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The genus Paris in the broad concept is an economically important group in the
monocotyledonous family Melanthiaceae (tribe Parideae). The phylogeny of Paris was
controversial in previous morphology-based classification and molecular phylogeny.
Here, the complete cp genomes of eleven Paris taxa were sequenced, to better
understand the evolutionary relationships among these plants and the mutation patterns
in their chloroplast (cp) genomes. Comparative analyses indicated that the overall cp
genome structure among the Paris taxa is quite similar. The triplication of trnI-CAU was
found only in the cp genomes of P. quadrifolia and P. verticillata. Phylogenetic analyses
based on the complete cp genomes did not resolve Paris as a monophyletic group,
instead providing evidence supporting division of the twelve taxa into two segregate
genera: Paris sensu strict and Daiswa. The sister relationship between Daiswa and
Trillium was well supported. We recovered two fully supported lineages with divergent
distribution in Daiswa; however, none of the previously recognized sections in Daiswa
was resolved as monophyletic using plastome data, suggesting that the infrageneric
relationships and biogeography of Daiswa species require further investigation. Ten
highly divergent DNA regions, suitable for species identification, were detected among
the 12 cp genomes. This study is the first successful attempt to provide well-supported
evolutionary relationships in Paris based on phylogenomic analyses. The findings
highlight the potential of the whole cp genomes for improving resolution in phylogeny as
well as species identification in phylogenetically and taxonomically difficult plant genera.

Keywords: comparative genomics, phylogeny, chloroplast genome, Paris, Daiswa, Melanthiaceae

INTRODUCTION

The genus Paris in the wide sense (hereafter indicated by Paris), belongs to the tribe Parideae
in the monocotyledonous family Melanthiaceae (Angiosperm Phylogeny Group, 2016), which
comprises approximately 24 perennial herbaceous species, distributed throughout Europe and
East Asia, with the majority of species (19/24) occurring in China (Li, 1998; Ji et al., 2006).
Paris is well known in China for its medicinal qualities. The species with a thick rhizome
(“medicinal Paris”) has been used as medicinal herb for more than 2000 years in China
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(Li, 1986), owing to its analgesic, hemostatic, anti-tumor, and
anti-inflammatory activities (Long et al., 2003; He et al., 2006; Li
et al., 2015). To date, more than 40 commercial drugs and health
products have been developed in China using the rhizomes of
“medicinal Paris” as raw materials (Li et al., 2015).

The classification of Paris is very complicated because of the
plasticity of its morphological characteristics, and it has been
subject to numerous critical revisions since the establishment.
Hara (1969); Mitchell (1987, 1988), and Li (1998) recognized
it as a single genus, whereas Takhtajan (1983) divided it into
three genera: Paris sensu strict (s.s), Daiswa, and Kinugasa. The
molecular phylogeny of Paris based on either single or multiple-
locus DNA sequence data (e.g., rbcL, matK, trnL/trnF, psbA/trnH
and ITS) has remained controversial in recent investigations. The
monophyly of Paris was justified by the studies of Osaloo and
Kawano (1999) and Ji et al. (2006); however, analyses by Farmer
and Schilling (2002) supported the taxonomical treatment of
Takhtajan (1983). Despite recent insights into the evolutionary
relationships within this plant group, a fully resolved and well-
supported phylogeny remains elusive. It is, therefore, necessary
to seek further evidence to reconstruct the phylogeny and to test
the various classifications.

In addition, most Paris species have abundant intraspecific
variations in morphology and chemical composition (Li, 1998; Ji
et al., 2006; Wang et al., 2015). Inaccurate identification of these
species could confound their effective exploration, conservation,
and domestication. Moreover, at the species level, nearly all
reported chloroplast (cp) DNA sequences (rbcL, matK, trnL/trnF,
and psbA/trnH) exhibit inadequate genetic variation (Osaloo and
Kawano, 1999; Ji et al., 2006), to allow reliable discrimination of
these species.

As complete cp genome sequences can offer valuable
information for the reconstruction of complex evolutionary
relationships in plants, they have been widely used for plant
phylogenetic analyses and species identification in recent years
(Jansen et al., 2007; Moore et al., 2007, 2010; Parks et al., 2009;
Nock et al., 2011; Yang et al., 2013; Ruhsam et al., 2015). In the
current study, we sequenced the complete cp genomes of eleven
Paris taxa and compared these with the previously reported cp
genome of P. verticillata (Do et al., 2014). The sampling covered
almost half of species recognized by the updated classification (Li,
1998; Ji et al., 2006), and we carried out a comprehensive analysis
of cp genomes in this phylogenetically and taxonomically difficult
plant group. The primary objectives of the current study were:
(1) to investigate the global cp genome structure of Paris species;
(2) to test the previous classifications of Paris using complete
cp genome sequences; and (3) to screen for sequence divergence
hotspot regions among the twelve cp genomes as potential DNA
barcodes for species identification.

MATERIALS AND METHODS

Taxon Sampling, Sequencing, and
Genome Assembly
Eleven taxa of Paris cultivated in the greenhouse in Kunming
Institute of Botany, Chinese Academy of Sciences were sampled.

Total genomic DNA was extracted from approximately 100 mg
of clean, fresh leaves using the CTAB method (Doyle, 1987).
Complete chloroplast genomes were amplified using Takara
PrimeSTAR GXL DNA polymerase (Takara, Dalian, Liaoning,
China) and nine universal pairs of primers and protocols
developed by Yang et al. (2014). Purified PCR products
were mixed and then digested into 200–500 base pairs (bp)
fragments, and paired-end libraries were prepared according to
the manufacturer’s manual (Illumina, San Diego, CA, USA).
The libraries were sequenced using the Illumina Hiseq 2000
sequencing platform at BGI (Shenzhen, Guangdong, China).

Raw reads were filtered using NGSQC Toolkit (Patel and
Jain, 2012), with the cut-off value for percentage of read
length = 80, cut-off value for PHRED quality score = 30.
High-quality reads were assembled into contigs using CLC
Genomics Workbench v8.0 (CLC BIO, Aarhus, Denmark) with a
minimum length of 1,000 bp. Next, all the contigs were aligned
to the reference cp genome of Paris verticillata (KJ433485; Do
et al., 2014), and aligned contigs were ordered according to
the reference cp genome. Based on the reference cp genome,
Contigs were reassembled and extended to obtain a complete cp
genome sequence in Geneious 7.0 (Kearse et al., 2012), using
the algorithm MUMmer. The validated complete cp genome
sequences were deposited in GenBank (Supplementary Table S1).

Genome Annotation and Comparison
Complete cp genomes were annotated using the Dual
OrganellarGenome Annotator (DOGMA) database (Wyman
et al., 2004). Start and stop codons and intron/exon boundaries
were checked manually. Identified tRNA genes were verified
using tRNAscan-SE 1.21 (Schattner et al., 2005) with the default
parameters. The cp genome maps were drawn by the software
OrganellarGenomeDRAW (Lohse et al., 2007). Comparison
of the sequence divergence among the twelve cp genomes was
performed using the mVISTA tool (Frazer et al., 2004) with the
default parameters, and P. verticillata was set as a reference. To
identify the mutations among 12 cp genomes, single nucleotide
polymorphisms (SNPs) were identified using the tools embedded
in Geneious 7.0 (Kearse et al., 2012), with the option setting as
“Only Find SNPs.” Then, the variant frequency of SNPs in the
protein coding and non-coding regions was calculated manually
to detect the divergence hotspots across Paris cp genomes.

Phylogenetic Analyses
The 12 completed Paris cp genomes were included in the
analysis, of which 11 were newly generated in the current study
(Supplementary Table S1). To reconstruct the phylogeny of Paris,
eight species outside of Paris were included in the ingroup,
representing all five tribes (Heloniadeae, Chionographideae,
Xerophylleae, Melanthieae, and Parideae) recognized in the
family Melanthiaceae (Angiosperm Phylogeny Group, 2016). The
complete cp genomes from Smilax china, Fritillaria cirrhosa, and
Luzuriaga radicans were used to root the tree. The published
complete cp genomes were downloaded from the NCBI GenBank
database (Supplementary Table S1).

Phylogenetic analyses were carried out by maximum
likelihood analysis (ML) and Bayesian inference (BI). The ML
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analyses were performed using RAxML-HPC BlackBox version
8.1.24 (Stamatakis et al., 2008; Miller et al., 2010). The best-fitting
substitution model was selected using ModelTest (Posada,
2008) and branch support was computed with 1,000 bootstrap
replicates. The BI analyses were performed using MrBayes 3.2
(Ronquist and Huelsenbeck, 2003). Four Markov chains, starting
with a random tree, were run simultaneously for one million
generations, sampling trees every 2,000 generations. Trees from
the first 250,000 generations were regarded as “burn in” and
discarded, with posterior probability values determined from the
remaining trees.

RESULTS

Chloroplast Genome Features
The twelve Paris complete cp genomes ranged from 157,379 to
158,451base paris (bp). All the cp genomes possessed the typical
quadripartite structure of angiosperms, consisting of a pair of
inverted repeated regions (IRs: 27,329–28,373 bp) separated
by a large single-copy region (LSC: 82,726–85,187 bp) and a
small single-copy region (SSC: 17,907–18,671 bp) (Figure 1;
Table 1). All the 12 cp genomes possessed 115 unique genes
arranged in the same order, including 81 protein-coding,
30 tRNA, and 4 rRNA genes. Of these, twelve protein-
coding genes and six tRNAs contained at least one intron
(Table 2).

The Paris cp genomes exhibited significant IR expansion.
Expansion of IR regions into rps3 at the IR/LSC boundaries
was detected in all taxa, except for Daiswa polyphylla var.
chinensis, where the IR regions expanded into rps19 (Table 1).
Expansion of the IR region into the ycf1 pseudo-gene at IR/SSC
junction regions occurred in all Paris taxa, leading to an overlap
between the ycf1 pseudo-gene and ndhF (Table 1). The length
of the intergenic spacer between rpl23 and ycf2 was highly
variable among the twelve cp genomes. Two patterns of variation
(designated as Paris s.s. and Daiswa types) based on the number
of copies of trnI-CAU were observed (Figure 2). The Paris s.s
type possessed three copies of trnI-CAU, and was present in
P. verticillata and P. quadrifolia. The Daiswa type, including
only a single copy of trnI-CAU, was identified in the remaining
taxa.

Phylogenomic Analyses
Phylogenetic relationships within the Melanthiaceae family
were reconstructed by ML and BI analyses. The resulting ML
and BI tree topologies were highly similar to one another.
Figure 3 illustrates the phylogeny generated by ML analysis,
including two types of support values: ML bootstrap values
(MLBS) and BI posterior probabilities (PP). Both analyses fully
supported the monophyly of the tribe Parideae (Trillium+ Paris)
(MLBS = 100% and PP = 1.00). The basal divergence within
the Parideae formed two major clades (I and II). Clade I
(MLBS = 80% and PP = 0.98) comprised P. quadrifolia
and P. verticillata, corresponding to the Paris s.s outlined
by Takhtajan (1983). Clade II was resolved as two subclades
(MLBS = 100%, PP = 1.00): Trillium, and another, consisting

of species placed in the genus Daiswa by Takhtajan (1983).
The phylogenetic relationships recovered by analysis of whole
cp genome sequences did not support Paris as a monophyletic
group.

The results of both ML and BI analyses provided significant
evidence to support a sister relationship between Trillium and
Daiswa (MLBS = 100% and PP = 1.00). We recovered two
lineages (MLBS = 100% and PP = 1.0) in the Daiswa clade;
one comprised taxa (D. polyphylla var. chinensis, D. dunniana,
D. cronquistii, D. fargesii, and D. vietnamensis) distributed from
eastern to central China and Vietnam (the east lineage); whereas
the other comprised the species, D. mairei, D. luquanensis,
D. forrestii, D. marmorata, and D. polyphylla var. yunnanensis,
which are distributed from southwest China to the Himalayas
(the west lineage). However, none of the sections in the Daiswa
proposed by either Li (1998) or Ji et al. (2006) was resolved as
monophyletic (Figure 3).

Sequence Divergence Hotspot Regions
Regions containing sequence divergence hotspots were identified
by cp genome-wide comparative analyses (Figure 4). Single
nucleotide polymorphisms (SNPs) are the most important
marker for species identification (Kress et al., 2005). To
identify DNA regions that could be suitable for discriminating
Paris species, SNPs across the twelve complete cp genomes
were comprehensively examined. We detected 2,748 SNPs
(1.756%) among the cp genomes, in which protein-coding
genes and non-coding regions (introns and spacers) exhibited
divergence proportions of 1.655 and 2.033%, respectively
(Supplementary Table S2). Among these divergence hotspot
regions (Supplementary Tables S3 and S4), we screened 10
non-coding regions with potential to be useful loci for the
molecular identification of Paris species, with lengths ranging
from 200 to 1,500 bp and percentages of SNPs exceeding
3%. Primers for these plastid DNA markers are presented in
Table 3.

DISCUSSION

Comparative Genomics
Our results revealed that the overall gene content and
arrangement within the 12 Paris taxa are largely similar. The
IR/LSC boundaries in Paris cp genomes (other than those
of D. polyphylla var. chinensis) expand into rps3. This differs
from the typical monocot genome structure, in which IR
regions expand into rps19 (Kim and Lee, 2004; Yang et al.,
2013). Among other taxa in the family Melanthiaceae, IR
expansion into rps3 has been observed in Chionographis japonica
(Chionographideae; Bodin et al., 2013) and Xerophyllum tenax
(Xerophylleae; Do et al., unpublished data). Veratrum patulum
(Melanthieae; Do et al., 2013); Heloniopsis tubiflora (Heloniadeae;
Do et al., unpublished data); Trillium tschonoskii, T. decumbens,
T. cuneatum, and T. maculatum (Parideae; Kim et al., 2016;
Schilling et al., unpublished data; and Schilling et al., unpublished
data; and Kim et al., 2016; respectively),exhibit the typical
monocot genome structure at their IR/LSC junctions. This
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FIGURE 1 | Continued
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FIGURE 1 | Map of the 11 Paris chloroplast genomes newly generated in the current study. Genes shown outside the circle are transcribed clockwise and
those inside are transcribed counterclockwise. The dark gray area in the inner circle indicates the CG content of the chloroplast genome.
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TABLE 1 | The comparison of the 12 Paris chloroplast genomes.

Taxa Genome size (bp) GC content (%) LSC (bp) SSC (bp) IR (bp) IR/SSC junction IR/LSC junction

D. marmorata 157566 37.3 84221 18301 27522 ycf1 rps3

D. forrestii 158345 37.3 84396 18671 27639 ycf1 rps3

D. polyphylla var. yunnanensis 157547 37.3 84224 18319 27502 ycf1 rps3

D. luquanensis 158451 37.3 84408 18403 27820 ycf1 rps3

D. marei 157891 37.3 84420 18361 27555 ycf1 rps3

D. vietnamensis 158224 37.2 84794 18360 27535 ycf1 rps3

D. fargesii 157518 37.3 84549 18311 27329 ycf1 rps3

D. cronquistii 157710 37.3 84502 18316 27446 ycf1 rps3

D. polyphylla var. chinensis 158307 37.2 85187 18175 27473 ycf1 rps19

D. dunniana 157984 37.2 84482 18364 27569 ycf1 rps3

P. verticillata 157379 37.6 82726 17907 28373 ycf1 rps3

P. quadrifolia 157907 37.7 83772 18287 27924 ycf1 rps3

TABLE 2 | List of genes encoded by 12 Paris chloroplast genomes.

Category of genes Group of gene Name of gene

Self-replication Ribosomal RNA genes rrn4.5, rrn5, rrn16, rrn23

Transfer RNA genes trnA_UGC∗, trnC_GCA, trnD_GUC, trnE_UUC, trnF_GAA, trnfM_CAU, trnG_GCC,
trnG_UCC∗, trnH_GUG, trnI_CAU, trnI_GAU∗, trnK_UUU∗, trnL_CAA, trnL_UAA∗,
trnL_UAG, trnM_CAU, trnN_GUU, trnP_UGG, trnQ_UUG, trnR_ACG, trnR_UCU,
trnS_GCU, trnS_GGA, trnS_UGA, trnT_GGU, trnT_UGU, trnV_GAC, trnV_UAC∗,
trnW_CCA, trnY_GUA

Ribosomal protein (small subunit) rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps12∗, rps14, rps15, rps16∗, rps18, rps19

Ribosomal protein (large subunit) rpl2∗, rpl14, rpl16∗, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36

RNA polymerase rpoA, rpoB, rpoC1∗, rpoC2

Translational initiation factor infA

Genes for photosynthesis Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3∗∗, ycf4

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT,
psbZ

Subunits of cytochrome petA, petB∗, petD∗, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE, atpF∗, atpH, atpI

Large subunit of Rubisco rbcL

Subunits of NADH dehydrogenase ndhA∗, ndhB∗, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Other genes Maturase matK

Envelope membrane protein cemA#

Subunit of acetyl-CoA accD

Synthesis gene ccsA

ATP-dependent protease clpP∗∗

Component of TIC complex ycf1

Genes of unknown function Conserved open reading frames ycf2, ycf15#

∗With one intron; ∗∗With two introns; #Pseudogene.

suggests that the expansion of the IR/LSC junctions into rps3 may
have occurred independently during the evolutionary history
of the family Melanthiaceae, and may not provide relevant
phylogenetic information.

Gene duplications in the cp genomes of higher plants have
mainly been found in tRNA genes (Hipkins et al., 1995). Three
copies of trnI-CAU, located between rpl23 and ycf 2, were found
in the cp genome of P. verticillata and P. quadrifolia in the
current study; however, this feature was not identified in the
remaining Paris taxa, or in previously examined monocot cp
genomes (Do et al., 2014). The triplication of the trnI-CAU gene
may be unique to Paris taxa, and could thus provide useful

information contributing to the exploration of evolutionary
relationships.

Phylogenetic and Taxonomic Resolution
The utilization of too few DNA sequence may result in the
incongruence between DNA regions, and can increase the
phylogenetic errors (Rokas and Carroll, 2005; Philippe et al.,
2011). Therefore, phylogenetic analysis of plant species using a
small number of loci might be frequently insufficient to resolve
evolutionary relationships, particularly at low taxonomic levels
(Parks et al., 2009). The molecular differences in complete cp
genome between plant species can offer promising evolutionary
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FIGURE 2 | The two types of trnI-CAU gene duplication detected in Paris taxa.

FIGURE 3 | Maximum likelihood (ML) phylogeny of Melanthiaceae based on complete chloroplast genomes inferred from 20 taxa representing all five
tribes of the family. Numbers indicate bootstrap values >80% from the ML analyses and posterior probabilities >0.90 from the Bayesian inference (BI) analyses.
Section delimitations in the Daiswa species reported by Li (1998) and Ji et al. (2006) are shown on the right. A, sect. Axiparis; D, sect. Dunnianae; E, sect. Euthyra; F,
sect. Fargesianae; M, sect. Marmoratae.

information (Jansen et al., 2007; Parks et al., 2009). As a result, the
cp genomes sequencing could greatly improve the phylogenetic
resolution at low taxonomic levels (Parks et al., 2009; Ruhsam
et al., 2015; Williams et al., 2016). Nevertheless, using the
complete cp genome to reconstruct evolutionary relationship
in those phylogenetically and taxonomically difficult genera has
been rarely investigated (Ruhsam et al., 2015; Williams et al.,
2016).

The key interest in the current study is to resolve the
previously phylogenetic controversies in Paris (Osaloo and
Kawano, 1999; Farmer and Schilling, 2002; Ji et al., 2006) by
using the complete cp genome sequences. Our phylogenomic
analyses did not resolve Paris as a monophyletic group, and
strongly supported its division into two monophyletic genera:
Paris s.s. and Daiswa (Figure 3). This treatment is justified
by both morphological and geographical evidence (Table 4).

Species belonging to Paris s.s. have a long, slender rhizome, a
round ovary, and seeds without sarcotesta or aril. In contrast,
Daiswa species have a thick rhizome, an angular ovary, and seeds
covered by juicy sarcotesta or aril (Li, 1998; Ji et al., 2006).
In addition, Paris species are concentrated in temperate areas
of Eurasia, whereas those belonging to Daiswa are distributed
in subtropical and tropical areas of East Asia. It is notable
that the triplication of trnI-CAU was observed only in Paris
s.s., and not in either Daiswa or other monocots (Do et al.,
2014; Kim et al., 2016; the current study), which may provide
further comparative genomic evidence to support this generic
circumscription.

Our phylogenomic analyses also well resolved the inter-
tribe relationships in the family Melanthiaceae and the inter-
generic relationships within the tribe Parideae, with higher
support than previous phylogenetic studies that used single
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FIGURE 4 | Sequence identity plots for the 12 Paris taxa.
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TABLE 3 | Potential DNA barcodes to identify Paris s.s. and Daiswa species.

Loci Location Primers GC % Tm (◦C)

ndhC/trnV-UAC LSC F:ACAAAACTTTCTCGCTCGGT
R:TTCTATGGACCAAGCAACCG

45.0
50.0

58.1
57.9

trnN-GUU/ycf1 IRB F:CCGGAACTTCTTCGTAGTGG
R:CCCCGAAGTGGCTCTATTTC

55.0
55.0

58.0
58.0

rps15/ycf1 SSC F:CATCTGGTATACGCAAAAGCG
R:ACCTATGCGTACATCTTTCGG

47.6
47.6

57.8
57.9

rpl33/rps18 LSC F:AACAAAACGCGTGTTCGATC
R:ATTTCGGCCGGATCTGAAAT

45.0
45.0

58.0
57.7

ndhA intron SSC F:ACCCATGTAATTCTGTCGGC
R:GGGGAAGTACTGCTTGATCG

50.0
55.0

58.0
58.1

atpF intron LSC F:TTTGGCTCTCACGCTCAATT
R:TCGCTTCGGCATTGGATAAA

45.0
45.0

58.1
58.0

psbZ/trnG-GCC LSC F:CCTCGATTCAAAAATGCCGT
R:GCGAAAATATGATCCAGACGC

45.0
47.6

57.1
57.8

psaA/ycf3 LSC F:ACAAAGAGACCTGCCAACAG
R:TGCAACCGAGTCCTAGTGTA

50.0
50.0

58.0
58.1

trnV-UAC intron LSC F:ACCTTGACTTAGGTCTGCCT
R:CAAATCGATGGCGGGTTCTA

50.0
50.0

58.0
58.1

ccsA/ndhD SSC F:GGTTCTCAAAAACTCTAGAGGC
R:TTGCATTCTACAGCGAACGA

45.5
45.0

56.7
57.9

TABLE 4 | Critical characters for Daiswa, Paris s.s. and Trillium.

Genus Distribution Rhizome Leaves Flower Ovary Seed No. of trnI-CAU copy
in cp genome

Daiswa Subtropical and tropical
areas of East Asia

Thick A whorl of 4–15 net-veined
leaves at stem apex

Solitary Angular With sarcotesta or aril one

Paris s.s. Temperate areas of Eurasia Long and slender A whorl of 4–15 net-veined
leaves at stem apex

Solitary Rounded Without sarcotesta or
aril

Triplication

Trillium North America and East
Asia

Thick A whorl of 3 net-veined
leaves at stem apex

Solitary Angular Without sarcotesta or
aril

duplication

or multiple locus DNA sequences data (Osaloo and Kawano,
1999; Farmer and Schilling, 2002; Ji et al., 2006; Kim et al.,
2013). This result was consistent with previous findings (Attigala
et al., 2016) in which a much higher of support to inter-
generic relationships was observed in the cp genomic phylogeny
within Arundinarieae tribe (Bambusoideae: Poaceae). The sister
relationship between Paris s.s. and Daiswa + Trillium clade
can be justified by the morphological synapomorphies of single
whorl of net-veined leaves at stem apex and solitary flower
(Table 4). In addition, plants of Daiswa and Trillium share a
thick rhizome and an angular ovary (Ji et al., 2006), which
are probably the synapomorphies grouping these two genera.
Nevertheless, a question that remains unresolved by our study
is the phylogenetic position of Paris japonica (or Kinugasa
japonica). This species was placed into the monotypic genus
Kinugasa by Takhtajan (1983). As we did not obtain a sample
of this plant, the generic circumscription of Kinugasa and its
relationships to the other Parideae genera will require further
investigation.

Compared to previous molecular phylogeneitc analyses
(Osaloo and Kawano, 1999; Ji et al., 2006; Farmer and Schilling,
2002), our results clearly indicated that all nodes within
the Daiswa clade showing a MLBS > 90% and PP > 0.95

(Figure 3). Similar results have also been observed from the
whole chloroplast genome analysis of Pinus species (Parks et al.,
2009), Araucaria species (Ruhsam et al., 2015), and Acasia
species (Williams et al., 2016). Nevertheless, relatively lower
node support within Paris s.s. was observed (MLBS = 80%,
PP = 0.98, Figure 3). Given that only two species were
included in the analyses, this may result in a phylogeny
that is more sensitive to homoplasy, and can thus decrease
the phylogenetic resolution (Wiens, 2003). Therefore, a much
larger taxon sample may provide a better resolution of the
infra-generic relationships and species identification in the
Paris s.s., as previous studies indicated (Williams et al.,
2016).

It is notable that none of the sections within Daiswa which
were proposed by either Li (1998) or Ji et al. (2006) was
resolved as monophyletic through our analyses of the complete
cp genomes. This implies that the previous delimitation of the
sections must be reassessed. We recovered two fully supported
cladest within the Daiswa. Species within the two lineages have
distinctive distribution patterns, with the east lineage being
distributed from eastern and central China to Vietnam and the
west lineage from southwestern China to the Himalayas. This
implies that the extant Daiswa species that occurred between
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these two geographical regions could have experienced long-
term vicariance. However, the sampling within Daiswa in this
study may be too low to satisfactorily address this issue, and
maternally inherited plastomes can only provide partial insight
into evolutionary history (Triplett et al., 2014). The evolutionary
relationships and biogeography of Daiswa species require further
investigation, including increased sampling of species and infra-
specific populations, and application of additional nuclear DNA
markers.

Potential DNA Barcodes
Because of the plasticity of the morphological characteristics
among Paris species, its taxonomy remains problematic. The
plastid loci, rbcL, matK, and psbA/trnH, are recommended as
universal DNA barcodes in plants (Hollingsworth et al., 2011);
however, we found that the percentage of variation in rbcL and
matK were relatively low (1.046 and 0.773%, respectively) among
Paris species (Supplementary Table S3). Due to the expansion
of the IR into the LSC region, three protein-coding genes (rps3,
rps19, and rpl22) were inserted into the psbA/trnH-GUG spacer
of Paris species (Figure 1). This cp genome rearrangement
could account for the significantly increased length of the
psbA/trnH region among these taxa (∼1,200 bp), in which the
divergence proportion is unexpectedly low (Ji et al., 2006; Yang
et al., 2011). As a result, these three universal plastid DNA
barcodes have extremely low power to identify either Paris s.s.
or Daiswa species. Thus, the novel DNA barcodes are urgently
needed.

The mutation events in the genome were not random
but clustered as “hotspots,” which created the highly variable
regions throughout the complete cp genomes (Shaw et al.,
2007). These sequence divergence hotspot regions could provide
adequate genetic information for species identification, and
can be used to develop novel DNA barcodes (Parks et al.,
2009; Yang et al., 2013). We propose ten plastid DNA regions
harboring a high proportion of SNPs (Table 3), which are
potentially useful for species identification in Paris s.s and
Daiswa. The ndhA intron and atpF intron have been widely
used for phylogenetic studies (Shaw et al., 2007). The rest eight
loci harboring highly genetic variations are newly identified
in the current study. Our further research will investigate
whether these DNA sequences could serve as reliable and
effective DNA barcodes for species from Paris s.s. and Daswa,
the two medicinally important genera. We also encourage
researchers working on other plant groups to use these loci
developed in this study for phylogenetic reconstruction and
species identification.

CONCLUSION

This study is the first attempt to reconstruct phylogeny in
Paris with the taxon sample covering 50% known species which
represents a wide phylogenetic diversity in this medicinally
important plant group. The overall cp genome structure across
these plants is highly conserved. The phylogenomic analyses
provided the most strongly supported estimate of evolutionary
relationships among Paris taxa, which supports the division of
these taxa into two segregate genera: Paris s.s and Daiswa. Our
study resolved the debates in phylogeny and classification of
Paris. Ten rapidly evolving regions were identified across the
cp genomes that could serve as potential DNA barcodes for
species identification in Paris s.s and Daiswa. The findings justify
that the whole cp genome sequencing can offer plenty genetic
information for resolving evolution and species identification
in those phylogenetically and taxonomically difficult plant
genera.
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