed by 777 DArT
markers, which were polymorphic in at least three RIL families.
Compared with A and D genomes, B genome revealed the
maximum percentage of total and unique number of markers
(54.1 and 55.8%, respectively; Table 5), the longest genetic length
(1475.0 cM;Table 5), and themaximumnumber of detected QTL
regions (18 out of 34 QTL; Table 7; Figure 3). These results were
consistent with previous results (Li et al., 2015) and in accordance
with previously reported genetic maps (Sansaloni et al., 2011;
Cavanagh et al., 2013; Rosewarne et al., 2013; Li et al., 2014;Wang
et al., 2014; Yu et al., 2014). The D genome contained 12.8% of
total markers and 7 out of 34 QTL detected, which reinforced that
genomic variation in the D genome of bread wheat is consistently
low (Singh et al., 2013; Eckard et al., 2014; Wang et al., 2014).
The number of linkage groups for the consensus map and each
of the nine RIL family was 34, 20, 18, 28, 23, 23, 21, 25, 41,
and 30, respectively (Table 5; Supplementary Table 3). These
results were not surprising considering the lack of markers in
some chromosome regions to cover the wheat genome. This also
resulted in a lower phenotypic prediction accuracy of founder
lines, particularly for YR and LR resistances.

On the consensus map, there are 162 markers located on
chromosome 1B; 157 markers on its short arm (1BS) and
5 markers on its long arm (1BL). It is further noteworthy
that all the markers on chromosome 1BS in this study were
distributed on the satellite region of chromosome 1BS in wheat,
and the polymorphism rates in the satellite region have been
reported to be much higher than the average rate for the
whole wheat genome (Zhang et al., 2000; Wilkinson et al.,
2012). Also, the satellite region on the chromosome 1BS in
wheat is known to contain many agronomical important genes
(Zhang et al., 2000; Wilkinson et al., 2012). In this study,
we found two novel pleiotropic QTL controlling SR and YR
resistances on chromosome 1BS, one of which was confirmed to
be located in the rust resistance gene region by in silico mapping
(Supplementary Table 14).

Controlled Types I and II Errors
Many statistical methods (Zeng, 1994; Xu, 2003; Li et al., 2007)
have been proposed to control the Type I (false-positive) and
Type II (false-negative) error rates while mapping multiple QTL.
The simple algorithm implemented in ICIM (Li et al., 2007) and
its extension JICIM (Li et al., 2011) has become the method of
choice because of its fast speed, high QTL detection power (i.e.,
low Type II error), and low false discovery rate (i.e., low Type I
error), etc. In ICIM, the largest probability for markers moving
into the model (PIN) is the only subjectivity comes into play, and
may have a big effect on the QTLmapping results. Here, two ways
were utilized to determine the PIN in ICIM and JICIM. One is
the extensive permutation tests (Anderson and ter Braak, 2003)
to determine PIN (Buckler et al., 2009; Li et al., 2011) and LOD
threshold to declare the existence of QTL. The other is QQ-plot,
which has been used extensively in (genome-wide) association
mapping (Yu et al., 2008; Tian et al., 2011), but has virtually no
application in linkage analysis. In this study, we monitored the
over-fitting of genetic models and determined the PIN under the
help ofQQ-plot (Supplementary Figures 3, 4). This offers another
vision to better utilize the statistical methods for empirical data in
linkage analysis.

CONCLUSION

PBW343 was a popular, high-yielding modern variety, developed
in the 1990s and once grown on millions of hectares in India.
However, its resistance has been overcome to various rusts,
including Ug99 race group of SR. Diverse sources of APR lines
have been identified at CIMMYT and worked toward developing
wheat varieties resistant to Ug99 by pyramiding several APR
genes using molecular markers (Singh et al., 2015). In this study,
we employed the analytic design NAM to unknotted APR in
historical diverse parental lines with large scale of phenotyping.
Thirty-four genetic loci associated with APR, 20 of them having
pleiotropic effects on wheat rusts. We also identified 18 new
candidate gene-regions controlling APR with large effects as
compared with others. Not only the novel knowledge was gained
for APR, but also the new analytical methodology for facilitating
the applications of NAM design in crop genetics was suggested.
Novel pleiotropic QTL found in this study enrich the genetic
resources for addressing potential threat to wheat production
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and food security. The set of APR regions identified in this
study predicted the SR resistance in wheat, will acquire a better
genomic understanding of rust resistances, and will envision the
future rust management strategy.
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