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Plant specialized metabolites are being used worldwide as therapeutic agents

against several diseases. Since the precursors for specialized metabolites come

through primary metabolism, extensive investigations have been carried out to

understand the detailed connection between primary and specialized metabolism

at various levels. Stress regulates the expression of primary and specialized

metabolism genes at the transcriptional level via transcription factors binding to

specific cis-elements. The presence of varied cis-element signatures upstream to

different stress-responsive genes and their transcription factor binding patterns

provide a prospective molecular link among diverse metabolic pathways. The

pattern of occurrence of these cis-elements (overrepresentation/common) decipher the

mechanism of stress-responsive upregulation of downstream genes, simultaneously

forming a molecular bridge between primary and specialized metabolisms. Though

many studies have been conducted on the transcriptional regulation of stress-mediated

primary or specialized metabolism genes, but not much data is available with regard

to cis-element signatures and transcription factors that simultaneously modulate both

pathway genes. Hence, our major focus would be to present a comprehensive analysis

of the stress-mediated interconnection between primary and specialized metabolism

genes via the interaction between different transcription factors and their corresponding

cis-elements. In future, this study could be further utilized for the overexpression of the

specific transcription factors that upregulate both primary and specialized metabolism,

thereby simultaneously improving the yield and therapeutic content of plants.
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INTRODUCTION

Plants produce a wide array of biomolecules through metabolic pathways that are essential for
sustenance of life. All the processes involved in plant primary metabolism are essential for
maintenance of plant life and growth, whereas compounds resulting from specialized metabolism
(specialized metabolites) have a role in plant defense and are also used as therapeutics in
human disease treatment. Although primary and specialized metabolic processes are intimately
interconnected, with the former providing precursors to the latter, yet most of the specialized
metabolism processes have been studied largely in isolation and relatively little is known about
their integration with primary metabolism (Tohge et al., 2013; Caretto et al., 2015).
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The extensive interrelationship between primary and
specialized metabolism is a combined consequence of metabolite
partitioning, energy donation and molecular signaling (Ibrahim
and Jaafar, 2012). Principal primary metabolic pathways
like Pentose Phosphate Pathway, TCA cycle, Photosynthesis,
Glycolysis, etc. contribute to these intermediate metabolites,
which act as precursors for specialized metabolic processes
(Caretto et al., 2015; KEGG Map01100, Figure 1). The levels
of these intermediates in their respective pools is governed by
various physiological and genetic factors, like environmental
stress, location of the system, inherited mutations, etc. (Tohge
et al., 2013). Among all, environmental stress acts as a common
mediator toward simultaneous upregulation of many primary
and specialized metabolic pathways in plants (Bhargava
and Sawant, 2013; Schlüter et al., 2013). It is also known to
influence primary metabolic pathways like Carbon, Nitrogen
and Phosphorous metabolism, as well as specialized metabolic
pathways like Phenylpropanoid and Indole Alkaloid biosynthesis
(Bhargava and Sawant, 2013; Schlüter et al., 2013; Rejeb
et al., 2014), thereby causing upregulation of cascade of
stress-responsive genes which impart stress-tolerance to the
plants (Gao et al., 1998; Shulze et al., 2005; Ramakrishna and
Ravishankar, 2011; Bhargava and Sawant, 2013; Schlüter et al.,
2013; Gujjar et al., 2014; Caretto et al., 2015; Le Gall et al., 2015).
Under stressed conditions, molecular level changes occurring
in plants are principally brought about by transcription factors
(TF) binding to their specific recognition sequences upstream
to the stress-responsive genes (called as cis-elements). Although
exhaustive data is available pertaining to the broad effects of the
stress mediated primary and specialized metabolism (Bhargava
and Sawant, 2013; Caretto et al., 2015), not many reports
highlight the plausible role of cis-element and TF interactions in
simultaneous regulation of primary and specialized metabolism
genes.

The aim of this article is to unravel the interconnection
between primary and specialized metabolism under various
stress conditions, especially at the transcriptional level. As a
part of our study, we have shown the effects of different stress
on metabolites and genes specific to primary and specialized
metabolic pathways. Further, we present an in-depth analysis of
the stress-mediated primary and specialized metabolism genes
with regard to their cis-element and TF interactions. To conclude,
a detailed study is presented on the TFs that might play a
role in simultaneous upregulation of primary and specialized
metabolism genes.

STRESS CONDITIONS REGULATING
PRIMARY AND SPECIALIZED
METABOLISM GENES

Plant systems are prone to a wide spectrum of stress conditions,
like drought, salinity, temperature extremities, heavy metals,
biotic (pathogen attacks) and human factors (herbicides,
pesticides, weedicides, pollution, loss of gene pool) (Yadav, 2010).
As a consequence, an estimated average global crop loss of 50%
is caused due to varied stress conditions (Grover et al., 1998;

Peleg et al., 2011; Haggag et al., 2015). Farmers additionally
face numerous problems, including erratic and scanty rainfall,
saline/alkaline soils, flash floods, water logging and global
warming, which basically act as environmental stress, thereby
hampering the overall productivity (Jenks and Hasegawa, 2005).

Plant stress has been one of the most widely studied areas
of biological research, wherein scientific efforts are involved
in studying its effects and devising techniques toward its
mitigation. As a direct consequence of stress, plants undergo
gross biochemical, physiological and molecular changes (as
depicted in Figure 2). Due to variations in the metabolic
profile of plants under stressed conditions (as described in
Supplementary Table 1), the natural requirement of free energy
toward maintenance of homeostasis and growth-associated
processes get lowered, thereby causing growth-retardation and
reduction in the overall plant productivity (Caretto et al., 2015).
Plants inherently possess various systems to protect themselves
from different forms of stress. This exercise is a combination
of a complex array of regulations that occur at various levels,
i.e., at whole plant, tissue, cellular, sub-cellular, genetic and
molecular levels (Shulze et al., 2005; Prasad et al., 2008; Yadav,
2010; Qados, 2011; Ramakrishna and Ravishankar, 2011; Rejeb
et al., 2014). Primarily, plants combat stress by redirecting the
metabolic machinery to overproduce certain defense-associated
primary and specialized metabolites (Caretto et al., 2015). As
seen in Supplementary Table 1, distinct forms of stress display
similar metabolite profiles, belonging to primary and specialized
metabolism. The elevated levels of diverse metabolites under
similar conditions of stress may arise due to coregulation of
biochemical pathways at the molecular level. For example,
literature evidence points toward an increased accumulation of
at least 15 amino acids (belonging to the primary metabolism)
together with volatile organic compounds (VOCs) under drought
stress (Joshi and Jander, 2009; Fraire-Velázquez et al., 2011; Gill
and Tuteja, 2011; Álvarez et al., 2012; Du andWang, 2012; Hayat
et al., 2012; Kendziorek et al., 2012; Griesser et al., 2015; Hudson,
2015; Niinemets, 2015; Weldegergis et al., 2015). Additionally, it
was noted that abiotic stresses like temperature and salinity could
regulate the levels of other primary (sugar alcohols and sugars)
and specialized (phenylpropanoids, alkaloids, etc.) metabolites.
(Flores and Galston, 1982; Smith, 1984; Cho et al., 1999; Streeter
et al., 2001; Weise et al., 2006; Cuevas et al., 2008; Rosa et al.,
2009; Gill and Tuteja, 2010; Hochberg et al., 2013, 2015; Zhao
et al., 2013; Alam et al., 2014; Mouradov and Spangenberg, 2014;
Zhang et al., 2014; Le Gall et al., 2015; Saleh and Madany, 2015;
Sheshadri et al., 2015; Wei et al., 2015). Furthermore, biotic stress
like herbivory also displayed a remarkably similar metabolite
profile in plants; while primary metabolites like phenylalanine
and allantoin were found to be elevated, the levels of VOCs
(specialized metabolites) were also enhanced (Fraire-Velázquez
et al., 2011; Du and Wang, 2012; Hayat et al., 2012; Kendziorek
et al., 2012; Griesser et al., 2015; Hudson, 2015;Weldegergis et al.,
2015; Takagi et al., 2016). Thus, the trend of overproduction
of primary and specialized metabolites arising from diverse
pathways under similar conditions of stress, further confirms
the predominant role of stress as a possible link to elucidate the
crosstalk between primary and specialized metabolism (Tuteja,
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FIGURE 1 | The biochemical link between primary and specialized metabolism. Primary and major specialized metabolisms (example, phenylpropanoid

metabolism) are interconnected through intermediates like chorismate. The precursors for the synthesis of amino acids phenylalanine, tyrosine and tryptophan are

derived through the Shikimic acid pathway and utilized in the biosynthesis of various specialized metabolites via the Phenylpropanoid biosynthesis pathway. (Map

numbers indicate the KEGG pathway ID; PP pathway refers to Pentose phosphate pathway; PDC refers to Pyruvate Dehydrogenase Complex).
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FIGURE 2 | Physiological and molecular effects of phyto-stress. Temperature, salinity and drought stress have similar physiological and molecular footprints.

The depicted primary and specialized metabolism genes show synchronized upregulation under abiotic and biotic stress (Full forms, the detailed list of

stress-regulated genes and their references have been given in Table 1).

2007; Bolton, 2009; Qados, 2011; Bhargava and Sawant, 2013;
Chamoli and Verma, 2014).

The process of stress tolerance in plants principally involves
the regulation of stress-responsive genes that encode for primary
metabolites, specialized metabolites and TFs (Davuluri et al.,
2003; Floris et al., 2009; Osakabe et al., 2014). This advantage
combined with various inherent signaling mechanisms (like
pH, metal ions, symbionts, etc.) causes the upregulation of
several cascade of genes in plant systems (Tuteja, 2007; Palmieri
et al., 2008; Rushton et al., 2012). The mechanism adopted
by these genes in bringing about stress tolerance depends on
their inherent function, type of stress and the plant system
(Davuluri et al., 2003; Shinozaki and Yamaguchi-Shinozaki, 2007;
Floris et al., 2009; Osakabe et al., 2014). Functionally, majority
of these genes are involved directly in stress mitigation by
regulating physiological parameters like water homeostasis and
osmoregulation via endogenous signaling (Tuteja, 2007). Table 1
illustrates the predominantly studied primary, specialized and TF
genes that are coregulated under different stress conditions.

The regulation of a wide spectrum of genes under stress occurs
principally at the transcriptional level (Shinozaki and Yamaguchi-
Shinozaki, 2007). This is especially brought about by TF binding
to their specific cis-elements present in the 5′ flanking regions
of gene(s) (Passricha et al., 2016). Moreover, the patterns of

cis-elements present among the promoter and intronic regions
decide the levels of gene expression (Rombauts et al., 2003;
Brown et al., 2007; Zou et al., 2011; Hernandez-Garcia and Finer,
2014), and any mutation(s) occurring in this region can greatly
influence the stress-responsiveness of the coded genes (Wittkopp
and Kalay, 2012). Most notably, diverse forms of stress may
activate similar cis-element TF regulatory networks (Faktor et al.,
1996; Kim et al., 2006; Soltani et al., 2006; Mellway et al., 2009;
Cao et al., 2012; Payyavula et al., 2013; Ahn et al., 2014; Chen
et al., 2015; Zhu et al., 2015). Despite having a great depth of
understanding on plant stress and its significance in connecting
diverse pathways, not many reports are available that connect the
primary and specialized metabolism at the transcriptional level.
The forthcoming sections present an in-depth understanding of
the molecular level regulation of stress-responsive genes, with
an insight into the transcriptional regulation mediated by cis-
element and TF interactions.

As observed from Table 1, the expression profile of genes
show remarkable similarity among primary and specialized
metabolism. Under similar stressed conditions, it could be
observed that most of the primary, specialized and TF/other
genes show enhanced expression. Literature evidences indicate
that coexpression of wide spectrum of genes is a resultant
of coregulation at the transcriptional level, primarily via
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TABLE 1 | Predominant primary metabolism, specialized metabolism and TF genes coregulated under similar stress conditions.

Stress→ Function D C H S L W OA Bio References

Genes↓

PRIMARY METABOLISM GENES#

Cell Wall Invertase

(CWIN)

Sucrose → D-Glucose + D-Fructose

[KEGG reaction: R00801]

D C H S L W OA Bio Ciereszko et al., 2001; Proels and

Roitsch, 2009; Hayes et al., 2010;

Payyavula et al., 2013; Cabello et al.,

2014; French et al., 2014; Chen et al.,

2015; Niu et al., 2015

Sucrose synthase

(SUSY)

UDP-D-Glucose + D-Fructose →

Sucrose + UDP [KEGG reaction:

R06036]

D C H S L W OA Bio Ahmadi and Baker, 2001; Ciereszko

et al., 2001; Cabello et al., 2014; Le

Gall et al., 2015; Peng et al., 2016

Betaine aldehyde

dehydrogenase (BAD)

Betaine aldehyde + NAD+
+ H2O →

Betaine + NADH + 2 H+ [KEGG

reaction: R02565]

D C H S L W OA Bio Gupta and Kaur, 2005; Zhang et al.,

2008; Hasthanasombut et al., 2011;

Stiti et al., 2011; Chen et al., 2014

Late Embryogenesis

Abundant (LEA14)

Prevents protein aggregation under

osmotic/cold stress

D C H S L W OA Bio Kimura et al., 2003; Pedrosa et al.,

2015

Aspartate kinase (AK) ATP + L-aspartate → ADP +

4-phospho-L-aspartate [KEGG

reaction: R00480]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Aspartate

aminotransferase (AAT)

L-aspartate + 2-oxoglutarate →

oxaloacetate + L-glutamate [KEGG

reaction: R00355]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Chorismate mutase

(CM)

Chorismate → Prephenate (KEGG

reaction: R01715)

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Glutamine synthetase

(GS)

ATP + L-glutamate + NH3 → ADP +

phosphate + L-glutamine [KEGG

reaction: R00253]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Glutamine

dehydrogenase (GDH)

L-glutamate + H2O + NAD+
→

2-oxoglutarate + NH3 + NADH +

H+ [KEGG reaction: R00243]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Asparagine synthetase

(AS1)

ATP + L-aspartate + L-glutamine +

H2O → AMP + diphosphate +

L-asparagine + L-glutamate [KEGG

reaction: R00578]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Sucrose transporter

(SUT)

Facilitate active transport of sucrose

across plasma membrane

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Citrate synthase (CS) ADP + phosphate + acetyl-CoA +

oxaloacetate → ATP + citrate + CoA

[KEGG reaction: R00352]

D C H S L W OA Bio Bastías et al., 2011, 2014; Yoshida

et al., 2015

Vacuolar invertase

(vINV)

Sucrose → D-Glucose + D-Fructose

[KEGG reaction: R00801]

D C H S L W OA Bio Ciereszko et al., 2001; Proels and

Roitsch, 2009; Hayes et al., 2010;

Cabello et al., 2014; Rabot et al.,

2014; Niu et al., 2015

Starch Branching

Enzyme (SBE)

Amylose → Starch [KEGG reaction:

R02110]

D C H S L W OA Bio Kim and Guiltinan, 1999;

Theerawitaya et al., 2012

Sucrose phosphate

synthase (SPS)

UDP-glucose + D-fructose

6-phosphate → UDP + sucrose

6’-phosphate [KEGG reaction:

R00766; R06073]

D C H S L W OA Bio Roy Choudhury et al., 2008; Bastías

et al., 2014; Morkunas and

Ratajczak, 2014

NIN88 (Tobacco

invertase)

Sucrose → D-Glucose + D-Fructose

[KEGG reaction: R00801]

D C H S L W OA Bio Iven et al., 2010

Alcohol dehydrogenase

(ADH)

Primary alcohol + NAD+
→ an

aldehyde + NADH + H+ [KEGG

reaction: R00623]

D C H S L W OA Bio Lu et al., 1996; Kato-Noguchi, 2001;

Sibéril et al., 2001; Jin et al., 2016

Proline dehydrogenase

(ProDH)

L-proline + a quinone →

(S)-1-pyrroline-5-carboxylate + a

quinol [KEGG reaction: R01253]

D C H S L W OA Bio Satoh et al., 2004

(Continued)
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TABLE 1 | Continued

Stress→ Function D C H S L W OA Bio References

Genes↓

Ascorbate oxidase (AO) 4 L-ascorbate + O2 → 4

monodehydroascorbate + 2H2O

[KEGG reaction: R00068]

D C H S L W OA Bio Asao et al., 2003

Dc3 (LEA class gene) Prevents protein aggregation under

osmotic/cold stress

D C H S L W OA Bio Finkelstein and Lynch, 2000; Kim

et al., 2002

AtEM1(LEA class gene) D C H S L W OA Bio Finkelstein and Lynch, 2000

M17 (LEA class gene) D C H S L W OA Bio Finkelstein and Lynch, 2000

AtEm6 (LEA class

gene)

D C H S L W OA Bio Finkelstein and Lynch, 2000; Kim

et al., 2002

Starch synthase

(ZmDULL1)

ADP- α-D-glucose +

[(1→4)-α-D-glucosyl]n → ADP +

[(1→4)- α-D-glucosyl]n+1 [KEGG

reactions: R02421, R06049]

D C H S L W OA Bio Wu et al., 2015

α-Amylase (Amy3D) Starch→ Maltose + Dextrin [KEGG

reaction: R02112]

D C H S L W OA Bio Hwang et al., 1998; Ashraf et al.,

2002

Raffinose synthase

(ZmRS1, ZmRS2,

ZmRS3 and ZmRS10)

α-D-galactosyl-(1→3)-1D-myo-

inositol + sucrose → myo-inositol +

raffinose

D C H S L W OA Bio Zhou et al., 2012

Trehalose phosphate

synthase (TPS)

UDP-glucose + D-glucose

6-phosphate → UDP + α, α

-trehalose 6-phosphate [KEGG

reactions: R00836, R06043]

D C H S L W OA Bio Henry et al., 2014

Horseradish

Peroxidase (HRP)

2 phenolic donor + H2O2 → 2

phenoxyl radical of the donor + 2

H2O [KEGG reaction: R03532]

D C H S L W OA Bio Kawaoka et al., 1994; Caverzan

et al., 2012

DAHP synthase phosphoenolpyruvate + D-erythrose

4-phosphate + H2O →

3-deoxy-D-arabino-hept-2-ulosonate

7-phosphate + phosphate [KEGG

reaction: R01826]

D C H S L W OA Bio Schlüter et al., 2013; Becerra-Moreno

et al., 2015

EPSP synthase phosphoenolpyruvate +

3-phosphoshikimate → phosphate +

5-O-(1-carboxyvinyl)-3-

phosphoshikimate [KEGG reaction:

R03460]

D C H S L W OA Bio Becerra-Moreno et al., 2015

Chorismate mutase

prephenate

dehydratase (CMPD)

Chorismate→Prephenate

Prephenate→Phenylpyruvate

D C H S L W OA Bio Becerra-Moreno et al., 2015

SPECIALIZED METABOLISM GENES#

4-coumarate coenzyme

A ligase (4CL)

ATP + 4-coumarate + CoA → AMP

+ diphosphate + 4-coumaroyl-CoA

[KEGG reaction:R01616]

D C H S L W OA Bio Neustaedter et al., 1999; Soltani

et al., 2006; Chowdhury et al., 2012;

Kim et al., 2013; Le Gall et al., 2015

Chalcone isomerase

(CHI)

a chalcone → a flavanone [KEGG

reaction: R07344]

D C H S L W OA Bio Ahn et al., 2014

Stilbene synthase (STS) 3 malonyl-CoA + cinnamoyl-CoA →

4 CoA + pinosylvin + 4 CO2 [KEGG

reaction: R02505] 3 malonyl-CoA +

4-coumaroyl-CoA → 4 CoA +

trans-resveratrol + 4 CO2 [KEGG

reaction: R01614]

D C H S L W OA Bio Ahn et al., 2014

Caffeoyl-CoA

O-methyltransferase

(CCoAOMT)

S-Adenosyl-L-methionine +

Caffeoyl-CoA ↔

S-Adenosyl-L-homocysteine +

Feruloyl-CoA

D C H S L W OA Bio Chowdhury et al., 2012; Le Gall et al.,

2015

Cinnamyl alcohol

dehydrogenase (CAD)

cinnamyl alcohol + NADP+ →

cinnamaldehyde + NADPH + H+

[KEGG reaction: R03054]

D C H S L W OA Bio Kim et al., 2013

(Continued)
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TABLE 1 | Continued

Stress→ Function D C H S L W OA Bio References

Genes↓

Cinnamate-4-

monooxygenase

(C4H)

trans-cinnamate + NADPH + H+
+

O2 → 4-hydroxycinnamate +

NADP+ + H2O [KEGG reaction:

R02253]

D C H S L W OA Bio Kim et al., 2013; Becerra-Moreno

et al., 2015; Le Gall et al., 2015

Dihydroflavonol

4-reductase (DFR)

a (2R,3S,4S)-leucoanthocyanidin +

NADP+ → a (2R,3R)-dihydroflavonol

+ NADPH + H+ [KEGG reaction:

R03123]

D C H S L W OA Bio Tsai et al., 2006; Singh et al., 2009;

Payyavula et al., 2013; Ahmed et al.,

2014

Chalcone synthase

(CHS)

3 malonyl-CoA + 4-coumaroyl-CoA

→ 4 CoA + naringenin chalcone + 3

CO2 [KEGG reaction: R01613]

D C H S L W OA Bio Lawton and Lamb, 1987; Ahn et al.,

2014

Flavanone

3-hydroxylase (F3H)

a flavanone + 2-oxoglutarate + O2

→ a dihydroflavonol + succinate +

CO2 [KEGG reaction: R07329]

D C H S L W OA Bio Xie et al., 2012; Payyavula et al., 2013

Ferulate 5-hydroxylase

(F5H)

Catalyzes rate-limiting step in syringyl

lignin biosynthesis pathway; required

for production of sinapate esters

D C H S L W OA Bio Chowdhury et al., 2012; Le Gall et al.,

2015

Hydroxy cinnamoyl

transferase (HCT)

4-coumaroyl-CoA →

4-coumaroyl-shikimate/quinate

D C H S L W OA Bio Chowdhury et al., 2012; Kim et al.,

2013; Payyavula et al., 2013

Coumarate

3-hydroxylase (C3H)

4-coumaroyl-shikimate/quinate →

caffeoyl-shikimate/quinate

D C H S L W OA Bio Chowdhury et al., 2012

12-oxophytodienoate

(OPR)

8-[(1R,2R)-3-Oxo-2-{(Z)-pent-2-

enyl}cyclopentyl]octanoate + NADP+

↔ (15Z)-12-oxophyto-10,15-dienoate

+ NADPH + H+ [KEGG reaction:

R03401]

D C H S L W OA Bio Diaz et al., 2012

Phenylalanine

Ammonia Lyase (PAL)

L-phenylalanine → trans-cinnamate

+ NH3 [KEGG reaction: R00697]

D C H S L W OA Bio Lawton and Lamb, 1987; Chowdhury

et al., 2012; Kim et al., 2013;

Payyavula et al., 2013

Lipoxygenase (LOX) Linoleate + O2 → (9Z,11E,13S)-13-

hydroperoxyoctadeca-9,11-dienoate

[KEGG reaction: R03626]

D C H S L W OA Bio Nemchenko et al., 2006; Umate,

2011; Padilla et al., 2014

Amaranthus

hypochondriacus

unknown protein

(Ah24)

Stress-responsive protein D C H S L W OA Bio Massange-Sanchez et al., 2015

Anthocyanidin

synthase (ANS)

Leucocyanidin + 2-oxoglutarate +

O2 → cis- and

trans-dihydroquercetins + succinate

+ CO2 + 2H2O [KEGG reactions:

R05723, R07366]

D C H S L W OA Bio Mellway et al., 2009

Cu-Zn superoxide

dismutase (Cu-Zn SoD)

2 superoxide + 2 H+
→ O2 + H2O2

[KEGG reaction: R00275]

D C H S L W OA Bio Qu et al., 2010

Glutathione-S-

transferase

(GST)

R-X+Glutathione ↔ Halide + R-S-

Glutathione [R = side chain; X =

halogen; KEGG reaction: R03522]

D C H S L W OA Bio Marrs, 1996; Uquillas et al., 2004;

Gupta and Kaur, 2005

S-adenosyl methionine

decarboxylase

(SamDC)

S-adenosyl-L-methionine →

S-adenosyl 3-(methylthio)propylamine

+ CO2 [KEGG reaction: R00178]

D C H S L W OA Bio Yoshida et al., 1998; Li and Chen,

2000; Rodriguez-Kessler et al., 2006;

Bae et al., 2008; Chamoli and Verma,

2014

S-Adenosyl-L-

methionine synthase

(SAMS)

ATP + L-methionine + H2O →

phosphate + diphosphate +

S-adenosyl-L-methionine [KEGG

reaction: R00177]

D C H S L W OA Bio Sánchez-Aguayo et al., 2004; Kim

et al., 2013

TRANSCRIPTION FACTOR GENES#

Methyl Jasmonate

induced MYB-related

TF (MYBJS)

Circadian clock regulation D C H S L W OA Bio Gális et al., 2006; Zhao and Dixon,

2011; Höll et al., 2013; Payyavula

et al., 2013

(Continued)
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TABLE 1 | Continued

Stress→ Function D C H S L W OA Bio References

Genes↓

Basic loop helix

(StBHLH)

Cell activity and developmental

regulation, circadian clock

D C H S L W OA Bio Payyavula et al., 2013; Babitha et al.,

2015; Sun H. et al., 2015

WRKY Regulation of stress response, seed

development and senescence control

D C H S L W OA Bio Teixeira et al., 2014; Banerjee and

Roychoudhury, 2015

Anthocyanin1 (StAN1) Activates transcription of structural

anthocyanin genes

D C H S L W OA Bio Payyavula et al., 2013

WD40 Regulation of cell division, vesicle

formation, signal transduction and

processing of RNA

D C H S L W OA Bio Payyavula et al., 2013

DOF Regulation of light and phytohormone

response, seed maturation and

germination

D C H S L W OA Bio Noguero et al., 2013; Ma et al., 2015

bZIP Regulates pathogen defense, light

and stress signaling, flower

development and seed maturation

D C H S L W OA Bio Jakoby et al., 2002; Wei et al., 2012;

Liu et al., 2014

OTHER GENES#

Responsive to Abscisic

acid [rab-16 (A-D)]

Regulation of stress tolerance and

ABA response

D C H S L W OA Bio Mundy et al., 1990; Ganguly et al.,

2012; Rabot et al., 2014

Responsive to Drought

(rd29A)

ABA-responsive drought and

desiccation tolerance

D C H S L W OA Bio Taji et al., 1999; Kimura et al., 2003;

Das et al., 2014

Cold responsive

(COR15a)

Cold and osmotic stress tolerance,

red or far red light signaling pathway

D C H S L W OA Bio Kimura et al., 2003

Calcium-dependent

Protein Kinase (CPKI)

Regulation of plant stress tolerance D C H S L W OA Bio Campos-Soriano et al., 2011

Kin1 (stress-induced

protein)

Regulation of plant stress tolerance D C H S L W OA Bio Wang et al., 1995; Kimura et al., 2003

S-locus receptor-like

protein kinase

(CBRLK1)

Negative regulator of disease

resistance pathway in plants

D C H S L W OA Bio Das et al., 2014

Ca2+-dependent,

calmodulin

independent protein

kinase (CDPK)

Regulation of light stress tolerance,

seed development

D C H S L W OA OA

Bio Frattini et al., 1999; Gupta and Kaur,

2005; Cai et al., 2015

Early Responsive to

Dehydration (ERD)

Negative regulator of ABA response

(resistance to drought, freezing and

regulation of stomatal closure)

D C H S L W OA Bio Taji et al., 1999; Kimura et al., 2003

#classification of genes into primary, specialized and TF clusters is based on literature evidence, KEGG map01100 and their function. D, drought; C, cold; H, heat; S, salinity; Bio, biotic

stress; L, light; W, wounding; OA, other abiotic (like elicitors: ABA, jasmonic acid, salicylic acid, ethylene; exogenous chemical treatment like glucose/sucrose supplementation etc.);

green box, upregulation; red box, downregulation; black box, differential/inconsistent expression; white box, information insufficient.

cis-elements and TF interactions (Brown et al., 2007; Shinozaki
and Yamaguchi-Shinozaki, 2007; Floris et al., 2009; Nakashima
et al., 2009; Lata et al., 2011; Zou et al., 2011; Basu et al.,
2014). The study involving cis-elements has gained impetus in the
recent years, especially in elucidating the link between pathways
which are known to be dependent on each other, but whose
genetic inter-dependency is not much known. Bioinformatics
has enabled researchers to elucidate and forecast the type of
stress-responsive transcriptional regulation of genes by studying
the pattern of cis-elements present in the upstream regions of
these genes (Ibraheem et al., 2010). Several tools have been made
available for this purpose, like Plant Cis-Acting Regulatory DNA
Elements Database (http://www.dna.affrc.go.jp/PLACE; Lescot
et al., 2002), Genomatix (http://www.genomatix.de; Cartharius
et al., 2005) and ArabidopsisGene Regulatory Information Server

(AGRIS; http://arabidopsis.med.ohio-state.edu/; Davuluri et al.,
2003). Based on a highly efficient Hidden Markov Model, a
database of probable TF binding sites in the promoters of stress–
responsive genes of A. thaliana is also available for further
research (Malhotra and Sowdhamini, 2014). Cis-elements are
further involved in imparting several auxiliary functions to the
plant systems, like developmental regulation of growth associated
processes, morphological modifications, regulating senescence,
DNA damage repair mechanisms, etc. (Floris et al., 2009;
Nakashima et al., 2009; Zou et al., 2011).

Among the stress-responsive genes enlisted in Table 1, the
promoter analysis data was available for 33 genes, and their
characteristic cis-elements have been shown in Supplementary
Table 2. It can be inferred that there are several cis-elements
that are commonly overrepresented in the promoter regions
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of various primary and specialized metabolism genes. Such
elements can present a plausible molecular link between
diverse pathways. As discussed earlier, these elements possess
additional roles (like developmental regulation, controlling
circadian cycle, etc.) apart from their characteristic role
of stress-responsive transcriptional regulation. The promoter
regions of most of the primary and specialized metabolism
genes possessed following cis-elements: ABRE, G-box, W-box
and MYB-recognizing elements. ABRE and G-box elements
are favorable binding sites of bZIP TFs that regulate stress
responses (Heinekamp et al., 2002, 2004). Studies have shown
that one of the bZIP TFs, BZI-1 is involved in imparting
auxin responsiveness and regulating pollen development via
carbohydrate allocation (Heinekamp et al., 2004; Iven et al.,
2010). BZI-1 TFs bind specifically to the ACEs (ACGT core
elements; example: G-box, GT-box, etc.), thereby controlling
stress-specific regulation of primary (NIN88, Adh, α-amylase,
AtEM6, ProDH, Dc3, LEA, Kin1, BAD, GST and SbeI; Lu et al.,
1996; Finkelstein and Lynch, 2000; Kim et al., 2002; Satoh et al.,
2004; Wobbes, 2004; Iven et al., 2010; Bastías et al., 2011, 2014)
and specialized metabolism genes (CHI, CHS, Ah24, DFR and
PAL; Strathmann et al., 2001; Heinekamp et al., 2002, 2004; Fujita
et al., 2005; Iven et al., 2010; Yoshida et al., 2015). It can therefore
be inferred that the ACEs and bZIP TFs interactions can play a
central role in coregulating primary and specialized metabolism
in plants. In addition, theWRKY binding sites (W-box) were also
found to be present in the promoter regions of some primary
(GST, ANS, SUSY, vINV and CWIN) and specialized metabolism
genes (HCT, CHS, C3H, F3H, PAL and DFR). Physiologically, the
WRKY TFs binding to W-boxes regulate various developmental
activities (trichome development and controlling senescence)
and defense associated processes (like regulating responses to
pathogen infestation and other abiotic stresses) (Aken et al.,
2013; Llorca et al., 2014). This mechanism of coregulating
diverse genes under stressed conditions indicates at WRKY-
W-box interactions as a prospective link between primary and
specialized metabolism. Similarly, the MYB-binding sites are
present in the promoters of several primary (LEA14, CWIN,
vInv 1 and SUSY) and specialized metabolism genes (CHI, HCT,
ANS, DFR, F3H, PAL, C3H and GST). Moreover, it is known
that MYB TFs binding to their respective cis-elements regulate
changes in various processes like hormonal signaling, specialized
metabolism (phenylpropanoid and anthocyanin biosynthesis),
cellular morphogenesis, and formation of meristem (Cao et al.,
2013; Höll et al., 2013). This striking similarity observed in
the promoter regions of functionally distinct genes provides
ample scope to draw a link between diverse pathways at the
transcriptional level via cis-element-TF interactions serving as
the bridges.

TF Families Regulating Stress-Mediated
Link between Primary and Specialized
Metabolism
In plants, the transcriptional mode of gene regulation is mediated
synergistically by a combination of TFs acting in tandem to bring
about different expression patterns. Studies have revealed that in

Arabidopsis, about 5–10% of the functional genes are TFs, which
regulate diverse genes under different environmental conditions
(Mitsuda and Ohme-Takagi, 2009). The most studied stress-
responsive TFs principally belong to six families, namely bZIP,
WRKY, MYB, APETALA2 (AP2 family), NAC and Zinc finger
family (ZnF) (Saibo et al., 2009; Gujjar et al., 2014; Malhotra
and Sowdhamini, 2014). However, the largest TF families-
bZIP, WRKY, MYB and AP2 are more extensively involved in
regulating diverse metabolic pathways in plants under stress
(Heinekamp et al., 2002; Jakoby et al., 2002; Katiyar et al., 2012;
Rushton et al., 2012; Wei et al., 2012; Alves et al., 2013; Llorca
et al., 2014; Liu et al., 2015; Wang et al., 2015). Also, most
TFs can recognize secondary motifs (apart from their primary
recognition sequences), which allow them to bind to distinct
sites in the promoters. Further, TFs having upto 79% amino acid
similarity in their recognition domain have shown distinct DNA
binding profiles. Several other TFs like ERFs, bZIPs, etc. also
demonstrated their ability to recognize and bind to secondary
motifs which partially differ from their respective primary motifs
(Franco-Zorrilla et al., 2014). The forthcoming sections describe
the mode of action of the above four predominant TF family
proteins and their role in simultaneously regulating primary and
specialized metabolism genes.

The bZIP Family
The bZIP family (basic leucine zipper) is one of the largest
TF families in plants, which is involved in diverse regulatory
functions, like abiotic and biotic stress tolerance, hormone
signaled gene regulation, sugar signaling, nitrogen, carbon and
energy metabolism, light responsiveness and developmental
regulation (like cell elongation, differentiation, flowering,
senescence and maturation of seedlings, Chuang et al., 1999;
Wei et al., 2012; Bastías et al., 2014; Llorca et al., 2014; Zhao
et al., 2016). The bZIP TFs have a widespread presence among
eukaryotes (17 in S. cerevisiae, 27 in Drosophila, 75 inA. thaliana,
89 in rice, 125 in maize, 131 in soybean, 69 in tomato and 585
among six leguminous plants: G. max,M. truncatula, P. vulgaris,
C. arietinum, C. cajan, and L. japonicus, Fassler et al., 2002; Wei
et al., 2012; Llorca et al., 2014; Li D. et al., 2015; Wang et al.,
2015). These TFs possess a binding affinity toward the core motif
–ACGT- (ACEs), which is found in G-Box, A-Box, C-Box and
ABRE.

bZIP TFs are comprised of a short basic region linked to a
DNA recognition domain followed by a leucine repeat region
that imparts amphipathic nature to the protein (Jakoby et al.,
2002; Alves et al., 2013; Llorca et al., 2014). The leucine zipper
region of the protein binds to the bZIP recognition sequences in
a chopstick fashion (Sibéril et al., 2001; Iven et al., 2010; Alves
et al., 2013; Llorca et al., 2014). bZIP TFs can be sub-classified
into 10 groups, out of which groups A, C, D, G and S have been
studied extensively (Jakoby et al., 2002; Dey et al., 2016). Table 2
describes these groups with special emphasis on its relevance in
simultaneously regulating primary and specialized metabolism
genes.

Among the bZIPs, varied cis-element and TF binding patterns
bring about differential expression of diverse stress-responsive
genes. For example, studies have indicated that the expression
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TABLE 2 | bZIP TF family in regulating primary and specialized metabolism genes simultaneously.

S. N. bZIP TF Functional homologs Recognition

sequence (5′—3′′)

Primary metabolism

genes

Specialized

metabolism genes

References

GROUP-A bZIPs

1 AREB

(ABRE-binding

proteins)

AREB1/ABF2,

AREB2/ABF4, ABF3

CACGTGGC SUSY, LEAs, CWIN, vINV,

rbcS, PP2C, OsRab16B,

OsRab21

PAL, CHS, DFR, FLS Perisic and Lam, 1992; Tsai

et al., 2006; Hundertmark

and Hincha, 2008; Bastías

et al., 2014; Zhang et al.,

2014; Dey et al., 2016

GROUP-C bZIPs

2 Opaque2 (O2) AtbZIP10, AtbZIP25 TCCACGTAGA Tryp synthase, SusI, Adh,

α-zein Z1, b32 albumin,

malate dehydrogenase,

α-galactosidase, Starch

synthase, SPS, Citrate

synthase, Xylose isomerase

DFR, CS1, IDI-1, PAL Schmidt et al., 1992; Hunter

et al., 2002; Jakoby et al.,

2002; Bhat et al., 2004;

Hartings et al., 2011

GROUP-D bZIPs

3 PERIANTHIA

(AtbZIP46)

TGA1, HBP-1b, OBF 3.1,

OBR 3.2

TGACGT/C AG, STP4, PSD1, FSD1 IFR, PR-1 Maier et al., 2009, 2011

GROUP-G bZIPs

4 GBF (G-Box binding

factor)

GBF1, GBF2, GBF3,

GBF4

CACGTG Em genes, GH3, Adh, SBE CHS, CHI, PAL, DFR,

ANS

Lu et al., 1996; Sibéril et al.,

2001; Heinekamp et al.,

2004

5 BZI-1, BZI-2 G/HBF-1, CPRF2, TBZF G/CACGTG GH3, NIN88, AtcwINV2 CHS, PAL Heinekamp et al., 2004;

Iven et al., 2010

GROUP-S bZIPs

6 ATB2 AtbZIP11 TGACGTG;

ACTCAT

ProDH, CWIN, SUT, AS1 Not available Satoh et al., 2004; Wobbes,

2004; Hanson et al., 2008

AG, Agamous gene; FSD1, Fe superoxide dismutase 1; GH3, Gretchen Hagen3; IDI-1, Isopentenyl diphosphate isomerase I; IFR, Isoflavone reductase; PP2C, group A type 2C

phosphatase; PSD1, Phosphatidylserine decarboxylase; STP4, Sucrose transporter 4; SPS, Sucrose phosphate synthase; Tryp, Tryptophan.

of primary (SUSY, LEAs, CWIN, vINV, PP2C) and specialized
metabolism genes (PAL, CHS, DFR, FLS) is regulated by AREB-
ABRE interactions via ABA signaling (Narusaka et al., 2003;
Gómes-Porras et al., 2007; Bastías et al., 2011, 2014; Basu et al.,
2014; Yoshida et al., 2015). Similarly, Opaque 2 (O2) is an
endosperm-specific TF that was found to enhance the expression
of several primary and specialized metabolism genes (Table 2).
O2 TF binding to its recognition sites is mediated by certain
transcriptional coactivators (like GCN5 and ADA2), which
acetylate histone residues and thereby reinforce the binding.
Further, a loss-of-function O2 mutant severely impaired several
developmental activities (like seed storage by downregulating
storage protein coding genes; Schmidt et al., 1992; Schmitz
et al., 1997; Zhang et al., 2015) and defense processes (Hunter
et al., 2002; Bhat et al., 2004; Hartings et al., 2011). Further,
one of the group-D bZIP TFs, PERIANTHIA was found to
regulate developmental processes like controlling floral organ
number (via regulation of the MADS domain TF gene Agamous;
Maier et al., 2009), shoot meristem regulation (via FEA4, an
ortholog of PERIANTHIA, Pautler et al., 2015) and regulating
pathogen defense responses (Maier et al., 2011). It is associated
with TGA regulators which is known to act upstream to the
PR (Pathogenesis-related) gene, thereby conferring pathogen
responsiveness to the plant systems. It was further observed
that PERIANTHIA TF binds to the promoter regions of several
primary and specialized metabolism genes, thereby causing their

simultaneous regulation (Table 2). This pattern of simultaneous
regulation of primary and specialized metabolism genes is
demonstrated by several other bZIP TFs as well (GBFs, BZI, etc.;
Lu et al., 1996; Sibéril et al., 2001; Heinekamp et al., 2002, 2004;
Iven et al., 2010). HY5, a bZIP TF known to induce chlorophyll
and carotenoid genes in plants, acts as a bridge between ABA and
GA signaling pathways (owing to the fact that GA and ABA share
the common precursor, Geranyl geranyl diphosphate; Mohanty
et al., 2016). Despite being associated largely with phytohormone
mediated stress responses, the bZIP family is involved in
regulating growth and developmental activities like flowering,
senescence, seed storage regulation, etc. (Rook et al., 1998;
Hunter et al., 2002; Hanson et al., 2008; Hartings et al., 2011).
The similarity in the pattern of occurrence of bZIP recognition
sites (ACEs) among the promoters of primary and specialized
metabolism genes depict bZIP-cis-elements interactions as a
credible link to bridge diverse metabolic pathways in planta.

Although several reports indicated positive regulation of
downstream genes by bZIP TFs, it has been observed that
overexpressing BZI-4 (a bZIP TF that possesses strong affinity
toward G-Box element) caused significant reduction in the
expression of NIN88 (Iven et al., 2010). Evidence suggests
that BZI subfamily possesses conflicting roles in regulating
developmental processes. Although BZI-1 and BZI-2 are involved
in the transcriptional activation of NIN88 gene, homo-dimerized
BZI-4 acts as a repressor (Iven et al., 2010). Furthermore, despite
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the S-group being the largest bZIP subgroup in Arabidopsis
(Jakoby et al., 2002), its significance in regulating specialized
metabolism processes have not been studied much. Therefore,
an in-depth research into this area needs to be conducted to
understand the finer details on bZIP TFs and their involvement
in linking the primary and specialized metabolism in planta.

The WRKY Family
WRKY protein family in model plants A. thaliana and N.
benthamiana is one of the largest TF families, which majorly
bind to the W-box, a 6-bp region (C/TTGACC/T) present in
the promoters of various primary and specialized metabolism
genes. This has been known to bring about tolerance to abiotic
and biotic stresses and regulate developmental processes in
plants (trichome development and senescence; Basu et al., 2014;
Llorca et al., 2014). W-boxes are present in the upstream
regions of several genes like PR1, isochorismate synthase 1
and ABA responsive genes: SamDC, RD29A, COR47, iso1, etc.
(Supplementary Table 2; Sun et al., 2003; Rushton et al., 2012;
Aken et al., 2013; Basu et al., 2014; Llorca et al., 2014; Singh and
Laxmi, 2015). Although every WRKY TF has an affinity toward
W-Box, they also possess additional DNA sequence affinities (like
SUSIBA2 and SURE, sucrose responsive elements, core motif
TGGACGG; Sun et al., 2003; Bi et al., 2016). The nucleotide
sequences flanking the core W-Box element also decide the
binding specificity ofWRKYs.MostWRKYs are induced by plant
hormones, like SA, ABA, etc. However, research reports highlight
that SA induction and subsequent binding is more evident for
extended W-boxes (Franco-Zorrilla et al., 2014). Since majority
of WRKYs bind to W-Boxes to bring about transcriptional
and posttranscriptional regulation of diverse genes, plants have
developed an extrinsic mechanism to eliminate non-specific
binding of repressor WRKYs to cause the activator WRKY to
fit in and perform the stress-responsive gene regulation (Llorca
et al., 2014).

One of the mechanisms involved in upregulation of stress-
responsive genes is via ABA, which triggers the removal of
repressor WRKYs from the promoter regions of ABA responsive
genes (ABF4, ABI4, DREB1a, MYB2, RAB18; Rushton et al.,
2012; Aken et al., 2013). According to studies, some WRKY
proteins (AtWRKY40, AtWRKY18 and AtWRKY60) disallow
the transcription of ABA responsive genes upon binding to the
W-box sequence [(C/T)TGAC(T/C)] in the promoter region.
To ensure successful ABA-mediated stress mitigation, these
WRKY TFs are translocated from the nucleus to the cytosol
by making use of the affinity between the C-terminus of ABA-
bound ABA receptor and WRKY proteins (Rushton et al., 2012;
Aken et al., 2013). ABAR (or Mg-chelatase H-subunit/putative
ABA receptor) is a chloroplast membrane-localized receptor
which exposes its N and C-termini to the cytoplasm. ABA,
upon binding to the C-terminal of ABAR, promotes the exit of
WRKY proteins (WRKY40, WRKY18 and WRKY60) from the
nucleus to cytosol, thereby facilitating the enhanced expression
of ABA-responsive genes via binding of other activator WRKY
TFs (example, WRKY63) to the W-box in the promoter regions
(Figure 3; Rushton et al., 2012; Aken et al., 2013).

FIGURE 3 | Mechanism of repressor WRKYs removal from nucleus

mediated by ABA. (I, II). Under stress conditions, ABA binds to the

C-terminus of ABAR. (III) Consequently, it leads to the transport of

AtWRKY40/18/60 from the nucleus to the cytoplasm. (IV) Subsequently,

AtWRKY63 binds to the promoter regions of stress-responsive genes like

RAB18, RD29A, HCT, SUSY, 4CL, PAL, SamDC and ABF genes, thereby

enhancing their expression and mitigating stress.

ABA-mediated WRKY-W box binding can form a crucial
link between primary/growth-associatedmetabolic processes and
stress-responsive/defense pathways. ABA helps mitigate drought
through closure of guard cells of the stomata (Tuteja, 2007;
Yoshida et al., 2015), simultaneously regulating the expression
of several drought associated and cold stress responsive genes
(ABI genes, MYB2, RAB18, RD29A, ABF4, AOX1, DREB2, etc.;
Rushton et al., 2012; Qin et al., 2015). The occurrence of
ABRE and W-box elements upstream to the coding regions
of specialized metabolism genes further determines the plant
response to ABA under stress (Fujita et al., 2005; Gómes-Porras
et al., 2007; Yoshida et al., 2015). Additionally, reports suggest
that in O. sativa, the presence of W-box elements upstream
to the polyamine synthesis gene (SamDC) plays a key role in
its upregulation (Basu et al., 2014). Furthermore, TaWRKY93
(WRKY protein from wheat) was found to enhance the levels
of Pyrroline-5-carboxylate synthase (P5CS; Qin et al., 2015)
involved in proline biosynthesis (Proline is known to be directly
involved in drought mitigation as osmoticum; Chamoli and
Verma, 2014). It was also noted that WRKYs have a significant
role in upregulating several other stress-responsive genes (like
ABF3, ABIs, DREB2A, RDs, etc.; Qin et al., 2015). The synergistic
binding of WRKY to W-box; ABF to ABRE; MYB TFs to MYB
recognition elements; CBFs to LTRE and GBFs to GATA was
found to upregulate SamDC gene in O. sativa (Basu et al., 2014).
Under P. infestans infection, StWRKY1 was found to regulate the
levels of 4CL andHCT by binding to theW-boxes present in their
promoters (Yogendra et al., 2015).
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Scientific evidence suggests that WRKY operation is often
synergistically linked to the occurrence of ABA responsive bZIP
TFs (Llorca et al., 2014). The pattern of occurrence of similar cis-
elements among the upstream sequences of genes constituting
diverse pathways (primary metabolism: Invertases, SUSY, SUT;
specialized metabolism: DREB1a, PAL, SamDC; Yogendra et al.,
2015) leads to a substantial hypothesis that these TF-cis-element
interactions can form a regulatory bridge between primary and
specialized metabolism. However, the detailed mechanism of
WRKY as a plausible link between primary and specialized
metabolism genes yet needs to be unraveled.

The MYB Family
TheMYBTF family is also one of the largest TF families in plants.
As many as 125 in A. thaliana (Stracke et al., 2007), 205 in G.
raimondii (He et al., 2016) and 559 in S. lycopersicum (Gates et al.,
2016). Based on the number of MYB domains they contain, MYB
TF family can be subdivided into four sub-families, namely 1R
(R1/2/3), 2R (R2R3), 3R (R1R2R3) and 4R (R1R2R2R1/2), among
which the R2R3-MYBs form the largest population (56.77% in
O. sativa; 70.05% in A. thaliana). Literature evidence strongly
suggests the involvement of 2R (R2R3-MYBs) in regulating
several diverse metabolic processes.

This subfamily of MYB proteins is known to bind to
the MYB-recognizing elements (MREs having the consensus
sequence ANCNNCC, as demonstrated in MBSI, MBSII and
MBSIIG; Franco-Zorrilla et al., 2014; Zhu et al., 2015), regulate
Phenylpropanoid metabolism in plants (Liu et al., 2015).
Additionally, R2R3-MYBs have been associated with several
pleiotropic roles, like cell wall synthesis, regulation of pollen
wall composition, glucosinolate biosynthesis, developmental
processes, responses to physiological stress and determination of
cell fate and identity (Lu et al., 2002; Du et al., 2012; Cao et al.,
2013; Höll et al., 2013; He et al., 2016; Gates et al., 2016).

The R2R3-MYB TFs that play a crucial role in transcriptional
regulation of primary and specialized metabolism have been
enlisted in Table 3. From the table, it can be inferred that
although AtMYB32, AtMYB3, AtMYB4, AtMYB26/MS35,
AtMYB28, AtMYB29, AtMYB76, AtMYB103, AtMYB34,
AtMYB51 and AtMYB122 have been associated largely
with primary and developmental processes; AtMYB58,
AtMYB63, AtMYB75, AtMYB85, AtMYB68, AtMYB111,
AtMYB114 and AtMYB123 are involved much into regulating
Phenylpropanoid pathway (lignin/anthocyanin biosynthesis
processes).

Interestingly, several MYB TFs have dual roles, like AtMYB
52, AtMYB 54, and AtMYB 69 regulate lignin biosynthesis
(specialized metabolism), simultaneously regulating xylan
and cellulose biosynthesis (primary metabolism). Similarly,
AtMYB46 is also associated with lignification in fibers and vessel
tissues, simultaneously regulating xylan and cellulose deposition
in A. thaliana. Most notably, research evidence pointed that the
cis-element MBSIIG was bound favorably by MYB59 as well as
MYB111. While MYB59 has been known to regulate cell cycle
and root growth, MYB111 binding to MBSIIG was found to
regulate flavonoid biosynthesis along with MYB11 and MYB12.
Further, this element was found to be highly overrepresented

in the promoter regions of several genes belonging to primary
and specialized metabolism (Franco-Zorrilla et al., 2014). It is
also known that some MYBs (AtMYB63, AtMYB90, AtMYB113
and AtMYB114) bring about the transcriptional regulation via
binding to the AC elements present upstream to the stress-
responsive genes through synergistic interaction with bHLH
and WD40 TFs. The promoter regions of several primary
(LEA14, CWIN, vInv 1, SUSY) and specialized metabolism
genes (CHI, HCT, ANS, DFR, F3H, PAL, C3H, GST) have
characteristic presence of AC-rich elements in their promoter
regions. It thus makes it evident that MYB TFs play a bridging
role to link primary and specialized metabolism in plants.
Table 3 presents a comprehensive overview of the MYB TFs
and their role in regulating metabolic processes in various plant
genera.

The AP2/ERF Superfamily
The APETALA2 TF family was initially linked to developmental
regulation in plants, like floral development, seed germination
and yield regulation. This TF family is associated with a few other
pleiotropic roles, like regulating stress tolerance via expression
of genes involved in abiotic stress response, disease resistance
and ethylene/jasmonic acid/salicylic acid response (Cui et al.,
2016; Guo et al., 2016). Based on the number of AP2/ERF
DNA binding domains they possess, the AP2/ERF family is
further classified into four subfamilies, namely ERF, DREB (one
AP2/ERF domain); AP2 (two AP2/ERF domains) and RAV (one
AP2 and an additional B3 DNA binding domain; Licausi et al.,
2013; Guo et al., 2016; Huang Z. et al., 2016). The ERF subfamily
in Arabidopsis is regulated either via a phytohormone dependent
(like Ethylene, JA, ABA, auxin, cytokinin and SA; Guo and Ecker,
2004; Arora, 2005; Cheng et al., 2013; Dey and Vlot, 2015) or
independentmanner (via Ethylene Insensitive or EIN genes, stress
like wounding, etc., Guo and Ecker, 2004; Arora, 2005; Dey
and Vlot, 2015). ERFs have the ability to distinctly bind to the
GCC box and DRE elements (under abiotic and biotic stress;
Cheng et al., 2013; Guo et al., 2016) and upregulate downstream
genes, thus forming a crucial component of stress mitigation
mechanisms in plants. The DREB subfamily also plays a crucial
role in abiotic stress mitigation by binding to the DRE/CRT
elements (Dehydration Responsive Element/ C-Repeat Element)
present upstream to stress responsive genes (like RD29A,
COR15a, etc.), leading to plant responses to abiotic stresses like
cold, drought and salinity (Chinnusamy et al., 2010; Basu et al.,
2014). Similar cis-element LTRE (Low temperature Responsive
Element) was found to be involved in mitigating cold stress.
The promoter regions of Arabidopsis Cor15A gene (encoding
cold-regulated chloroplastic protein, principally involved in cold
stress regulation) showed the characteristic presence of DRE
elements, while polyamine synthesis gene, SamDC (specialized
metabolism) in rice showed the presence of both DREs as well as
LTREs in their promoters (Basu et al., 2014). Promoter analysis of
principal abiotic stress responsive genes in A. thaliana (COR15A,
COR15B,KIN1,KIN2 RD29B, RD29A, RD29B, RD22, RAB18 and
COR47) demonstrated an overrepresentation of DREs, which is
favorably bound by DREB1A and DREB2A (Sakuma et al., 2006).
Research reports highlight the involvement of ERF and DREB
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TABLE 3 | R2R3-MYB TFs in regulating primary and specialized metabolism in plants.

Species Gene TFBS Function References

A. thaliana AtMYB4 A(A/C)C(A/T)A (A/C)C Associated with overproduction of C4H; cell wall biosynthesis; control

sinaptate ester biosynthesis and provide UV stress protection

Jin et al., 2000; Dubos et al., 2010

AtMYB5 AACTAACT Developmental regulation: Trichome morphogenesis and mucilage

synthesis

Li et al., 2009

AtMYB11 AcCTACCa Flavonol biosynthesis; activation of flavonol biosynthesis genes (CHS,

CHI, F3H, FLS)

Stracke et al., 2007; Dubos et al.,

2010; Pandey et al., 2015

AtMYB12 AcCTACCa Enhance flavonol/chlorogenic acid content (regulated by bZIP TF under

light stress)

AtMYB14 MREs Activates promoters of stilbene biosynthesis genes (STS); drought and

salt tolerance

Höll et al., 2013

AtMYB15 MREs Activates promoters of stilbene biosynthesis genes (STS); drought, cold

and salt tolerance

Dubos et al., 2010; Höll et al., 2013

AtMYB21 MREs, H-box, P-box Regulatory function: pollen and stamen maturation; regulates PAL gene Davies and Schwinn, 2003; Cheng

et al., 2009; Li and Laoke, 2016

AtMYB24 MREs Regulatory function: pollen and stamen maturation Cheng et al., 2009; Katiyar et al.,

2012

AtMYB28 Associated with glucosinolates synthesis; response to herbivory Gigolashvili et al., 2007

AtMYB29 Associated with glucosinolates synthesis; response to herbivory Li and Laoke, 2016

AtMYB32 Regulates pollen wall composition; controls monolignol biosynthesis;

enhances DFR and ANS; represses COMT gene

Preston et al., 2004; Dubos et al.,

2010

AtMYB34 Associated with glucosinolates and auxin homeostasis; response to

herbivory

Gigolashvili et al., 2007; Li and

Laoke, 2016

AtMYB46 Under direct regulation of Secondary Wall-Associated NAC Domain

Protein 1 (SND1), assists in secondary cell wall formation

Li and Laoke, 2016

AtMYB51 Associated with glucosinolates synthesis; response to herbivory Li and Laoke, 2016

AtMYB54 Secondary wall synthesis and aids in lignification Dubos et al., 2010; Liu et al., 2015;

Li and Laoke, 2016

AtMYB57 Regulatory function: pollen and stamen maturation Cheng et al., 2009; Li and Laoke,

2016

AtMYB58 Lignin synthesis; formation of secondary cell wall Li and Laoke, 2016

AtMYB60 Transcriptional repressor of anthocyanin biosynthesis; ABA-mediated

stomatal regulation

Dubos et al., 2010; Liu et al., 2015

AtMYB61 ACCTAC Photomorphogenic control, mucilage deposition, stomatal aperture, xylem

formation and carbon translocation to the roots; Regulates production of

anthocyanin pigment-1

Li et al., 2009; Dubos et al., 2010;

Prouse and Campbell, 2013; Liu

et al., 2015; Li and Laoke, 2016

AtMYB63 MREs Control anthocyanin biosynthesis in vegetative tissues by interacting with

promoter AC elements

Dubos et al., 2010

AtMYB69 Secondary wall synthesis and aids in lignification Dubos et al., 2010

AtMYB75/

PAP1

Regulates production of anthocyanin pigment-1, positive regulator of

lignin biosynthesis

Dubos et al., 2010; Liu et al., 2015

AtMYB76 Associated with glucosinolates synthesis; response to herbivory Li and Laoke, 2016

AtMYB83 Under direct regulation of Secondary Wall-Associated NAC Domain

Protein 1 (SND1), assists in secondary cell wall formation; upregulates

various lignin biosynthesis genes

Liu et al., 2015; Li and Laoke, 2016

AtMYB85 Regulates lignin biosynthesis in fiber cells/vessels Dubos et al., 2010

AtMYB90/PAP2 Control anthocyanin biosynthesis in vegetative tissues by interacting with

promoter AC elements

Dubos et al., 2010; Liu et al., 2015

AtMYB103 Cell wall thickening in fiber cells Dubos et al., 2010

AtMYB108 Associated with glucosinolates synthesis; response to herbivory Li and Laoke, 2016

(Continued)
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TABLE 3 | Continued

Species Gene TFBS Function References

AtMYB111 AcCTACCa Flavonol biosynthesis; activation of flavonol biosynthesis genes (CHS,

CHI, F3H, FLS)

Stracke et al., 2007; Dubos et al.,

2010; Liu et al., 2015; Pandey

et al., 2015

AtMYB113 MREs Control anthocyanin biosynthesis in vegetative tissues by interacting with

promoter AC elements; interacts with bHLH and WD40 proteins

Dubos et al., 2010; Katiyar et al.,

2012; Liu et al., 2015

AtMYB114 Du et al., 2012; Katiyar et al., 2012

AtMYB122 Associated with glucosinolates synthesis; response to herbivory Li and Laoke, 2016

AtMYB123/TT2 Proanthocyanidin biosynthesis Dubos et al., 2010; Liu et al., 2015

Apple

(Malus

domestica)

MdMYB1 Synthesis of anthocyanins (red pigment) in peel Liu et al., 2015

MdMYB3

MdMYB6 Repressor of anthocyanin biosynthesis Liu et al., 2015

MdMYB10 Activates the synthesis of anthocyanins peel, flesh, and foliage Liu et al., 2015

MdMYB110a Anthocyanin biosynthesis: Mediates red coloration of fruit cortex in later

phase of fruit maturity

Liu et al., 2015

MdMYBA Synthesis of anthocyanins (red pigment) in peel Liu et al., 2015

MdoMYB121 Environmental stress tolerance Cao et al., 2013

Grapevine

(Vitis spp.)

VvMYBA1/ A2 Controls last step of anthocyanin biosynthesis mediated by UDP-Glucose

flavonoid 3-O-Glucosyltransferase (UFGT); control fruit color

Matus et al., 2008

VvMYBA3 Control anthocyanin biosynthesis in other grapevine tissues Matus et al., 2008

VvMYB14 Activates promoters of stilbene biosynthesis genes (STS); drought and

salt tolerance

Höll et al., 2013

VvMYB15 Activates promoters of stilbene biosynthesis genes (STS); drought and

salt tolerance

Höll et al., 2013

Epimedium

sagittatum

EsMYBF1 Strong activator of promoters of F3H, FLS, thereby regulating flavonol

biosynthesis

Huang W. et al., 2016

EsMYBA1 Activates the promoters of DFR and ANS Huang et al., 2013

subfamily in simultaneously upregulating genes belonging to the
primary (esk1, LEA, CAB, AS, DXS) and specialized metabolism
(DcPAL3, STR, TDC, D4H, CPR) by binding to the GCC boxes in
their promoters. It can therefore be inferred that the AP2 family
TFs are involved not only in imparting stress tolerance to plants,
but also form a crucial molecular link among diverse metabolic
pathways.

The RAV subfamily TFs are more involved in imparting biotic
stress tolerance to the plants via activation of the PR genes
(Woo et al., 2010; Fu et al., 2014). One of the RAV proteins,
RAV1 is known to be involved in ABA signaling, where it
increased ABA insensitivity of seeds during germination (Feng
et al., 2014). Scientific reports indicate that the RAV TFBS are
overrepresented in the promoter regions of primary (Em genes
(Em1 and Em6), LEA, AS) and specialized metabolism genes
(GST, LOX, SamDC, Feng et al., 2014; Moran Lauter et al., 2014).
The RAV family TFs are also involved in regulating several other
allied processes, like regulating metal starvation tolerance and
controlling senescence-related gene expression. In A. thaliana,
the promoter regions of principal cold responsive genes COL1
(CONSTANS-like 1) and COR27 demonstrated the presence of
certain sequences called as “Evening elements (EE) and EE-like
(EEL) elements” which were amplified in the presence of ABRE-
like (ABREL) motif. Three ABREL motifs, along with four EE

motifs could induce the expression of cold-responsive genes
COL1 and COR27 (Mikkelsen and Thomashow, 2009). AP2/ERF
family TFs can therefore serve as the missing molecular link
between primary and specialized metabolism in plants. Table 4
presents a detailed account of the AP2/ERF TF family. However,
among the AP2/ERF TFs, not many reports highlight the role
of AP2 subfamily in regulating crucial genes under stressed
conditions and futuristic research needs to highlight more in this
aspect.

There are several other additional TFBS, which bring about
cold stress mitigation, like the MYC binding sites, G-box and
ABRE (Maruyama et al., 2012). Reports also suggest that
AP2/ERF TFs work in tandem with bZIPs and MYBs to bring
about synergistic regulation of cold stress tolerance by controlling
ABA mediated gene expression in Arabidopsis (Pandey et al.,
2005; Xu et al., 2011). Therefore, it can be suggested that
a network of TFs is involved in coregulating diverse stress-
responsive genes, which potentially form the missing molecular
link between primary and specialized metabolism genes under
stressed conditions. Although the active role of AP2 TFs
subfamily in upregulating primary and specialized metabolism
genes is not fully uncovered, deeper insights into this area
would present a promising prospective in interconnecting diverse
metabolic pathways.
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TABLE 4 | APETALA2 family TFs and their recognition sequences.

S. N. Sub family TFs Core sequence/

TFBS

Primary metabolism

genes

Specialized metabolism

genes

References

1 DREB (ERF

subfamily)

DREB1/CBF, DREB2A,

DREB1D, ORCA1

A/GCCGAC COR15a, COR78, esk1,

LEA, CAB, AS, DXS

STR, TDC, D4H, CPR Xin and Browse, 2000; Agarwal et al.,

2006; Sakuma et al., 2006; Lata and

Prasad, 2011; Licausi et al., 2013;

Yamada and Sato, 2013

2 ERF ERF-I-V, ORCA2,

ERF221, EIN3, CRF,

RAP2.6, RAP2.12,

RAP2.2

AGCCGCC AOX, PDC, ADH1 DcPAL3, PMT, QPT, ODC,

QS, MPO

Kimura et al., 2008; Yamada and

Sato, 2013

3 RAV RAV1, RAV3, TEM1 CAACA Em genes (Em1 and

Em6), LEA, AS

GST, LOX, SamDC Woo et al., 2010; Licausi et al., 2013;

Feng et al., 2014; Moran Lauter et al.,

2014

esk1, eskimo1 gene; CAB, Chlorophyll a/b-binding protein; AS, Anthranilate synthase; DXS, D-1-deoxyxylulose 5-phosphate synthase; STR, Strictosidine synthase; TDC, tryptophan

decarboxylase; D4H, desacetoxyvindoline 4-hydroxylase; CPR, cytochrome P450 reductase; PMT, putrescine N-methyltransferase; QPT, quinolinate phosphoribosyltransferase; AOX,

aspartate oxidase; ODC, ornithine decarboxylase; QS, quinolinic acid synthase; MPO, N-methylputrescine oxidase; PDC, Pyruvate decarboxylase.

FUTURE PROSPECTIVE

Newer insights into the interrelationships among multiple
metabolic pathways are important to realize the subtle interplay
of biomolecules within plants, as well as between plants and their
environment. Primary and specialized metabolism serve as the
backbone for the production of several therapeutically significant
metabolites in planta (Tohge et al., 2013). Though under
stress conditions plants overproduce certain key therapeutic
metabolites, however it might have a negative impact on
plant yield and productivity (Caretto et al., 2015). Therefore,
an attempt to study coregulation of primary and specialized
metabolism genes under certain stress conditions could pave
a way to enhance both plant productivity and plant-derived
therapeutic compounds.

Conventional stress-mitigation programmes either focus on
breeding to develop robust, stress-tolerant plants or using plant
growth regulators (like salicylic acid, ascorbic acid, brassinolides,
etc.) to provide momentary stress-mitigation effects. Genetic
engineering techniques to impart abiotic stress-tolerance to
plants have focused on engineering stress-responsive TF genes
in order to bring about effective stress response (Mickelbart
et al., 2015). The current knowledge of cis-elements and
TF interactions that bring about simultaneous upregulation
of primary and specialized metabolism genes would help in
developing tolerance to wide range of environmental stresses.
Therefore, by adopting cis-element and TF engineering, scientists
can develop robust crop varieties with high therapeutic potential.
However, exhaustive research needs to be carried out before
putting this technology to practice.

CONCLUSION

The link between primary and specialized metabolic pathways
in plants has been an area of extensive research in the
recent years with prime focus being laid on stress mitigation,
increased plant yield and enhanced production of specialized
metabolites. In the recent decades, rising population has

contributed to increased levels of environmental stress, thereby
plunging the overall crop productivity. However, it is also
known that stress alters the biochemical fingerprint of plants,
thereby enhancing the production of therapeutic metabolites
like alkaloids, flavonoids, stillbenoids and phenylpropanoids.
Scientific studies aimed at imparting stress tolerance focusmainly
on enhancing production of specialized metabolites through
genetic engineering approaches. However, not many studies
highlight the significance of the molecular interface connecting
primary and specialized metabolites under stress conditions.
Since the precursors for the specialized metabolites originate
from primary metabolism, much efforts are needed to unravel
the cross talk between the two pathways at the molecular
level.

In our review, we have presented a comprehensive analysis
of the interplay between primary and specialized metabolism
in plants under stressed conditions. Phyto-stress brings about a
remarkable change in the metabolic profile of plants, wherein
diverse primary and specialized metabolites are overproduced.
Among the primary metabolites, the levels of sugars, sugar
alcohols and amino acids were predominantly enhanced. On
the other hand, VOCs, phenylpropanoids and alkaloids were
mainly overproduced from among the specialized metabolites.
The striking observation that diverse forms of stress leaves
behind similar biomolecular patterns points at the molecular
level regulation occurring between these metabolic processes.
In the process of stress mitigation, plants are known to
concurrently induce the expression of diverse stress-responsive
genes belonging to primary metabolism, specialized metabolism
and TFs. Since the principal mode of regulation of various genes
occurs at the transcriptional level, the prime focus was laid on the
cis-element and TF interactions that can simultaneously regulate
primary and specialized metabolism genes. Upon spanning
the immense literature available on cis-element profiles in the
promoter regions of these genes in different plant systems,
it could be inferred that a predictable pattern of cis-element-
TF interactions (like bZIP TFs which recognize and bind to
ABRE, AREB, G-box, ABI elements; WRKY TFs binding to
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their recognition sites W-box; MYB TFs binding to the MREs
and AP2 TFs binding to DRE and GCC boxes) could be
seen among primary, specialized as well as TF genes. Many
of these TFs possessed pleiotropic roles, like developmental
regulation, controlling senescence, physiological functioning,
phenylpropanoid metabolism regulation, etc. Moreover, this
pattern was observed among genes belonging to diverse
metabolic pathways in different plant species also (V. vinifera,
S. tuberosum, S. lycopersicum, E. haichowensis. O. sativa, N.
tabacum, C. sativus, R. hybrida, Populus spp., H. vulgare,
Z. mays, S. liaotungensis, M. acuminate, C. melo, etc.) This
pattern of cis-element-TF interactions holds the key toward
simultaneous upregulation of diverse genes. However, despite
the immense genomic data available for several plants (genome
sequence available for more than 60 plant species), scientific
reports discretely attempt at elucidating the transcriptional
regulatory mechanisms of either primary metabolism or
specialized metabolism or TF genes. The immense prospective
offered by simultaneous transcriptional regulation of primary
and specialized metabolism genes toward achieving a two-tier
objective of stress-tolerance as well as improved therapeutic
values needs to be harnessed at a full potential, as it is still in a
nascent stage.
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