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Grain morphometry in cereals is an important step in selecting new high-yielding plants.
Manual assessment of parameters such as the number of grains per ear and grain
size is laborious. One solution to this problem is image-based analysis that can be
performed using a desktop PC. Furthermore, the effectiveness of analysis performed in
the field can be improved through the use of mobile devices. In this paper, we propose
a method for the automated evaluation of phenotypic parameters of grains using mobile
devices running the Android operational system. The experimental results show that this
approach is efficient and sufficiently accurate for the large-scale analysis of phenotypic
characteristics in wheat grains. Evaluation of our application under six different lighting
conditions and three mobile devices demonstrated that the lighting of the paper has
significant influence on the accuracy of our method, unlike the smartphone type.

Keywords: wheat grain, phenotyping, computer image analysis, mobile devices, Android

INTRODUCTION

The grains per ear and grain size are important characteristics of cereal yield. Seed counting and
morphometry “by eye” is laborious. Therefore, various approaches have been suggested for efficient
grain morphometry using image processing techniques (Granitto et al., 2005; Pourreza et al., 2012;
Tanabata et al., 2012). Most of these approaches were implemented using desktop PC software
for analyzing grain images on a light background obtained using either a digital camera or a
scanner (Herridge et al., 2011; Tanabata et al., 2012; Whan et al., 2014). These approaches allow
users to estimate a large number of grain morphometric parameters describing shape and color
(Bai et al., 2013). They also facilitate methods for identifying the cereal variety using grain images
(Wiesnerová and Wiesner, 2008; Chen et al., 2010; Zapotoczny, 2011), determining seed moisture
content and predicting semolina yield in durum wheat (Novaro et al., 2001; Tahir et al., 2007). Duan
et al. (2011) developed a labor-free engineering solution for high throughput automatic analysis
of rice yield-related traits including the number of total spikelets, the number of filled spikelets,
the 1000-grain weight, the grain length, and the grain width. Roussel et al. (2016) proposed a
detailed analysis of seed shape and size. They used 3D surface reconstruction from the silhouettes
of several images obtained by rotation of a seed in front of a digital camera. This method was
implemented further in the phenoSeeder robotic platform (Jahnke et al., 2016), which was designed
for the high-quality measurement of basic seed biometric traits and mass from which seed density
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is calculated. Strange et al. (2015) used X-ray computed
tomography for the in situ determination of grain shape. The
engineering facilities for grain morphometry demonstrate high
performance and precision; however, they are installed in a
limited number of plant research laboratories. There is still a need
for low cost, high-throughput methods of grain analysis (Whan
et al., 2014).

Large-scale breeding experiments require processing
substantial phenotypic data, often in field conditions and thus
without access to desktop computers and scanners. In this case,
a digital camera is a viable option, but the images must be
subsequently copied to a laptop or PC.

Modern mobile devices (smartphones and Internet tablets)
contain digital cameras with high resolution. Mobile devices
have multicore processors with sufficient computational power
for image processing and analysis. These features allow users
to capture and process images wherever necessary. A number
of applications for mobile devices have been developed for the
morphometry of plant organs. Leafsnap (Kumar et al., 2012) is
able to identify plant species in real time based on their leaf
images: a user takes pictures of a plant leaf using a mobile
device and sends the images from the camera to a remote
server where they are processed. Leaf Doctor (Pethybridge and
Nelson, 2015) is another mobile application that estimates the
percentage of disease severity based on leaf images in a semi-
automated manner. Mobile devices can also serve as efficient
tools to estimate soil-color (Gómez-Robledo et al., 2013).

In this work, we present a mobile application, SeedCounter,
for the Android platform that performs automated calculation of
morphological parameters of wheat grains using mobile devices
in field conditions (without computer facilities). The application
estimates the number of grains scattered on a sheet of A4,
Letter, Legal, A3, A4, A5, B4, B5, or B6 paper and morphological
parameters such as length, width, area, and distance between the
geometric center of mass of the grain and the point of intersection
of its principal axes.

We conducted several seed counting tests under controlled
lighting conditions and daylight to estimate software
performance. We demonstrated that the SeedCounter can
estimate the number of grains in an image and their size
with high accuracy, but performance is dependent on lighting
conditions.

MATERIALS AND METHODS

Getting Images
The program input is a color image of grains placed arbitrarily
on a sheet of white paper (A4, Letter, Legal, A3, A5, B4, B5, or
B6). We recommend minimizing any contact between grains.
To reduce errors, users should provide the following conditions
for image capture: the paper sheet should be placed on a dark
background and bright side lighting should be avoided.

The boundaries of the paper sheet on the background should
be parallel to the sides of the frame (Figure 1A). The fixed size
of the paper makes it possible to calculate the scale of the image
and evaluate the grain sizes in metric units. The SeedCounter

application receives images directly from the camera of the
mobile device.

Image Processing Algorithm
The algorithm is implemented using the OpenCV image
processing library (Howse, 2013; Dawson-Howe, 2014) and
consists of several steps.

Paper Sheet Recognition
The paper sheet is recognized as a light area of tetragonal shape
on a dark background. For recognition, the original color image
(Figure 1) is converted to grayscale by the cvtColor() function.
To determine the area of the sheet, an adaptive binarization of the
entire image is performed by the adaptiveThreshold() function,
and the canny() function is used for paper boundary detection.
The set of lines close to the sheet boundaries is generated by
the houghLinesP() function with the length parameter varying
from 20 to 80% of the respective image side. Due to distortions
on the image, not all of these lines for the same side are
parallel and lines at the adjacent sides are not perpendicular.
Therefore, to select lines approximating the paper boundaries,
we cluster them with respect to their mutual angle and distance,
yielding four clusters of lines corresponding to the paper sides.
For each cluster, we reconstruct a sheet boundary line with
the smallest distance from the pixels of the cluster lines. The
intersections between the sheet boundary lines determine the
vertices of the paper tetragonal image. If the paper shape
on the image deviates from rectangular, affine transformations
convert it to rectangular. This step is performed using the
getPerspectiveTransform() function for transformation matrix
calculations, and the warpPerspective() function is used to
transform the image, making the opposite edges parallel and all
angles equal to 90◦.

Grain Identification and Morphometry
Grains are identified as contours by applying the findContours()
function to the image fragment corresponding to the paper sheet.
We make a further adjustment of the grain boundaries using
local Hue Saturation Value (HSV) channel binarization for the
neighboring regions of the original image. Local binarization
reduces the influence of shadowing during grain boundary
determination. It includes converting a local image segment to
HSV color space and a subsequent conversion into grayscale
based on calibration parameters and color histograms. The
resulting channel reflects the degree of conformity of image pixels
to the grain color. The local binarization yields more accurate
determinations of grain boundaries.

The marked watershed method (Roerdink and Meijster, 2000),
as implemented in the watershed() function, is used to resolve the
boundaries of seed grains that are in contact with one another.
The resulting contours are approximated by grain ellipsoids,
allowing for estimates of the size of the major and minor principal
axes corresponding to the length and the width of the grain
(Figure 1D). SeedCounter additionally identifies the grain image
area and the distance between the geometric center of mass and
the point of intersection of the principal axes.
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FIGURE 1 | The main steps of grain recognition on a sheet of paper. (A) Capturing an image using the camera of the mobile device and paper recognition.
(B) The image after affine transformation and binarization. (C) Grain contours identified on the image. (D) Grain image with the major axes shown by crossed lines.

FIGURE 2 | The SeedCounter application interface. (A) Main menu. (B) Selection of the paper size. (C) Output screen indicating the results of measurements
(grain count and length/width/area for each grain).

Android Application Interface
The mobile application user can adjust image processing and seed
recognition parameters by using the ‘Calibration’ option on the
main menu (Figure 2A). The user should provide a single seed
on the paper, process the image and verify that the algorithm
identifies the seed correctly and marks it as a red polygon. The
algorithm parameters at this stage are saved automatically. The
user can also use the program menu (Figure 2B) to define the size
of the paper sheet (including user-defined sizes) and the camera

and image resolutions to enable the touching seed separation
algorithm and HSV binarization.

Data on the number of counted seeds and seed shape
parameters for each seed are stored in XML format and can
be displayed using the ‘Seed data’ menu (Figure 2C). The user
can view the data, delete it, export in tsv format or send it to
the SeedCounter web-server. In the last case, the user obtains
the data URL that allows the uploading of the data in the web-
browser.
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Accuracy Estimation
We considered two types of errors. First, we estimated the
accuracy of the grain number identification. Fifty wheat grains
of the same variety were poured onto a sheet, and the number of
grains was estimated by SeedCounter. After that, one grain was
removed from the sheet, the grains were shuffled (no control for
the grain separation), and the number of grains was estimated
again. This procedure was repeated 40 times. We performed
this measurement series using different mobile devices, camera
resolutions, and illumination conditions. For each series of grain
number estimations, we calculated the mean absolute error
(MAE) and the mean absolute percentage error (MAPE) as
follows:

MAE =
1
M

j=M∑
j=1

|Nj −N
′

j|

MAPE =
100%

M

j=M∑
j=1

(
|Nj−N

′

j|

Nj

)

where j is the image number in the experiment, N j is the number
of grains on the sheet, N j

′

is the number of grains estimated
by SeedCounter and M = 40 is the number of images in the
experiment. The error in seed grain number estimation increases
as the MAE [Eq. (1)] and MAPE [Eq. (2)] values increase. If
the MAE and MAPE values are close to 0, the error is low. We
additionally estimated the Pearson correlation coefficient, rN ,
between N j and N j

′

. The closer rN is to unity, the smaller the error
in the grain number estimates.

Second, we evaluated the accuracy of the grain length and
width estimation. We measured the length and width of 250
grains of five wheat varieties, with each grain placed in a strict
order, using a Carl Zeiss Aioscop 2 plus microscope equipped
with a digital camera with the AxoCamHRc TV2/3c 0.63 adapter.
We placed grains on the paper sheet in the same order and
applied the SeedCounter software to estimate their length and
width. A series of morphometric measurements of the 250 grains
was performed using different mobile devices, camera resolutions
and illumination conditions. For each experiment, we calculated
MAE [Eq. (1))] separately for length and width and calculated
the average values. The same procedure was used to calculate
MAPE [Eq. (2)] for the width and length. The Pearson correlation
coefficients, rw and rl, were calculated for these parameters
separately.

To compare the accuracy of SeedCounter applications with
available software, we compared our results with measurements
obtained using the application SmartGrain (Tanabata et al., 2012)
running on a personal computer (Intel Core i7, 2400 MHz,
4 Gb RAM) and images from the scanner HP Scanjet 3800 with
600 dpi.

Experimental Conditions
We evaluated the accuracy of the morphometric parameter
estimation of grains using the following three mobile devices
running Android OS at maximal camera resolution: the
smartphones Samsung Galaxy Grand 2, Sony Ericsson XPERIA

pro mini, and the Internet tablet DNS AirTab m101w.
Characteristics for these devices are presented in Supplementary
Table S1.

We used the following three types of lighting devices: A 11-W
daylight lamp (color temperature 4000 K, luminous flux 900 lm),
a 5-W daylight lamp (4000 K, 400 lm), and a 35-W halogen lamp
(2700 K, 190 lm). Four types of artificial lighting were used, as
follows: a 11-W daylight lamp (L1); a 11-W daylight lamp and
two 5-W daylight lamps (L2); a 11-W daylight lamp and four
5-W daylight lamps (L3); and a 11-W daylight lamp, four 5-W
daylight lamps, and a halogen lamp (L4). The lamps were set at
a height of 60 cm above the sheet of paper. The sheet was placed
on a table with a dark top, and the experiments were performed
in a dark room. To assess the accuracy of the measurements
in the daylight, we also measured the grains without using
artificial lighting in cloudy weather indoors and on a clear day
outdoors. Details of the experimental conditions are listed in
Table 1.

We used two-way ANOVA tests to estimate the influence
of device type and lighting conditions on grain number and
shape accuracy. We considered device type and lighting to be
independent variables and error estimates (MAE and MAPE) to
be dependent variables. The Statistica 6.0 software was used to
perform this test.

Wheat Varieties
We used the grains from the following five wheat varieties from
the cereal collection of the Chromosome engineering laboratory,
Institute of Cytology and Genetics SB RAS: Alen’kaya 1102 II-
12, 84/98w 99 II-13, Synthetic 6x x-12, Purple Chance 4480 II-03,
and Alcedo n-99. Plants were grown in a field near Novosibirsk in
2014. These varieties have grains with different shapes and sizes.
The variety Alcedo is oval in shape and has an average length
of ∼7 mm and width of ∼3.6 mm. The Synthetic variety has
an elongated grain shape and an average length of ∼8 mm and
width of∼2.3 mm. The Alen’kaya variety has smaller dimensions,
with an average length of ∼5 mm and an average width of
∼2.4 mm. The 84/98w and Purple Chance varieties are similar

TABLE 1 | Light conditions for measuring the accuracy of the wheat grain
morphometry.

Number Lighting facilities Luminous flux
(lux)

Light
temperature

L1 11-W daylight lamp 900 lm 4000K

L2 11-W daylight lamp,
2 × 5-W daylight lamps

1700 lm 4000K

L3 11-W daylight lamp,
4 × 5-W daylight lamps

2500 lm 4000K

L4 11-W daylight lamp,
4 × 5-W daylight lamps,

35-W halogen lamp

2690 lm 4000 and
2700K

L5 Daylight, cloudy day,
indoors

(1280 lux) –

L6 Daylight, sunny day,
outdoors

(656000 lux) –

Lux units were used to evaluate the light intensity of natural lighting conditions.
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in appearance and have an average length/width of 6.5/2.6 mm
and 7/2.9 mm, respectively.

RESULTS

The SeedCounter mobile application for Android devices is free
to download at the Android Play Store1). The SeedCounter
application requires a minimum of Android API version 15, and
Oracle/Sun JDK 6 or 7 is recommended. SeedCounter uses the
OpenCV library for image processing. SeedCounter is distributed
under the BSD (Berkley Software Distribution) license.

The grain number estimation accuracies for different
experiment series are shown in Table 2. The table shows that
the MAE [Eq. (1)] of the estimate of the number of grains on
the sheet is close to 1% and that the MAPE [Eq. (2)] is close to
2%. A more detailed analysis showed that the largest errors in
counting the number of grains occur if two or more grains on
the paper are in contact and that under poor lighting conditions,
the algorithm does not separate most of the grains. If the grains
on the sheet are all separated, the seed counting error vanishes.

The accuracy of length and width estimation for the grains
by different devices in different conditions is shown in Table 3.
The table demonstrates that the grain size estimation accuracy
was approximately 0.30 mm (average for all series: 0.31 mm)
that is approximately 8% of the linear dimensions of the
grain (average for all series: 8.03%). The correlation coefficients
between the control length and its estimate in all experiments
were not lower than 0.79. For the grain width, this parameter

1https://play.google.com/store/apps/details?id=org.wheatdb.seedcounter

TABLE 2 | Evaluation of the accuracy of wheat grain counting using the
SeedCounter mobile application.

Experiment ID MAEa (mm) MAPEa (%) r (Nj , Nj
′)a

Sam_L1 1.425 0.035 0.996

Sam_L2 1.375 0.036 0.994

Sam_L3 0.65 0.015 0.998

Sam_L4 0.975 0.024 0.997

Sam_L5 1.15 0.029 0.992

Sam_L6 0.55 0.017 0.998

Sony_L1 1 0.024 0.995

Sony_L2 0.8 0.019 0.995

Sony_L3 0.675 0.017 0.996

Sony_L4 0.775 0.020 0.997

Sony_L5 0.75 0.018 0.996

Sony_L6 0.775 0.018 0.996

DNS_L1 1.2 0.031 0.997

DNS_L2 0.5 0.012 0.997

DNS_L3 0.125 0.003 0.999

DNS_L4 0.725 0.017 0.998

DNS_L5 1.175 0.030 0.996

DNS_L6 0.775 0.020 0.997

aMean absolute error (MAE), mean absolute percentage error (MAPE), and Pearson
correlation coefficient r (Nj, Nj

′) between the actual number and estimated number
of seeds.

TABLE 3 | The accuracy of estimates of the length and width of wheat
grains by SeedCounter mobile application and SmartGrain.

Experiment ID MAEa

(mm)
MAPEa

(%)
rl

a rw
a

Sam_L1 0.284 7.453 0.936 0.816

Sam_L2 0.296 7.576 0.928 0.824

Sam_L3 0.283 7.339 0.932 0.822

Sam_L4 0.327 8.306 0.923 0.811

Sam_L5 0.398 9.081 0.797 0.770

Sam_L6 0.349 8.437 0.875 0.769

Sony_L1 0.313 8.277 0.933 0.765

Sony_L2 0.310 8.121 0.931 0.767

Sony_L3 0.298 7.787 0.937 0.777

Sony_L4 0.327 8.418 0.920 0.755

Sony_L5 0.301 7.727 0.913 0.749

Sony_L6 0.338 8.546 0.899 0.730

DNS_L1 0.295 7.852 0.943 0.774

DNS_L2 0.296 7.688 0.935 0.777

DNS_L3 0.287 7.730 0.950 0.779

DNS_L4 0.311 8.229 0.940 0.780

DNS_L5 0.351 8.798 0.890 0.672

DNS_L6 0.346 8.264 0.890 0.787

SmartGrain 0.305 6.973 0.948 0.886

aMean absolute error (MAE), mean absolute percentage error (MAPE) averaged
over length and width, and Pearson correlation coefficients for length (rl) and width
(rw) between actual and estimated values.

TABLE 4 | Significance of the influence of the mobile device type and
lighting on errors in estimating grain number and dimensions.

Error type Lighting conditions Device type

Grain counting, MAE 0.004 0.365

Grain counting, MAPE 0.003 0.306

Grain dimensions, MAE 0.036 0.771

Grain dimensions, MAPE 0.094 0.890

ANOVA p-values of two factors are represented. Bold values are significant
(p < 0.05)

was smaller but greater than 0.67. Both correlation coefficients
were significant at p < 0.01. Interestingly, errors for grain length
estimates for SeedCounter and SmartGrain are close to each
other; however, for grain width SmartGrain demonstrates better
performance.

Average values for different devices under the same conditions
are shown in Supplementary Table S2. The mobile devices
on average demonstrate the best performance in grain size
estimation at L3 lighting conditions (two daylight lamps,
luminous flux is 2500 lm). The worst performance was obtained
at L5 conditions (cloudy day, indoors).

The two-way ANOVA test showed that the lighting conditions
significantly influence the estimation of the grain number and
the grain length and width (ANOVA p-value < 0.05; Table 4).
Interestingly, the largest mean MAE [Eq. (1)[ for grain counting,
0.458, was obtained for the lighting condition with the lowest
luminous flux (L1, 11-W lamp only), whereas the other lighting
conditions had lower MAE values: 0.058 for L2, 0.1 for L3,
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0.058 for L4, and 0.275 for L5. It should be noted that the
seed counting error under conditions without artificial light is
smaller than that for the lowest luminous flux but larger than
that obtained under all other controlled light conditions. The
results shown in Table 4 demonstrate that device type does
not have a significant effect on the grain number/dimension
measurements.

Figure 3 demonstrates the scatterplot of the length and
width measurements for 250 seeds obtained by microscope
and a Samsung camera using daylight lamps (L3) and sunlight
(L6) lighting conditions. This figure demonstrates that with
good lighting conditions, the grain size estimates obtained
by the mobile device are in agreement with the microscope
measurements. However, in sunlight conditions, our software
tends to underestimate the grain dimensions for larger grains and
overestimate them for smaller grains. This effect is likely due to
a shadow effect that introduces systematic bias in the grain size
estimation when an image is taken under direct bright sunlight.

We estimated the time used for the analysis of a single image
by mobile devices and SmartGrain software at different image
resolutions. The results are shown in Supplementary Table S3.
The time for low resolution image processing (2592 × 1944
pixels) is approximately 30 s. For a higher resolution camera
(Samsung 3264× 2448), this value is close to 1 min. Interestingly,
this is comparable with the time of image processing by
SmartGrain (at similar resolutions, 3510× 2550).

Using the SeedCounter mobile application, we performed
wheat grain morphometry of five varieties. For each variety, 50

grains were analyzed, and their length and width were measured.
The results are shown in Figures 4A–C.

The diagrams in Figures 4A–C demonstrate the reliability
of discriminating grains from different wheat varieties based
on their length and width estimates. The figure shows that the
Alcedo cultivar has the thickest grains (average width–3.59 mm)
and that the Synthetic cultivar has the longest grains (7.97 mm).
The separation of varieties by seed size is clearly demonstrated
in Figure 4C, where different varieties occupy different plot
areas.

DISCUSSION

Image processing methods for seed morphometry and
classification have been implemented since the 1980s (Sapirstein
et al., 1987). Updates of these methods appear constantly,
including in recent years (Smykalova et al., 2013; Whan et al.,
2014; Miller et al., 2016; Sankaran et al., 2016). New methods
use various optical sensing techniques to estimate seed quality
and safety (Huang et al., 2015), describe complex seed shapes
using 2D images (Williams et al., 2013; Cervantes et al., 2016).
Breakthrough 3D imaging technology and robotics (Jahnke
et al., 2016; Roussel et al., 2016) or X-ray computed tomography
(Strange et al., 2015) implemented for evaluating seed shape in
fine detail. However, there is still a need for seed phenotyping
using simple and low cost tools (Whan et al., 2014). They
can be effectively implemented with high throughput. Despite

FIGURE 3 | Scatter plot of seed sizes measured by Samsung mobile device (Y-axis) relative to the sizes measured under a microscope (X-axis).
(A) Seed length at L3 conditions; regression parameters: intercept = 0.25 (Lower 95%: −0.07, Upper: 95%: 0.57), slope = 0.96 (Lower 95%: 0.91, Upper 95%:
1.01). (B) Seed length in L6 conditions; regression parameters: intercept = 1.26 (Lower 95%: 0.86, Upper 95%: 1.64), slope = 0.83 (Lower 95%: 0.77, Upper
95%: 0.88). (C) Seed width in L3 conditions; regression parameters: intercept = 0.54 (Lower 95%: 0.33, Upper 95%: 0.73), slope = 0.79 (Lower 95%: 0.73, Upper
95%: 0.87). (D) Seed width in L6 conditions; regression parameters: intercept = 0.90 (Lower 95%: 0.58, Upper 95%: 0.68), slope = 0.64 (Lower 95%: 0.58, Upper
95%: 0.68).
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FIGURE 4 | Distribution of grain width and length for five different wheat varieties. (A,B) The histograms of the length and width distribution, respectively;
(C) 2D-scatter plot of grains from different varieties in length (X-axis) and width (Y-axis).

simplicity, they are powerful enough to identify QTL related to
seed morphology and size (Gegas et al., 2010; Herridge et al.,
2011; Moore et al., 2013; Williams et al., 2013). Mobile devices
are valuable tools in this regard. They provide the researcher
everything needed for simple phenotyping, including a digital
camera, a powerful processor, and Internet access. They can
be applied far from the lab, yet provide reasonable precision
for phenotypic parameter estimates. Mobile devices are also

convenient for the novel type of plant phenotyping ‘by crowd’
(Rahman et al., 2015).

We suggest a program for grain morphometry using mobile
devices. The protocol of the analysis setup is simple and uses
a white paper sheet of standard size as a background to
convert pixels into the metric scale. To test the accuracy of the
program, we performed a series of image analysis experiments
using three types of mobile devices and six lighting conditions.
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In our work, the mean absolute errors of the length/width
estimates are approximately 7–10% and correlation coefficients
for length and width between estimated and actual values at
ambient lighting are close to 0.93 and 0.77, respectively. Similar
analysis performed in a recent work, Miller et al. (2016) reported
r2
= 0.996 for maize kernel length estimated from digital images

and their actual values (flatbed document scanner Epson V700,
1200 dpi image, 24-bit color resolution). Sankaran et al. (2016)
reported Pearson correlation coefficients between image-based
estimates of chickpea seed size and their real values ranging
from 0.86 to 0.93 (Canon 70D digital SLR camera, tripod setup,
15–85 mm zoom lens, image resolution set to 2700 × 1800
pixels). Whan et al. (2014) analyzed performance of wheat
seed length and width measurements by the following three
methods: GrainScan (developed by the authors), SmartGrain
(Tanabata et al., 2012), and SeedCount (Next Instruments,
2015). They used an Epson Perfection V330 (Seiko Epson
Corporation, Suwa, Japan) scanner to obtain 300 dpi color
images. Whan et al. (2014) demonstrated that the average
accuracy (Pearson correlation between true parameters and
image-based estimates) for GrainScan was very high (0.981–
0.996), while the average accuracy for SmartGrain was lower
(0.871–0.947), similarly to that of SeedCount at the ambient
light conditions (0.731–0.940; Supplementary Table S2). Note,
the accuracy for length estimates was higher than for width for
all three methods. Our results demonstrate that SeedCounter
accuracy and efficiency are comparable with those obtained using
desktop PC/scanner/camera devices. Note that we used cameras
with moderate resolution and unpretentious lighting conditions
for our experiments.

Interference from uncontrolled or uneven lighting is the
most basic challenge for smartphone optical sensing (McCracken
and Yoon, 2016). We found that the lighting of the paper has
significant influence on the accuracy of our method, unlike
the smartphone type (Table 4; Supplementary Table S2). We
used ANOVA with six different classes of lighting not related
directly to luminosity. We chose this approach because our data
demonstrated that the influence of luminosity itself on accuracy
is not straightforward: images taken at high luminosity under
direct sunlight demonstrate increased error in comparison with
medium luminosity images and ambient lighting. Under low light
conditions (11-W daylight lamp or without artificial lighting),
grain number estimation accuracy decreases. Lighting conditions
with halogen and daylight lamps (experimental conditions of
Sam_L4, Sony_L4, and DNS_L4) caused a small shimmering
effect on the images. This effect can complicate the paper
recognition process and lead to distorted results. The flicker
effect was also present under Sam_L3 and DNS_L3 conditions
but could be significantly suppressed using the “night shot”
technique. The location of light sources and their angle with
the paper surface can distort the measurements and degrade
sheet recognition conditions. A brighter, diffused light eliminates
distortions associated with the appearance of dark spots on
the borders of the sheet that can be incorrectly recognized as
grains, allows for more efficient separation of touching grains and
reduces the likelihood that the grain in the image will merge with
the background.

There are several approaches suggested to improve
image quality and analysis precision. Some of them require
auxiliary/add-on devices (enclosed lighting and imaging
attachments) to improve the sensitivity of the smartphone
camera (Barbosa et al., 2015). Other methods implement
normalization algorithms to reduce lighting inhomogeneity on
the image (McCracken et al., 2016). There is still no perfect
solution to this problem and further investigation is required to
reduce image processing errors from these sources (McCracken
and Yoon, 2016).

Mobile applications can significantly accelerate the process
of counting the number of grains of wheat in an ear. The time
required to calculate approximately 50 grains using a mobile
device is approximately 20–55 s, depending on the mobile device
and camera resolution. The time required for manually counting
the same number of grains may be a little less but mobile
devices allow processing a series of images in the background
and automatically saving and transmitting data to the server.
Increasing the number of grains to 100 increases the running
time of the algorithm by 5–10 s. The time required to evaluate
the lengths and widths of 50 grains under the microscope is
approximately 40–60 min. The mobile application performs this
analysis in approximately 1 min.

Thus, the mobile application “SeedCounter” allows for the
large-scale measurement of the phenotypic parameters of wheat
grains, such as length, width, area, and number of grains per ear,
both in “the field” and in the laboratory.
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