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This article describes public, free software that provides efficient exploratory analysis

of high-resolution spectral reflectance data. Spectral reflectance data can suffer

from problems such as poor signal to noise ratios in various wavebands or invalid

measurements due to changes in incoming solar radiation or operator fatigue leading

to poor orientation of sensors. Thus, exploratory data analysis is essential to identify

appropriate data for further analyses. This software overcomes the problem that analysis

tools such as Excel are cumbersome to use for the high number of wavelengths

and samples typically acquired in these studies. The software, Spectral Knowledge

(SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other

studies such as precision agriculture, crop protection, ecophysiology plant nutrition,

and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop

characteristics to spectral data and the software is loaded with 255 SRIs which can

be applied quickly to the data. This article describes the architecture and functions of

SK-UTALCA and the features of the data that led to the development of each of its

modules.

Keywords: phenotyping, phenomic, scan, wavelength, noise, outlier, spectral reflectance index (SRI), collinearity

INTRODUCTION

The responses of any living organism are ultimately controlled by genes (G), but the expression of
these are modulated in several ways, partly because of the action of other genes, and the complex
interaction between them, butmostly in response to the environment (E) where the plant grows and
develops (GxE interaction). Gene sequencing is becoming more routine, economical, and fast, but
for proper analysis and interpretation of the information an adequate phenotypic characterization
is essential, even though it poses one of the greatest difficulties (Lörz and Wenzel, 2005; Finkel,
2009; Lobos et al., 2014; Estrada et al., 2015).

Progress in science and technology have made it possible to study different processes involved
in multiple areas of knowledge. In agronomy and biological sciences, sensors, and instrumentation
have been developed to characterize the behavior of a particular organism, or a group of them,
under a specific environmental condition or situation.

Currently, equipment, techniques, and analyses are available that have proved helpful in
characterizing the phenotype (phenotyping), and in the case of remote sensing, quick and high
predictive power (Lobos and Hancock, 2015; Camargo and Lobos, 2016).
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Among the available remote sensing tools, spectrometers, or
spectroradiometers mainly exploit the principle of quantifying
the proportion of reflected radiation by an object relative to
the incident radiation (Borengasser et al., 2008). Reflectance
(graphically represented by the spectral signature) is related
to the absorption and transmission of each wavelength, thus
representing plant status under ambient or experimental
conditions (Garriga et al., 2014). For example, compared to a
senescing plant, a healthy one should absorbs more in the visible
(blue and red light) and reflect more in the near infrared range.

Nowadays plant reflectance can be measured from space by
satellites (with certain limitations on interpretation due to pixel
resolution) or from the troposphere by manned and unmanned
aerial vehicles (problems related to the number and resolution of
the spectrum bands; Araus and Cairns, 2014). Equipment used
on the ground covers a wider range of the spectrum, with a
better resolution. The most modern devices not only measure
into the near infrared region (700–1300 nm; NIR), but also from
the ultraviolet (∼200 nm) up to the short wavelength infrared
(∼2500 nm) (Cabrera-Bosquet et al., 2012). This high-resolution
technology allows examination of plants beyond the 1000 nm
region of the spectrum, with great potential for phenotype
prediction (Garbulsky et al., 2011; White et al., 2012; Araus and
Cairns, 2014; Lobos et al., 2014).

Several critical issues for making good reflectance
measurements in the field have been reported in the literature
(e.g., Curtiss and Goetz, 1994; Milton et al., 1995; Salisbury,
1998; Schaepman, 1998; Curtiss and Goetz, 2001). Independent
of the equipment used on the ground, a correct measurement of
the reflectance in the field is mandatory. Ideally, measurements
should be restricted to clear sky conditions, performing a
radiometric calibration every 10–15 min to limit variations in
reflectance induced by changes in the angle of the sun, and
taking in account basic but important considerations such as
maintaining the same orientation, angle, and distance to the
canopy on each assessed plot or ensuring dark colored clothing
for the operators. Although instrument settings vary among
brands and models, a number of steps should be followed to
optimized data capture. The equipment should be turned on
in advance to allow the device to equilibrate with the ambient
temperature, the integration time for a single scan or sample
needs to be defined (maximizing sensitivity, but avoiding
saturation), the number of scans per sample or samples per plot
and the convenience of averaging them before data processing
should be determined, and the exact sequence for checking darks
and standards recommended by the manufacturer needs to be
ascertained.

In general, due to its simplicity and ability to forecast
several phenotypic characteristics, reflectance is used to calculate
“Spectral Reflectance Indices” (SRIs) (Lobos and Hancock,
2015). SRIs are based on relationships between wavelengths
or spectrum bands, usually designed to be relatively immune
to changes in solar radiation between measurements, relating
them quantitatively to changes in plant phenotype (Mullan,
2012). Today there are hundreds of SRIs proposed to estimate
different traits (e.g., leaf area index, yield, gas exchange,
fluorescence, pigment content, plant water status, carbon isotopic

TABLE 1 | Nomenclature related to spectrometer data collection.

In this article In other articles or

manuals

Definition

Plot Land area where a single

genotype is growing; in other

studies it could be considered

as a replication.

Scan Data collection, spectrum

or spectra collection,

scanning

Action oriented to collect the

spectrum or spectra by one

scan or shoot (informal

terminology).

Samples Sample spectra, samples

of scan, scanned

samples, scanned data,

artifacts, features

Some spectrometers are able to

register several samples within

the same scan; number of

spectral signatures captured

per scan.

Integrations

per sample

Spectrum average or

averaging

Integration of spectra within the

same sample.

discrimination, etc.) but because of the lack of tools capable of
assessing several SRIs at the same time, most of the published
works focus on a small percentage of them (e.g., SR, NDVI, WI,
NDWI, PRI, SAVI, etc.).

In breeding programs, there is a need to regularly evaluate
hundreds or thousands of genotypes in a short time. Therefore,
due to the time and cost involved breeders have not been able to
perform a thorough phenotypic characterization of the material,
limiting their evaluations to the yield, its components and some
others traits that are relatively easy to assess (Kipp et al., 2014;
Lobos and Hancock, 2015; Camargo and Lobos, 2016). With
the emergence of phenomics, which is the acquisition of high-
dimensional phenotypic data (high-throughput phenotyping)
for characterization of the phenotype of organisms in a
multidimensional manner (Houle et al., 2010; Kipp et al., 2014),
measurements that used to take weeks or months can now
be performed in a few hours (White et al., 2012; Lobos and
Hancock, 2015). The implementation of phenomics in plant
breeding programs is relatively new, and is an area where more
development is likely to be needed (Lobos and Hancock, 2015).

For a correct interpretation of spectral reflectance data, it
is essential to have reliable and representative information,
especially when it comes from field measurements. The use of
reflectance data in breeding programs has several advantages but
probably the major problem is the amount of data originated
by the numbers of wavelengths and genotypes assessed. If the
reflectance data is analyzed in a conventional way (e.g., Excel
files), the detection of measurement errors, the study of the
spectral noise (originating from absorption by environmental
compounds such as water or CO2) or the relationship between
a specific wavelength and a response variable become difficult or
subjective. Nevertheless, as far as we are aware there is currently
no free software available that allows detailed exploratory analysis
of high-resolution spectral reflectance data. Therefore, the aim
of this article is to present an overview of the architecture
and functions of Spectral Knowledge (SK-UTALCA), software
that has been specially developed for exploratory analysis of
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high-resolution spectral reflectance data, with applications in
plant breeding research and also in many other fields.

Due to the broad nomenclature related to spectral
measurements, some definitions are given in order to facilitate
the understanding of this article and software (Table 1).

MAIN SK-UTALCA ARCHITECTURE AND
FUNCTIONALITIES

Spectral Knowledge (SK-UTALCA) is a software package
developed in Matlab R© and is available compiled for use in a
Windows 64-bit environment from a download link or as source

code in supplementary material. This program allows, in an
efficient and versatile manner, two types of actions: (i) cleaning
of the data matrix by studying the spectral noise, and detecting

within- and between- measurement errors; and (ii) application

of a preliminary analysis of wavelength collinearity, and the

detection of wavelengths or SRIs related to a response variable

(Table 2).

After X and Y are loaded, the user can perform any main

command, without a specific order. At the same time, each

analysis can be run considering the previous exploration (Run

from current data) or from the original data (loaded as X) (Run
from original data). On each section of the cleaning data matrix

TABLE 2 | Main SK-UTALCA functionalities according to the program menu.

Main objective Main commands Secondary commands Description

Input and output of information Import X and Y data Spectral data (X) Import spectral data: first column or row (depends on the equipment)

must include the assessed wavelengths.

Samples per plot Indicate samples per scan (definitions in Table 1).

Transpose data Software works only with wavelengths as columns; the user will be

able to transpose their data.

Response variable (Y) Import response variables data (on columns) where the three first

columns must be codes (free criteria).

Export data Average It is possible to export the average of the samples per scan or each

sample individually.

Empty data Data can be exported including or excluding cells deleted during the

cleaning of the data matrix.

Cleaning data matrix Noise analysis Wavelength segments Ten different segments to analyze in relation to the percentage

change among a determined neighbor size.

Noise elimination can be applied equally to all data (Group) or for each

sample (Individual). Additionally, negative values can be also deleted.

Scan analysis Maximum variation coefficient Criteria to select samples within a same scan where the variation

coefficient, at any wavelength, is lower than the established threshold

(Scans without problems) and those that exceeded it (Scans with

problems).

Samples to delete If there are inconsistencies in one or more samples within the same

scan, it is possible to select and delete them.

Outlier analysis Through a graphical analysis of the cloud of data points (response

variable vs. SRI), it is possible to detect those out of range, identify

the source of the problem and delete them in the case of clear

evidence of a mistake.

Preliminary analysis Collinearity analysis For a given response variable, through linear or artificial neural

network (ANN) analysis, it is possible to identify wavelengths without

collinearity.

Individual wavelength analysis Through different regression models and statistical parameters, it is

possible to identify wavelengths better associated with a given

response variable.

SRI analysis Full report Through different regression models and a coefficient of

determination threshold, it is possible to identify SRIs that are better

associated with a given response variable. The software will be

launched with a database of 255 SRIs (Supplementary Table 1).

Detailed index report For subsequent graphical representation it is possible to export, for

each genotype or measurement, individual values of SRIs and

response variables.
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or the preliminary analysis, the user will be able to export the
analyzed information (csv format).

Main Menu (Data Set)
In the main menu, users are required to load the spectral
reflectance data [Spectral data (x)]. The first step in the use of
SK-UTALCA software is to load the data set in Microsoft Excel
format (xlsx format). To read the spectral data it is necessary
to indicate the number of samples taken in each plot (Samples
per plot). Depending on the equipment used, reflectance data is
organized in columns or rows. In the software, the spectral bands
need to be located in columns and the spectral data in rows (it is
possible to use the “Transpose data” option to relocate the data
set as needed). The first wavelength measured must be in the
second column (the first column is for codification purposes and
depends only on the user).

The second file needed (xlsx format) contains the values for
the independent variables [Response variables (y)] for each plot.
In this case, the spreadsheet must consider three codification
columns and the first variable should be allocated to the fourth
column.

The software has no limitation on the number of spectral data
points (wavelengths or measurements) or response variables.

Noise Analysis
This first filter removes the spectral noise originated by the
natural presence of certain elements in the atmosphere, such
as water and carbon dioxide, which absorb specific wavelengths
(Salisbury, 1998; Curtiss and Goetz, 2001; Psomas et al.,
2005; Ma and Chen, 2006; Clevers et al., 2008). Researchers
who screen hundreds or thousands of genotypes under field
conditions usually consider at least three or four spectral
samples per plot, generating a matrix of data that makes it
difficult to objectively select the noise segment(s) for deletion.
Furthermore, spreadsheet graphical options are usually restricted
to a maximum number of data series per chart (e.g., ∼255 in
Excel for Windows or Mac), so there is no easy way to take
a decision based on this tool. For this reason, for breeding
purposes, conventional visual noise elimination is not a real
alternative, restricting the criteria to the assumption of arbitrary
limits, usually following thresholds from a third person or related
articles.

With this module, it will be possible to analyze the spectral
noise by considering up to ten independent segments. This will
allow the user to set up different criteria in each segment, being
more or less strict depending on the wavelengths analyzed, the
data collected or previous knowledge. To apply the filter on each
spectral signature, it is necessary to indicate the lower and upper
limit for each segment (Wavelength segments), the maximum
accepted percentage of variations (%) between two neighboring
wavelengths, and the number of neighbors (N size) where the
previous condition is found consecutively. The graphic window
will show red crosses where the first criterion is satisfied and black
ones where both have been met, this last condition determining
where the software will perform the cleaning.

However, an objective selection is not the only important
aspect of spectral noise. During the day there are environmental

changes (e.g., relative humidity) that not only affect the
magnitude of each problematic wavelength, but also the number
of wavelengths involved. For instance, measurements performed
under conditions of higher relative humidity (usually before
midday) produce wider noise segments beyond 1000 nm; if
the determination of the number of wavelengths to eliminate
considers measurements across the whole day, the noise edges
will be established by genotypes evaluated early in the day
(broader noise segments), risking the loss of important spectral
information from those assessed under lower relative humidity
(usually after midday) and therefore possessing narrower noise
segments.

Because of this, after the noise selection criteria (% and N
Size) are established, the user has an opportunity to filter by
considering all the measurements as one group (Group) or as
individual scans (Individual). When the group filter is selected
in a specific segment, the program analyzes each sample where
the selection criteria are met, identifying the minor and major
wavelengths that have problems in the spectral data file, and uses
these two wavelengths to eliminate the noise from each sample
uniformly. This is very similar to what is done visually, but with
an objective approach. For the individual option, each sample
will be filtered independently from the others, rescuing important
information for modeling, or the use of SRIs.

Scan Analysis
In this module, the user will be able to analyze, identify and
correct inconsistencies between spectral signatures from the
same scan or plot, a problem that is often unnoticed. In general,
for simplicity or to dilute any errors generated while collecting
the data, there is a tendency to average samples within the same
scan, which most of the time is done without any deeper analysis.
As mentioned before, this should not be a complication when
the data analysis considers a few measurements, but in breeding
programs this search would be time consuming.

There are several aspects influencing the homogeneity
between samples within the same scan, especially if the
measurements were performed under field conditions.
Unnoticed modification of the measurement angle during
plot screening is probably the main source of variability. In
practical terms it is difficult to maintain the exact angle of
measurement, even for a few seconds (hand steadiness of the
operator, distractions, or fatigue); each sample is derived from
several integrations, usually more than 10, so the chance of
making a mistake is not uncommon. When a plot is screened,
it can be performed by keeping the fiber aimed at a single point
(lower variability and representation) or across several plants
(higher representation but greater variability); when the second
option is taken, the chances of integrating other materials into
a single scan or sample (e.g., soil, weeds, or air) are increased,
and also enhanced by changes in measurement angles. Other
considerations such as the effect of the wind speed or turbulence
on the measured surface would be detected.

The user needs to set up the Maximum variation coefficient
accepted for the samples belonging to the same scan. The
software will find the scans where the limit is exceeded, at any
wavelength, and this will be reported in the Scans with problems
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section. The samples that need to be checked can be individually
analyzed on the graphical window, where it is possible to visualize
all the samples in a single graph, identifying (zooming in and out)
and deleting those spectral signatures with problems.

It is important to mention that the samples selected with
problems within a same scan, do not necessarily need to be
modified. This decision will depend on the magnitude of the
differences between samples and the number of wavelengths
involved. In cases where the user decides to intervene in a scan,
it is possible to select and delete one or more samples from the
Samples to delete section.

Outlier Analysis
This third filter is designed for rapid identification of problems
associated with inconsistencies within spectral data. When
outlier data is found, it will be necessary to evaluate the
permanence of these in the data matrix.

Because of the high number of genotypes and samples per
scan, it is difficult to identify data points that do not follow the
general trends. Field experience has proven that is common to
find small clouds of data whose main source of error comes

from the calibration process. For example, the sun’s movement
throughout the day requires calibrations to be performed every
10–15 min. Due to distractions or tiredness during long working
hours, the calibration can be forgotten, generating differences
in the sun’s incidence angle and therefore variations in the
reflectance readings. Another form of user error, although less
common and related to specific devices, may occur if the user
has left the mouse cursor on one of the calibration icons
(optimization, dark current, or white reference), performing an
unconscious and incomplete calibration with a random click and
thus generating undetectable reading errors.

In this module, it is possible to integrate a visual analysis of the
reflectance and the response variable data at the same time. The
user has four graphs to explore outlier information, evaluating
different SRIs, and traits. In this section, it is also possible to Edit
each graph, selecting data that need to be removed from the data
matrix.

For these actions, the software will average the samples per
scan to generate each SRI. This is important because the user
should check the Noise Analysis and Scan Analysis modules
first.

FIGURE 1 | Main screen divided horizontally into three sections: analysis, input data, and command history. Screen shows loaded databases (spectral and

response variable data files); the transpose data option is also available for the spectral matrix.
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FIGURE 2 | Example of noise analysis showing 400 scans (x 3 samples ea.) prior to (A) and after (B) the noise filter was applied. On both windows, red crosses

(top) show where the maximum percentage of variations was exceeded and black crosses (top) where both criteria (% and the number of neighbors) were detected.

Collinearity Analysis
Collinearity or multicollinearity is a problem in regression
analysis where the predictor variables “X” are themselves
highly correlated (Draper and Smith, 2003). With the use
of high-resolution spectral reflectance data, the collinearity
problem is inherent to the data collection method employed
because several wavelengths are highly correlated. If the
goal is to understand how several predictor variables impact
on a specific response variable “Y,” the collinearity is a
big issue. Therefore, depending on the modeler’s interest, it
may be necessary to implement a collinearity analysis before
construction of complex models (e.g., multilinear regression
model).

In this module, the user can identify wavelengths that
deliver the same predictive information for a given response
variable, keeping only those that best explain it. This analysis
can be performed (collinearity test setting) by linear regression,
indicating the threshold coefficient of determination (R
square cutoff ), or through Artificial Neural Networks (ANN),
considering a training process by Levenberg-Marquardt
(trainlm), and Mean Squared Error (MSE) as a performance
indicator. Depending on the data matrix and computer
performance, the non-linear approach (ANN) could take several
minutes or hours.

Individual Wavelength Analysis
For the construction of new SRIs and regression models, it
would be desirable to know the degree of dependency between
individual wavelengths and the response variable. In this module,
the researcher can study the behavior of each wavelength relative
to each variable under study, considering one, or more of the
following models:

(1) Polynomial 1: y = p1 · x+ p2
(2) Polynomial 2: y = p1 · x2 + p2 · x+ p3

(3) Weibull: y = p1 · p2 · x(p2−1) · e(−p1·xp2)

(4) Exponential: y = p1 · e(p2·x)

(5) Power: y = p1+ p2 · x(p3)

(6) Logarithmic: y = p1 · ln(x)+ p2

For this analysis, the user can select different statistics to sort
the results (adjusted and non-adjusted determination coefficient,
root mean squared error, sum of squares due to errors, and
degree of freedom). It is also necessary to set up a minimum
or maximum value for the selected statistics in order to export
just those results (Values above or below). The exported file
will show, for each wavelength, the statistics values for the
selected model(s) where those minimum or maximum values
were met.

This module and the following one (SRI analysis) work
with sample averages, forcing the user to perform a deep
preliminary analysis, thus avoiding any error in the data
matrix.

Spectral Reflectance Index (SRI) Analysis
The implementation of concatenate formulas in spreadsheets is
helpful for automating time-consuming procedures. However,
due to the number of scans, samples per scans, measured
wavelengths, evaluated response variables, and tested SRIs, the
physical size of the resulting spreadsheets (several MB) implies
the need for high performance computers.

By evaluating the same regression models reviewed with the
previous function, the user will be able to identify the SRIs
(initially 255: Jordan, 1969; Rouse et al., 1973; Rouse, 1974;
Tucker, 1979; Hardisky et al., 1983; Guyot and Baret, 1988;
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FIGURE 3 | Example of scan analysis. The software divided the scans or plots between those that did not surpass the maximum accepted variation coefficient

(Scans without problems) and those where it was exceeded (Scans with problems). Scan 399 was selected, and its first sample (red) was identified for deletion (Apply

filter).

Guyot et al., 1988; Huete, 1988; Baret et al., 1989; Clevers, 1989;
Curran, 1989; Hunt and Rock, 1989; Major et al., 1990; Barnes
et al., 1992, 2000; Chappelle et al., 1992; Gamon et al., 1992;
Peñuelas et al., 1993a,b, 1994, 1995, 1997; Vogelmann et al., 1993;
Carter, 1994; Gitelson and Merzlyak, 1994, 1997; McMurtrey
et al., 1994; Qi et al., 1994; Roujean and Breon, 1995; Smith et al.,
1995; Chen, 1996; Chen and Cihlar, 1996; Filella et al., 1996;
Fourty et al., 1996; Gao, 1996; Ma et al., 1996; Rondeaux et al.,
1996; Huete et al., 1997; van Deventer et al., 1997; Blackburn,
1998, 1999; Datt, 1998, 1999; Merton, 1998; Peñuelas and Filella,
1998; Gamon and Surfus, 1999; Gitelson et al., 1999, 2001,
2003, 2005, 2006; Merzlyak et al., 1999; Peñuelas and Inoue,
1999; Daughtry et al., 2000; Marshak et al., 2000; Thenkabail
et al., 2000; Broge and Leblanc, 2001; Raun et al., 2001; Zarco-
Tejada et al., 2001, 2003a,b, 2005; Broge and Mortensen, 2002;
Haboudane et al., 2002, 2004; Read et al., 2002; Serrano et al.,
2002; Sims and Gamon, 2002; Gupta et al., 2003; Hansen and
Schjoerring, 2003; Steddom et al., 2003; Viña, 2003; Dash and
Curran, 2004; Gandia et al., 2004; Le Maire et al., 2004, 2008;
Schlemmer et al., 2005; Zhao et al., 2005; Vincini et al., 2006;
Babar et al., 2006a,b; Mirik et al., 2006a,b; Inoue et al., 2007,

2008; Prasad et al., 2007; Rodríguez-Pérez et al., 2007; Zhu et al.,
2007; Rama Rao et al., 2008; White et al., 2008; Wu et al.,
2008a,b; Richter et al., 2009; Serbin et al., 2009; Stroppiana et al.,
2009; Yañez et al., 2009; Dzikiti et al., 2010; Herrmann et al.,
2010; Mistele and Schmidhalter, 2010; Yao et al., 2010, 2011;
Garrity et al., 2011; Hernández-Clemente et al., 2011; Main et al.,
2011; Pimstein et al., 2011; Tian et al., 2011, 2014; Winterhalter
et al., 2011; Wang et al., 2011a,b) having the higher adjusted
coefficients of determination (Adj. RSquare values above) in
relation to a response variable. Internally, the software will select
all combinations (regression model, SRI, and response variable)
where the adjusted coefficient of determination was reached. The
Export data option will generate a report that includes all the
statistics analyzed in the previous function for the best-evaluated
regression model and for each one (in the case that more than
two were tested).

For publication purposes this module also includes an
exportable Detailed index report, where it is possible to select
specific SRIs and response variables. The report will include the
SRI and variable values for each of the measurements, allowing
the user to create XY graphs.
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FIGURE 4 | Example of outlier analysis showing four scatterplot graphs (NDVI, SR, PRI and WI vs. Yield) (A). Using the Edit function, NDVI vs. Yield was

used to select scans with NDVI values below 0.31 (B) for deletion (C).

FIGURE 5 | Example of collinearity analysis for deletion of wavelengths delivering the same predictive information for Yield. The analysis, considering a

linear regression method (R square cutoff = 0.95), selected 131 wavelengths without collinearity.

OPERATIONAL EXAMPLES OF SK-UTALCA

Testing Data Sets
During the 2011/12 growing season, 386 genotypes of wheat

(Triticum spp. L.) from different breeding programs (INIA-Chile,

INIA-Uruguay and CIMMYT) were assessed under three water
regimens (fully irrigated, mild water deficit and severe water
deficit). This trial was established at Santa Rosa Experimental
Station (36◦ 32′ S, 71◦ 55′ W; 217 m.a.s.l.), Regional
Research Center INIA Quilamapu (Chillán, VIII Region, Chile),
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FIGURE 6 | Example of the individual wavelength analysis module. The relationships were searched by considering Yield and a coefficient of determination

higher than 0.3 (A). Results were plotted for visual analysis (B) and exported to a spreadsheet (C).

considering an alpha-lattice design (386 genotypes + 2 cvs.
replicated seven times to assess field variability) and two
replications.

Reflectance measurements were performed using a portable
spectroradiometer (FieldSpec R© 3 Jr, ASD Inc., Boulder, CO,
USA) (350–2500 nm), between 12:00 and 16:00 h, on clear
days (solar radiation higher than 800 Wm−2). Prior to the first
measurement and every 15 min, the equipment was calibrated
using a field reference panel (Spectralon, ASD Inc., Boulder, CO,
USA). The equipment was configured to read three samples per
scan. Each plot (genotype) was scanned once.

A detailed methodology can be found in Lobos et al.
(2014). For purposes of this article, only one environment (fully
irrigated), one phenological stage (grain filling) and one replicate
will be considered.

Data Analysis
In this section, we highlight some of the key results of the analysis
performed using the SK-UTALCA software.

Setting Up
Prior to analysis the user needs to: (i) load the spectral data file
(denoted as “x”); (ii) load the response variable(s) file (denoted as
“y”); and (iii) define the number of samples per scan (in this case
three). Wavelengths need to be placed in columns and samples in
rows; the transpose data function is available.

The file format for the spectra (Genotype, Wavelength1,
Wavelength2, Wavelength3, ... Wavelengthn) and the response
variables (Plot, Genotype, Replication, Variable1, Variable2,...
Variablen) are presented in Figure 1. If for any reason the user

realizes that there are missing plots (no spectral information)
before the spectral data is uploaded, keeping in mind the sample
number per scan, those rows can be left empty. If calibration
data is among the spectral data output from the spectrometer, it
should be removed prior to uploading the reflectance data (x).

Once the data has been loaded into the software and the
wavelengths are arranged into columns, it is possible to start the
analysis.

Noise Analysis
To apply this filter it is necessary to indicate the wavelength
segment for analysis, the cutting criteria (Group or Individual),
the maximum percentage of variations accepted (%), and the
number of neighbors (N size). The selection of each wavelength
segment and the criteria for each one (% and N Size) will
depend on the user experience and the environmental conditions
where the measurements were taken; for example, noise at 1800–
1950 nm and 2350–2500 nm is usually wider and stronger than at
1300–1400 nm, so the criteria should consider higher values of%
andN Size for the first two segments. In this operational example,
the filter was applied to the whole spectral range (350–2500 nm)
considering a group filter, with five wavelengths as N size and
a maximum accepted variation among them of 20%. Figure 2
shows the results prior to (A) and after (B) the filter was applied.
In this case, the filter was able to detect two main noise zones
from 1833 to 1935 nm and from 2422 to 2500 nm.

Scan Analysis
The Scan analysis module allows detection of abnormal
variations among samples within the same scan. In this
operational example, the Scan analysis was applied using the
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FIGURE 7 | Example of the SRI analysis module. Three regression models were selected to search for SRI and response variables with a minimum adjusted

coefficient of determination of 0.25 (A). The exported file shows the adjusted coefficient of determination for the best approximation (Best) and for each selected

regression model (B). When a detailed report is required (C), the SRI value for each scan is calculated automatically (D).

function Run from the current data, that is to say, considering
the results obtained using previous filter (without spectral noise).
TheMaximum variation coefficient was set at 0.5%. The software
was able to select 383 scans or plots without problems and
17 where the threshold was exceeded (5, 26, 36, 112–113, 119,
144, 181, 223, 233, 274, 348, 356–358, 395, and 399). In the
Figure 3, scan or plot 399 is graphed, and the first sample
(1195 on red) was selected for deletion. This result could be an
indicator of a measurement problem associated with the operator
(modification of the measurement angle) or external conditions
(e.g., wind speed) during the first sample integrations. In case of
all samples from a specific scan need to be deleted, the software
will maintain this scan as empty rows, avoiding problems in
further analyses.

Outlier Analysis
This module is a simple and exploratory analysis to identify
outlier scans, allowing the user to detect field measurement
problems (e.g., calibration). Four scatterplot graphs will show the
relationship between any SRI available on the software database

and the loaded response variables. If a problem is detected,
it is possible to use the Edit option to manually remove the
samples. In this operational example, the relationship between
NDVI and Yield was used to inspect the possible outlier samples.
Figure 4A shows how different SRIs (NDVI, SR, PRI, and WI)
can generate different data distributions, helping the user in cases
where problems are not so evident; on the top left graph (NDVI
vs. Yield) two clouds of data points can be identified, divided at
the NDVI value of 0.31.

Once the information from the smaller data cloud was
analyzed (NDVI < 0.31), it was evident that the data set
corresponded to 96 contiguous scans or plots (104–200),
suggesting that there were problems associated with the
measurement. When information from the spectrometer was
checked, it was concluded that the operator had skipped one
calibration. It is always important to check the pertinence
of negative SRI values because they are probably related to
measurement errors.

After identification of the origin of a particular problem, any
graph can be selected for editing. In this example (NDVI vs.
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Yield), the scan with the problem can be selected (Figure 4B) and
deleted (Figure 4C).

Collinearity Analysis
Using linear regression or ANN, the collinearity analysis
module identifies wavelengths that delivering the same predictive
information for a given response variable, keeping only those
that best explain it. In this operational example, collinearity
analysis was applied by considering the results obtained from
the scan analysis (Run from current data), with Yield being the
response variable in the linear regression (R square cutoff =

0.95). Results of this analysis found 131 wavelengths without
collinearity (Figure 5).

Individual Wavelength Analysis
In this module it is possible to assess the relationship of individual
wavelengths and a given response variable. Three regression
models were selected (Polynomial 1 and 2, and Exponential)
to search for wavelengths with determination coefficients above
0.3 in relation to Yield (Figure 6A). If the user selects Plot all
results, a graph will show the wavelengths below and above
the determination coefficient cutoff (Figure 6B). These results
can be exported to a spreadsheet; for each selected regression
model, only wavelengths where the chosen statistic surpassed the
cutoff will be shown (Figure 6C). In this operational example,
there were three groups of wavelengths with determination
coefficients above the threshold: 733–1139, 1409–1815, and
1936–2421 nm.

Spectral Reflectance Index (SRI) Analysis
As in the previous module, when different regression models
were considered, SRI analysis has the option to evaluate the
relationship between all loaded response variables and all
SRIs available in the software database. For this example,
three regression models were selected (Polynomial 1 and 2,
and Exponential) to search the SRIs and response variables
with an adjusted determination coefficient higher than 0.25
(Figure 7A). When Export data is selected, all relationships
with adjusted determination coefficients higher than 0.25 will
be reported (Figure 7B); the results, which are organized
according to the loaded variables (column A) and SRIs
(column B), show which regression model had the highest
determination coefficient (Best) for each SRI, as well as its
statistics [adjusted and non-adjusted determination coefficient,
root mean squared error (RMSE), sum of squares due to errors
(SSE) and degree of freedom (DFE)] (columns C–H). The
results for each evaluated regression model are also described
(Polynomial 1: columns I–M; Polynomial 2: columns N–R, and
so on). In this screen example, the adjusted R2 varied between
0.257 (Datt 850;710;680) and 0.406 (DLAI 1725;970), with
these SRIs having the highest and lowest RMSEs, respectively
(Figure 7B).

The selection of Open selection dialog (Detailed index report)
enables the user to select specific SRIs and response variables for
figure elaboration (Index report, Figure 7C). In this operational
example, three SRIs (AI, BI, and CI) and one response variable
(Yield) were selected. The SRI value for each scan or plot is given

(Figure 7D) so the user can generate XY scatter plots for each
tested SRI (X) and response variable (Y).

CONCLUSIONS

Spectral Knowledge (SK-UTALCA) is a software package
that allows an easy and fast exploratory analysis of high-
resolution spectral reflectance data, providing the user with
tools to detect measurement problems and the generation
of key information for later modeling. SK-UTALCA is
especially useful for plant breeding or any other research
area where the number of measurements (big data files)
involves long working hours that increase the risk of making
involuntarily mistakes. This freely-available software is the
result of several years of measurements and analysis of
spectral data oriented toward the prediction of traits in plant
breeding.
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