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Seed germination and early seedling establishment are critical stages during a plant’s
life cycle. These stages are precisely regulated by multiple internal factors, including
phytohormones and environmental cues such as light. As a family of small molecules
discovered in wildfire smoke, karrikins (KARs) play a key role in various biological
processes, including seed dormancy release, germination regulation, and seedling
establishment. KARs show a high similarity with strigolactone (SL) in both chemical
structure and signaling transduction pathways. Current evidence shows that KARs may
regulate seed germination by mediating the biosynthesis and/or signaling transduction
of abscisic acid (ABA), gibberellin (GA) and auxin [indoleacetic acid (IAA)]. Interestingly,
KARs regulate seed germination differently in different species. Furthermore, the
promotion effect on seedling establishment implies that KARs have a great potential
application in alleviating shade avoidance response, which attracts more and more
attention in plant molecular biology. In these processes, KARs may have complicated
interactions with phytohormones, especially with IAA. In this updated review, we
summarize the current understanding of the relationship between KARs and SL in
the chemical structure, signaling pathway and the regulation of plant growth and
development. Further, the crosstalk between KARs and phytohormones in regulating
seed germination and seedling development and that between KARs and IAA during
shade responses are discussed. Finally, future challenges and research directions for
the KAR research field are suggested.

Keywords: karrikins, ABA, GA, IAA, germination, photomorphogenesis

INTRODUCTION

Most angiosperm plants start a new stage of growth and development with seed germination.
Although seed dormancy prevents germination, it is a very important approach for plant survival,
especially under unfavorable conditions. Seeds can define whether the environmental conditions
are appropriate for germination (Finch-Savage and Leubner-Metzger, 2006; Shu et al., 2015; Oracz
and Stawska, 2016). For the dormant seeds, a series of environmental and endogenous signals co-
occur to break seed dormancy, and then induce germination. Seedling establishment is another key
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stage of plant life cycle, which follows closely after germination. It
is believed that well-developed seedlings result in well-developed
plants (Finch-Savage et al., 2010; Imran et al., 2013).

Phytohormones play a dominant role in regulating seed
germination and seedling establishment. Gibberellins (GA) can
break seed dormancy and induce germination (Yamauchi et al.,
2004), while abscisic acid (ABA) can promote seed dormancy and
delay germination (Ali-Rachedi et al., 2004). Auxin [indoleacetic
acid (IAA)] is also involved in regulating seed dormancy (Liu
et al., 2013). Furthermore, IAA has been demonstrated to be
an important regulator in the plant shade avoidance syndrome
that adversely affects seedling development and crop yield (Casal,
2013a; Gommers et al., 2013; Procko et al., 2014). In addition
to phytohormones, other chemical compounds have the ability
to regulate plant growth and development, such as nitrogen
oxide and reactive oxygen species (ROS), both of which have
been demonstrated to regulate seed dormancy and germination
(Bethke et al., 2006; Oracz et al., 2007, 2009; Oracz and Karpiński,
2016).

In 2004, chemists purified 3-methyl-2H-furo [2, 3-c] pyran-
2-one from the smoke of burning plant material (Flematti
et al., 2004). Subsequently, several analogs to 3-methyl-2H-
furo [2, 3-c] pyran-2-one were found and collectively named as
karrikins (Flematti et al., 2007; Dixon et al., 2009). Subsequent
studies revealed that KARs have significant biological activities
in promoting germination and seedling establishment of model
plant Arabidopsis (Waters and Smith, 2013; Flematti et al., 2015).
KARs may regulate seed germination and shade responses by
interacting with endogenous phytohormones signaling networks.
In this review article, the relationship between KARs and SL
is summarized, and then we discuss the mechanisms through
which KARs interact with different phytohormones, and the
crosstalk among KARs, ABA, GA, and auxin in the processes
of germination and early seedling establishment. Finally, the
challenges and research directions in the following study of KARs
research field are suggested.

THE RELATIONSHIP BETWEEN KARs
AND SL

So far, six different isoforms of KARs family are documented,
KAR1–KAR6; and all of which contain a five-membered
butenolide ring and a six-membered pyran ring (Dixon et al.,
2009; Flematti et al., 2009; Waters et al., 2014). The primary
difference among KARs family members is the number and
location of methyl group(s) (Flematti et al., 2009). Interestingly,
the butenolide moiety of KARs has high similarities with the
D-ring of SL, a compound which is synthesized and exuded
from roots, and also triggers the germination of parasitic weeds
(Yoneyama et al., 2007; Dor et al., 2010; Waters et al., 2012).

Due to the significant promotion effect of KARs on seed
germination of some species, the detailed mechanisms of KARs
signaling has always been one of the most written topics in
this field. KARRIKIN INSENSITIVE2 (KAI2) is the receptor
in the signaling pathway of KARs (Figure 1) (Waters et al.,
2013). When bound by KARs, KAI2 undergoes conformational

FIGURE 1 | The relationship between karrikins (KARs) and
strigolactone (SL). Proposed signal transduction of KARs and SL mediated
by KAI2 and D14, and MAX2. The conformations of KAI2 and D14 will change
once bound with KARs and SL, respectively. The conformational change
allows KAI2 to interact with MAX2 to form a SCF E3 ubiquitin ligase complex
which can degrade the repressor SMAX1/SMAX1-LIKE. Following, the
activated transcription factor can regulate the expression of KARs response
genes. SL binds to the receptor D14 and then MAX2 to form a SCF E3
ubiquitin ligase complex as well. Then the repressor D53 is degraded, helping
the SL signal to transduct successfully to SL response genes. High similarities
exist between the KARs and SL signaling pathways: KARs and SL are
analogs; KAI2 and D14 are homologs; MAX2 is a communal F-box protein;
SMAX1 and D53 are homologs (Nelson et al., 2010; Jiang et al., 2013; Waters
et al., 2013; Zhou F. et al., 2013; Bennett and Leyser, 2014; Smith and Li,
2014). The gray block schemes shows the common signaling pathway model
of KARs and SL which contains signals, receptors, E3 ubiquitin ligase,
repressors, transcription factors and response genes.

changes (Guo et al., 2013; Zhao et al., 2013). Subsequently, KARs
and KAI2 might form a SCF E3 ligase complex with MORE
AXILLARY GROWTH2 (MAX2) (Waters et al., 2012, 2013;
Kagiyama et al., 2013). The SCF complex can then promote the
degradation of SMAX1 which is a repressor in KARs signaling
pathway (Stanga et al., 2013). Further, other repressors of the
KARs signaling pathway have been documented and named
as SMAX1-LIKEs (Stanga et al., 2013). It is noted that the
various repressors involved in its signaling pathway lead to the
diversiform biological functions of KARs (Smith and Li, 2014).

As well as the similarities in chemical structures between KARs
and SL, many components of these two signaling pathways are
analogs or homologs (Figure 1) (Flematti et al., 2015; Morffy
et al., 2016). Firstly, both signaling pathways are composed of
receptors, E3 ligases and signal repressors; secondly, the receptor
of SL signal, AtD14, is a homolog of KAI2 which is the receptor
of KARs (Kagiyama et al., 2013; Waters et al., 2013); thirdly, the
repressor of SL signaling pathway, D53, is also a homolog of
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SMAX1, the repressor in KARs signaling transduction pathway
(Jiang et al., 2013; Zhou F. et al., 2013).

The similar chemical structures and signaling pathways of
KARs and SL suggest common biological functions. Extensive
studies reveal that both KARs and SL can promote seed
germination and inhibit hypocotyl elongation (Nelson et al.,
2010; Waters and Smith, 2013). However, the delicate distinctions
between KARs and SL can result in some differences in
other biological functions. For example, AtD14 cannot replace
KAI2 during the processes of seed germination and seedling
development; while KAI2 cannot take the place of AtD14 to
regulate branch formation (Waters et al., 2015). Furthermore,
GR24, a synthetic analog of SL, could not promote the expansion
of cotyledons, while KARs could (Nelson et al., 2010); and
GR24 could repress shoot branching, but KARs could not (Fukui
et al., 2011; Nelson et al., 2011; Boyer et al., 2012). These
striking differences in bioactivities of the two structurally similar
butenolide compounds imply two distinct response systems in
plants (Scaffidi et al., 2013), although the detailed components
and precise mechanisms still need further dissection.

The signaling pathway mode of KARs and SL is very important
and generally occurs in phytohormones signaling transduction,
such as GA, IAA, and salicylic acid (Schwechheimer, 2008; Xu
et al., 2010; Sun, 2011; Van der Does et al., 2013). If the signal
is weak or absent, the receptors remain dormant as well as the
E3 ubiquitin ligase, and subsequently the repressors repress the
transcription of response genes. However, in the presence of
signals, the activated E3 mediates the degradation of repressors
and release the expression of response genes to regulate plant
growth and development.

KARs REGULATE GERMINABILITY OF
SEEDS BY INTERACTING WITH
PHYTOHORMONES IN Arabidopsis

Seed dormancy and germination are not only important to plants
but also to human beings, since germination rate is one of the
main determinants that affects production in agriculture systems.
KARs induce seed germination under weak light conditions by
enhancing the response of seeds to light (Drewes et al., 1995;
Nelson et al., 2010), whereas the acceleration effect of KARs on
germination disappears in dark conditions (Nelson et al., 2010).
However, fresh Arabidopsis seeds are insensitive to KARs, but the
seeds become sensitive to KAR treatment after the after-ripening
treatment (Waters et al., 2014). Further, the acceleration effect of
KARs on seed germination also depends on Arabidopsis ecotype
and depth of seed dormancy (Nelson et al., 2009).

During the process of germination, subtle changes in
environmental conditions can be sensed by seeds and these
cues can further affect internal signals such as phytohormones
signaling networks. Numerous studies demonstrated that ABA
and GA antagonistically regulate seed germination (Daws et al.,
2007). ABA induced seed dormancy and inhibited germination,
while GA had converse effects on those processes (Figure 2)
(Xi et al., 2010). Consequently, the ratio of ABA/GA had a
decisive and critical effect on the process of seed germination

FIGURE 2 | Karrikins may regulate seed germination and hypocotyl
elongation by affecting endogenous phytohormones crosstalk.
A hypothesis about the interaction between KARs and endogenous
phytohormones: KARs can accelerate seed germination by enhancing GA
biosynthesis. At the same time, KARs may inhibit the signals of ABA and IAA.
In the following process of seedling establishment, KARs showed significant
promotion effect and the expression of IAA1 was down-regulated. It indicates
that KARs may promote seedling establishment by inhibiting the IAA signaling
pathway. In the gray block schemes, the components of the three
phytohormones signaling pathway are showed. They are all composed of
biosynthesis genes, phytohormones, receptors, E3 ligases, repressors,
transcription factors and response genes.

(Seo et al., 2006; Shu et al., 2013; Meng et al., 2016). In
conclusion, the dynamic balance between ABA and GA has
a unique role in regulating seed dormancy and germination
(Finkelstein et al., 2008). Recent studies showed that IAA can also
regulate seed dormancy and germination (Figure 2). Exogenous
IAA effectively inhibited the pre-harvested sprouting of wheat
spikelets (Ramaih et al., 2003). Furthermore, the process of
germination was strongly inhibited in the transgenic plants
iaaM-OX which possess higher levels of IAA in seeds (Cheng
et al., 2006). On the contrary, the mutation in IAA biosynthesis
genes YUCCAs led to lowering seed dormancy level (Liu et al.,
2013). All of this evidence indicates that IAA has an important
role in promoting seed dormancy and inhibiting germination.

Since ABA, GA and IAA are all involved in regulating
seed dormancy and germination, a hypothesis that there is
an interaction between KARs and those phytohormones needs
to be further investigated. A former study showed that ABA
removes the acceleration effect of KARs on germination and
KARs need the biosynthesis of GA to promote seed germination
(Nelson et al., 2009). In addition, KARs treatment promoted
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the expression of GA biosynthesis genes GA3ox1 and GA3ox2
(Nelson et al., 2010), but no transcription evidence is investigated
about that of ABA thus far.

Indoleacetic acid regulates seed dormancy and germination by
mediating the signal of ABA. AXR2 and AXR3 are transcriptional
repressors of IAA signaling pathway (Sabatini et al., 1999; Nagpal
et al., 2000). The seeds of axr2-1 and axr3-1, which have a weaker
endogenous IAA signal, are insensitive to ABA; but the blocking-
up of IAA signaling pathway has no effect on the endogenous
ABA content (Liu et al., 2013). On the contrary, aba2, the ABA
deficient mutant, did not affect seed sensitivity to IAA. These
results suggest synergistic effects between IAA and ABA in the
process of germination. Subsequent investigations showed that
the seeds of abi3-1 mutant germinate normally in the presence of
exogenous IAA and ABA (Liu et al., 2013). Furthermore, during
the process of seed imbibition, ABI3 transcription remained at
a higher level in iaaM-OX transgenic plants, compared to wild
type. On the contrary, the ABI3 mRNA content in arf10 arf16
seeds decreased gradually during imbibition (Liu et al., 2013). It
indicates that ABA can regulate seed germination and dormancy
in an IAA-dependent manner. Further, ABA can positively
regulate seed dormancy by inhibiting GA signaling and working
synergistically with IAA; GA and IAA may therefore regulate
seed dormancy antagonistically. But the precise mechanism
underlying the synergy effect between ABA and IAA, and
antagonism between GA and IAA remains elusive so far.

Importantly, KARs suppress the expression of IAA1 which
is IAA response genes (Yang et al., 2004; Nelson et al., 2011;
Gilkerson et al., 2015). Furthermore, as the analog of KARs, SL
could regulate shoot branching by triggering the degradation of
PIN1 which determines the polar transportation of IAA (Petrasek
et al., 2006; Shinohara et al., 2013). Accordingly, KARs may
accelerate seed germination by suppressing the signals of IAA.
Whether KAI2 and MAX2 are also involved in the interactions
between KARs and phytohormones during seed germination still
needs further investigation. Furthermore, both KARs and IAA
interact with ABA during germination, thus whether KARs affect
ABA signal by regulating IAA signaling pathway is still unknown.

THE EFFECT OF KARs ON CROP SEED
GERMINATION

Most investigations about the acceleration effect of KARs
on seed germination have been focused on the model plant
Arabidopsis (Nelson et al., 2010; Waters et al., 2013) and the
fire-following species (Keeley and Pizzorno, 1986; Daws et al.,
2007). Subsequent investigations revealed that many weed seeds,
even some horticultural crop seeds such as lettuce (Lactuca
saliva) and tomato (Lycopersicon esculentum) were responsive
to KARs (Drewes et al., 1995; Jain et al., 2006; Stevens et al.,
2007). Can KARs be applied to regulate seed germination of
crops? A recent study has demonstrated that KARs delayed
soybean seed germination by enhancing ABA biosynthesis and
impairing GA biogenesis (Meng et al., 2016). Surprisingly, KARs
only inhibited soybean seed germination under shade conditions,
rather than white light and dark conditions, which is completely

distinct from the effect of KARs in Arabidopsis. Quantification of
phytohormones showed that KARs enhanced ABA biosynthesis
while impairing that of GA, and subsequently resulted in the
decrease of GA4/ABA ratio. The following evidence including
transcription patterns of ABA and GA metabolic related genes
and inhibitors of ABA biosynthesis was consistent with the
phenotype and hormone quantification (Meng et al., 2016). In
conclusion, KARs delay soybean seed germination by regulating
the ratio of GA/ABA under shaded conditions. Apart from
soybean, the germination of other species such as Capsella bursa-
pastoris, Bromus sterilis, and Alopecurus myosuroide could also
be inhibited by KARs (Daws et al., 2007), but the detailed
mechanisms still need further dissection.

Why do KARs repress seed germination in some species, such
as soybean? It is noted that soybean originates in China, a non-
Mediterranean climate region. It was suggested that the difference
of environment may result in different response mechanisms in
the evolution history (Meng et al., 2016). Secondly, cultivated
soybean is artificially bred. Compared with the wild soybean,
some critical genes might encounter deficiency or mutation
which would also result in a distinct response mechanism to
KARs treatment (Meng et al., 2016).

Though KARs did not show any acceleration effect on seed
germination in soybean, KARs may still have applications in
agricultural production. For example, treating field soil with
KARs may cause “suicidal germination” of agricultural weeds so
that the weeds can be eliminated easily (Flematti et al., 2015). Pre-
harvest sprouting of soybean, especially under high temperature
and humidity conditions, has an extremely negative impact on
seed yield and nutritional quality (Quinhone and Ida, 2015; Shu
et al., 2015). Based on the inhibition effect of KARs on soybean
seed germination, spraying the KARs solution on mother plants
in natural field may decrease pre-harvest sprouting of soybean.
In future work, the effect of KARs on seed germination of other
crops such as wheat, rice and maize still needs further analysis.

SHADE: POTENTIAL APPLICATION OF
KARs

Seedling development is another critical phase in the plant life
cycle (Eastmond et al., 2015). In natural plant community or
agricultural system, vegetation canopy decreases the red/far red
light ratio and light intensity sensed by lower blades (Franklin,
2008; Casal, 2012). Shade affects almost all stages of growth
and development of plants, including seed germination, seedling
development and stem elongation (Valladares and Niinemets,
2008; Casal, 2013b). In most cases, the effects of shade are
undesirable, including excessive growth and lower resistance to
biotic and abiotic stresses (Kobata et al., 2000; Ballaré et al., 2012;
Wit et al., 2013). In the face of shade stress, plants have evolved
two completely distinct response mechanisms: shade tolerance
and shade avoidance (Gommers et al., 2013).

Current studies showed that KARs could enhance the
sensitivity of seedlings to light and promote seedling
establishment (Waters and Smith, 2013). The hypocotyl
was greener in KARs treatment and the chlorophyll content
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was higher; furthermore, the elongation of the hypocotyl
was inhibited by KARs; and these promotion effects were
independent of the plant genetic background (Nelson
et al., 2010). Since KARs are so helpful in the regulation of
photomorphogenesis by inducing sensitivity of seedlings to light,
it is hypothesized that KARs may be an efficient solution to
attenuate plant shade avoidance syndrome.

KARs MAY INTERACT WITH IAA TO
ELIMINATE SHADE RESPONSE

Phytohormones always play an efficient role in regulating the
shade response of plants. Numerous studies showed that IAA,
GA and brassinolide induce the elongation of hypocotyl by
promoting cell elongation (Lilley et al., 2012; Chen et al., 2013;
Bernardo-García et al., 2014; Oh et al., 2014). Further, both GA
and brassinolide regulate hypocotyl growth in an IAA-dependent
manner (Stamm and Kumar, 2010; Chapman et al., 2012; Zhou
X.-Y. et al., 2013). Consequently, IAA appears to be the most
dominant regulator in shade avoidance response regarding plant
hypocotyl elongation.

On one hand, IAA content in the hypocotyl significantly
increased under shade conditions; on the other hand, mutants
deficient in IAA biosynthesis were insensitive to shade stress
(Stone et al., 2008; Tao et al., 2008; Keuskamp et al., 2010; Cole
et al., 2011). A further study in Brassica rapa also showed that, the
excess IAA was biosynthesized in the cotyledons and transported
to the hypocotyl under shade conditions (Procko et al., 2014).
In conclusion, shade stress may regulate hypocotyl elongation
mainly by promoting the biosynthesis and transportation of IAA.
As KARs repressed the expression of IAA1 (Figure 2) (Nelson
et al., 2011), thus a hypothesis is proposed: the biosynthesis
and transport of IAA in the process of seedling establishment
may be inhibited by KARs. But whether KARs promote seedling
establishment by inhibiting the IAA signaling pathway still needs
more investigation.

As a critical factor in KARs signaling pathway, MAX2 may
have important roles in regulating germination and seedling
development. max2 mutants showed deep seed dormancy,
epinastic leaves and long hypocotyls under white light, red
light, far-red light, and blue light conditions (Nelson et al.,
2011; Waters et al., 2012; Stanga et al., 2013; Jia et al.,
2014). This suggests that MAX2 is a positive regulator of
photomorphogenesis (Shen et al., 2007). Consequently, the
relationship between MAX2 and the light signaling pathway
needs further investigation. As a negative regulator in light
signaling pathway, quadruple mutant of PIF (pifq) showed
enhanced germination and seedling establishment under both
dark and red light conditions (Shin et al., 2009). The seeds of
double mutant between pif1 and max2 showed an intermediate
germination rate phenotype. Further, the double mutants showed
the similar phenotypes of hypocotyl length to max2, which
indicated that MAX2 is epistatic to PIF (Shen et al., 2012).
But the specific relationship between PIF1 and MAX2 in the
process of seedling establishment is still unclear. Interestingly,
the de-etiolation phenotype of cop1 could be partially suppressed

by max2, while hypocotyl elongation in max2 could be
suppressed by cop1. This result suggests COP1 may be parallel
or epistatic to MAX2 (Shen et al., 2012). As a positive regulator
of photomorphogenesis, HY5 acts downstream of multiple
photoreceptors. But the hypocotyl length of hy5max2 was
significantly longer than both hy5 and max2 which suggests
that MAX2 regulates KARs and SL responses independently
of HY5 (Waters and Smith, 2013). The evidence mentioned
above indicated that MAX2 has an interaction with light
signaling pathway, but the specific mechanisms still need more
investigation.

In addition to the interaction of MAX2 with light signaling
pathway, the relationship between MAX2 and phytohormones
has also been investigated. IAA up-regulated the expression of
SL biosynthesis genes, and the latter repressed the transportation
of IAA in a MAX2-dependent manner (Foo et al., 2005;
Hayward et al., 2009). This evidence suggests that MAX2 may
be involved in regulating IAA transportation. Subsequent studies
also showed that MAX2 can suppress the IAA transport by
inhibiting the transcription of PIN genes which regulate IAA
transportation (Bennett et al., 2006; Nodzynski et al., 2016).
Consequently, increased IAA transportation in max2 contributes
to the long hypocotyl phenotype (Shen et al., 2012). Furthermore,
MAX2 also regulated the biosynthesis of ABA and GA to
affect seed germination positively (Shen et al., 2012). Based
on the evidence described above, MAX2 is involved in the
crosstalk of phytohormones to regulate seed germination and
photomorphogenesis.

KARRIKIN INSENSITIVE2 was initially named as
HYPOSENSITIVE TO LIGHT (HTL) (Sun and Ni, 2011).
Like max2, kai2 mutants also showed a long hypocotyl
phenotype (Waters et al., 2012). Interestingly, the double
mutant hy5kai2 showed longer hypocotyl compared to hy5 and
kai2, which is similar to that of hy5max2 (Waters and Smith,
2013). It indicates that KAI2 regulates seedling establishment
independently of HY5. But the relationship of KAI2 with other
photomorphogenesis regulating factors such as PIFs and COP1
still needs more research.

CONCLUSION AND FUTURE
PERSPECTIVES

The studies discussed above show that KARs can regulate
seed germination and seedling development by regulating the
crosstalk among endogenous phytohormones such as ABA,
GA, and IAA. For intensively understanding the relationship
among KARs and these phytohormones, there are still remaining
important questions to be dissected.

Although ABA and IAA can induce seed dormancy
synergistically while GA and KARs can accelerate germination,
there is still no direct evidence that shows that KARs can affect
the content or signaling pathway of IAA during the process of
seed germination. The specific mechanism underlying KARs
regulating endogenous phytohormones during seed germination
is still unclear, especially for IAA. Furthermore, KARs could
promote seedling development of Arabidopsis and inhibit the
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expression of IAA1 (Nelson et al., 2011). Thus, whether this
promotion effect is due to the suppression effect of KARs on
the IAA signaling pathway still needs further investigation. This
hypothesis will be valuable for modern agriculture systems which
suffers yield loss from shade avoidance response.

In addition to phytohormones, ROS is also involved in
regulating seed dormancy and germination. The ability to
interact with lipids, DNA and protein molecules in the cell
makes ROS an important regulator during seed germination
(Oracz et al., 2007; Oracz and Karpiński, 2016). Since ROS
continuously exists in the processes of seed development stages
and during storage (Pukacka and Ratajczak, 2005; Bailly et al.,
2008; Leymarie et al., 2012), the phytohormones such as ABA and
GA have been demonstrated to interact with ROS in regulating
seed germination (Oracz and Karpiński, 2016; Shu et al., 2016).
Therefore, whether KARs can regulate seed germination by
interacting with ROS mediated by ABA or GA is an interesting
hypothesis.

In terms of regulating seed germination, the distinct
species originated from different areas might lead to different
responsiveness to KARs. However, whether KARs have the
similar or distinct effects on wild cultivars and cultivated cultivars
within one species still needs more investigation, especially in
crops species including wheat, maize and rice.

Finally, it is noted that kai2 shows a similar hypocotyl
elongation phenotype to max2, which has increased IAA
transportation (Waters et al., 2012). Whether there is an
increase of IAA transportation in kai2 is still unknown.
Consequently, whether KAI2 is also involved in the IAA signaling
pathway just like MAX2 needs more investigation. Further,
as positive photomorphogenesis regulators, both KAI2 and

MAX2 show an interaction with the light signaling pathway
which is incompletely understood. Furthermore, recent studies
showed that KAI2 may perceive non-KARs signals (Conn and
Nelson, 2015; Waters et al., 2015).Therefore, the impaired
photomorphogenesis phenotypes of kai2 and max2 suggests a
possible signaling pathway which is independent of KARs, but
KARs can enhance the signaling outputs by interacting with the
signaling networks of different phytohormones.
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