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microRNAs (miRNAs) are tiny ribo-regulatory molecules involved in various essential

pathways for persistence of cellular life, such as development, environmental adaptation,

and stress response. In recent years, miRNAs have become a major focus in molecular

biology because of their functional and diagnostic importance. This interest in miRNA

research has resulted in the development of many specific software and pipelines

for the identification of miRNAs and their specific targets, which is the key for the

elucidation of miRNA-modulated gene expression. While the well-recognized importance

of miRNAs in clinical research pushed the emergence of many useful computational

identification approaches in animals, available software and pipelines are fewer for plants.

Additionally, existing approaches suffers from mis-identification and annotation of plant

miRNAs since the miRNA mining process for plants is highly prone to false-positives,

particularly in cereals which have a highly repetitive genome. Our group developed

a homology-based in silico miRNA identification approach for plants, which utilizes

two Perl scripts “SUmirFind” and “SUmirFold” and since then, this method helped

identify many miRNAs particularly from crop species such as Triticum or Aegliops.

Herein, we describe a comprehensive updated guideline by the implementation of two

new scripts, “SUmirPredictor” and “SUmirLocator,” and refinements to our previous

method in order to identify genuine miRNAs with increased sensitivity in consideration of

miRNA identification problems in plants. Recent updates enable our method to provide

more reliable and precise results in an automated fashion in addition to solutions for

elimination of most false-positive predictions, miRNA naming andmiRNAmis-annotation.

It also provides a comprehensive view to genome/transcriptome-wide location of miRNA

precursors as well as their association with transposable elements. The “SUmirPredictor”

and “SUmirLocator” scripts are freely available together with a reference high-confidence

plant miRNA list.

Keywords: miRNA, miRNA annotation, TE-miR, SUmirPredictor, SUmirLocator

INTRODUCTION

microRNAs (miRNAs) are small non-coding molecules which regulate gene expression at the
post-transcriptional level (Jones-Rhoades and Bartel, 2004; Budak and Akpinar, 2015; Budak
et al., 2015b; Alptekin and Budak, 2016; Alptekin et al., 2016). By their regulatory role in a
wide range of biological activities including growth, development and stress responses, they stand
as irrevocable keystones of cellular life (Fujii et al., 2005; Liu et al., 2008; Kantar et al., 2010;
Alptekin et al., 2016). Since the first documentation of miRNAs from Caenorhabditis elegans,
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many different methods have been developed for miRNA
identification and elucidation of their functional roles both in
animals and plants (Alptekin et al., 2016). In earlier studies,
many miRNAs and their target genes have been identified by
several experimental approaches including cloning (Sunkar et al.,
2005) splinted-ligation mediation (Chamnongpol et al., 2010)
and genetic screening (Aukerman, 2003). Despite the strength
of such experimental methods in the detection of genuine
miRNAs, thesemethods are considerably time-consuming, labor-
intensive and costly; thus, they are not suitable for high-
throughput and comprehensive studies (Wang et al., 2005;
Kleftogiannis et al., 2013). Recent technological improvements
paved the way for next-generation sequencing-based approaches,
such as small RNA (small RNA-Seq) sequencing which can
be used for high-throughput miRNA identification (Howell
et al., 2007). Additionally, advances in technology have led
to substantial reductions in sequencing costs and many whole
genome sequences are currently available for the discovery
of miRNA genes (Egan et al., 2012; Goodwin et al., 2016).
Extensive utilization of high-throughput data generated by the
next-generation sequencing (NGS) platforms, in turn, promoted
the advances in computational approaches for miRNA research
(Sunkar et al., 2008). Recently, computational methods applied
on NGS data stands as the most powerful strategy for large-
scale detection of genuine and novel miRNAs together with their
sequential isoforms, isomiRs (Bartel, 2004; Wang et al., 2005;
Budak et al., 2014; Budak and Kantar, 2015).

There are several tools for in silico miRNA identification
such as miRanalyzer, miR-PREFeR, miRTRAP, miRLocator, and
MIReNA (Hendrix et al., 2010; Mathelier and Carbone, 2010;
Hackenberg et al., 2011; Lei and Sun, 2014; Cui et al., 2015).
Majority of these methods rely on the sequence information of
previously validated miRNA and non-miRNA sequences such
as genes (Friedländer et al., 2008; An et al., 2013), while others
perform de novo prediction (Yousef et al., 2006; Liu et al., 2015).
Considering the utilization of such information, it is possible
to classify computational miRNA identification methods under
two broad groups as comparative and non-comparative where
they both stand with their own advantages and limitations
(Kleftogiannis et al., 2013). Comparative methods are based on
the conservative nature of the miRNA sequences at inter/intra
species level and these methods search for the exact or near-exact
matches to previously known miRNAs in a given sequencing
data. Despite the high-throughput and relative ease of these
methods in the detection of evolutionarily conserved miRNAs
across different species, they are inadequate for discovery of
novel miRNAs which do not share sequence homology with
known miRNAs (Mendes et al., 2009; Kleftogiannis et al.,
2013). This limitation of comparative methods gave rise to
development of non-comparative methods which are based
on machine learning (ML) algorithms (Yousef et al., 2009;
Kleftogiannis et al., 2013). ML approaches classify miRNA stem-
loops with respect to their structural and thermo-dynamical
properties along with their sequential variation. These algorithms
utilize some specific rules for miRNA detection, generated while
training the program of the program by different datasets such
as high-confidence miRNA and gene sequence sets (Williams

et al., 2012; Saçar and Allmer, 2014). ML approaches have
revealed the presence of many non-homologous miRNAs and
were utilized for the detection of disease associated miRNAs in
humans (Chen and Yan, 2014; Chen et al., 2015, 2016). However,
the accuracy of ML based predictions are strongly affected by
the positive and negative datasets utilized in the training process
(Mendes et al., 2009); consequently, experimental methods
such as northern blotting or reverse transcription PCR are
generally required are generally required for validation of
genuine miRNAs (Budak and Akpinar, 2015). Comparative
methodologies, providing homology evidence, also benefit from
experimental validation.

Many in silico miRNA identification methods have primarily
been developed in and optimized for animals, in particular
humans, since miRNAs are medically important considering
the discovery of future diagnosis and treatment approaches
(Esteller, 2011). Structural and functional properties of miRNAs
between animals and plants are significantly different; thus,
utilization of the same parameters for miRNA identification
and target annotation is not an accurate approach (Mendes
et al., 2009; Axtell et al., 2011). In plants, the level of
conservation of miRNA precursors (pre-miRNAs) is relatively
low, in contrast to animals where pre-miRNAs and their
thermodynamic stabilities are more conserved. In addition,
plant miRNA stem-loops vary remarkably in length (Ni et al.,
2010). Consequently, the identification of plant miRNAs put
more emphasis on the detection of appropriate miRNA:miRNA∗
duplexes on the miRNA precursor (Mendes et al., 2009). The
differences in genome structure and organization, even within
the plant, also affect miRNA identification process. Many of
the economically important plant species, particularly cereals,
have a high proportion of repetitive sequences in their genomes
(Brenchley et al., 2012; Mehrotra and Goyal, 2014) which might
cause several problems inmiRNA identification. Also, polyploidy
observed in certain plant genomes, such as wheat and barley
further exacerbate the accuracy of miRNA quantification and
discrimination of homologous copies of miRNAs both in in silico
and experimental analyses (Mendes et al., 2009; Kleftogiannis
et al., 2013). Considering all the above-mentioned issues,
specialized criteria for miRNA identification and annotation
are required for both animals and plants, and the utilization
of separate tools optimized for each group is highly suggested
(Meyers et al., 2008). Computational approaches, in particular,
benefitting from the homology-based support, have achieved
large-scale and efficient detection of plant miRNAs (Kantar et al.,
2010; Kurtoglu et al., 2014; Wu et al., 2014; Akpinar et al., 2015;
Ebrahimi Khaksefidi et al., 2015; Akpinar and Budak, 2016).
In such studies, the selection of reference miRNA set, used in
these homology-based approaches, has a great impact on the
accuracy of miRNA identification. There are several miRNA
databases available for selection of the reference miRNAs and
miRBase is the most comprehensive and updated one among
these (Zhang et al., 2010; Kozomara and Griffiths-Jones, 2011;
Szcześniak and Makałowska, 2014; Budak et al., 2015a). In the
current release of miRBase (Release 21), there are more than 2000
miRNA families belonging to 72 different plant species. Only 176
of these miRNAs, however, belonging to 17 species are annotated
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as “high-confidence” (Kozomara and Griffiths-Jones, 2014). A
Majority of the plant miRNAs in miRBase have been identified by
homology-based in silico methods and mostly lack experimental
evidence. Utilization of computationally identified miRNAs,
lacking experimental validation or other types of further support,
in in silico miRNA identification may lead to an overpopulation
of false-positives in the process of miRNA identification. Thus,
utilization of experimentally supported miRNAs may provide
more reliable in silicomiRNA identification results. Additionally,
redundancies in miRNA naming and mis-annotations in mature
miRNAs in the current release of miRBase can give rise to
further redundancies and contradictions in the downstream
miRNA analysis processes such as determination of genomic
distribution and quantification of identified putative miRNAs
(Van Peer et al., 2014; Budak et al., 2015a). Hence, the annotation
of genuine miRNAs from the pool of candidates requires closer
inspection. A homology-based in silico methodology for plant
miRNA identification was developed in 2012 (“SUmirFind”
and “SUmirFold,” Lucas and Budak 2012). Herein, we report
further refinements and improvements to this methodology,
enabling increased sensitivity and sensibility, in response to
the complications associated with the aforementioned plant
genome attributes. Also, we present a high-confidence miRNA
list, selected from the entries deposited on miRBase (release
21) that should aid in computational identification of plant
miRNAs with reduced number of false-positive predictions
(Kozomara and Griffiths-Jones, 2014). The current pipeline
was tested on both genomic and transcriptomic sample
data from Brachypodium distachyon and Triticum aestivum,
revealing high confidence miRNAs belonging to more than 20
miRNA families. Our results provided valuable insight to the
miRNAome of these two plants together with their specific
targets.

MATERIALS AND METHODS

Workflow
Input Data Set and Software Dependencies
The methodology for miRNA identification from
genomic/transcriptomic and small RNA-Seq data is summarized
in Figure 1. Our miRNA identification pipeline was originally
designed for utilization of high-throughput genomic and
transcriptomic sequences in FASTA format as input and any
list of reference mature miRNAs as query for homology-based
exploration of putative miRNA sequences. The pipeline can also
be used for small RNA-Seq data with additional modifications
(See section “Adaptation of pipeline for small RNA-Sequencing
data”). For relatively short raw input DNA/RNA sequences from
genomic/transcriptomic data, sequences must be assembled
into contigs prior to analysis since the sequences which are
longer than 200 nucleotides (nt.) are more suitable for an
accurate analysis or miRNA precursors. Additionally, the
chosen reference miRNA set is crucial for accurate mining
of miRNAs and the use of a list of “high-confidence” or
“experimentally-validated” miRNAs is strongly encouraged.

Pre-installation of a few software is required in order
to run our miRNA identification pipeline. The Blast++

standalone tool kit (Camacho et al., 2009) and UNAFold
software (Markham and Zuker, 2008) together with a Perl
programming environment is required for the minimal use of
the pipeline. For the complete pipeline Blast2GO (Conesa and
Götz, 2008), RepeatMasker (Tarailo-Graovac and Chen, 2009),
and GMAP (Wu and Watanabe, 2005) are recommended for
functional annotation, repeat masking and sequence alignments.
These optional programs can be replaced by similar software
depending on user’s choices; however, in this case, optimization
of alternative programs may be required. Additionally, NGS
assembly software may be required if the input data is
composed of relatively short reads. The choice of the NGS
assembly software will depend on the sequencing platform
from which the NGS data was obtained and to the user’s
preferences.

Homology-Based miRNA Identification with

“SUmirFind,” “SUmirFold,” and “SUmirPredictor”
This miRNA identification pipeline basically utilizes two
sequential and easy-to-use Perl scripts, “SUmirFind” and
“SUmirFold” which were originally published in 2012 (Lucas
and Budak, 2012) and successfully employed in the identification
of several miRNAs, particularly from cereal species (Kurtoglu
et al., 2013, 2014; Akpinar et al., 2015; Alptekin and Budak,
2016). Here, a new Perl script, “SUmirPredictor” (Supplementary
Document 1), is added to our pipeline which automates
the final evaluation of candidate sequences and generation
of final miRNA list. This script also provides a unique
name for each putative miRNA based its location on the
hairpin-shaped miRNA precursor and its homologous reference
miRNA. The workflows of these three scripts are detailed
below.

At the first step of our miRNA identification pipeline,
“SUmirFind” script searches for potential miRNA candidates
within given input sequences, by aligning the reference miRNA
list, comprised of known mature miRNA sequences, with two
or less mismatches, using the BLAST algorithm (Camacho
et al., 2009). Following the identification of miRNA candidates,
“SUmirFold” script submits a ∼700 nucleotide long fragment
flanking the putative mature miRNA sequence to UNAFold
to generate and evaluate the potential secondary structures of
miRNA precursors (Markham and Zuker, 2008). “SUmirFold”
picks the secondary structure with the lowest Minimum Free
Folding Energy (MFE) and discards potential miRNA candidates
if the respective fold-back structure of miRNA precursor,
also called “hairpin,” fails to fulfill criteria for being genuine
miRNA precursor (explained in Lucas et al., 2012). Additionally,
“SUmirFold” marks the candidate sequences as “suspects” and
list them as a separate output when putative miRNA-miRNA∗
duplexes do not contain any mismatches, since such sequences
may correspond to inverted repeats or siRNA sequences (Lucas
and Budak, 2012). If a fold-back structure carrying a potential
mature miRNA satisfies all the criteria, “SUmirFold” excises the
sequence from 20 nucleotides away of the mature miRNA start
site and refolds in order to form the hairpin-shaped precursor of
miRNA, also referred as pre-miRNA. The results of “SUmirFold”
process are written into text files contain the information about
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FIGURE 1 | An overview about miRNA identification methodology. The pipeline accepts sequences from genomic and transcriptomic data in “fasta” format. It

can also work with small RNA sequencing data with some modifications. “SUmirFind” script searches for detection of any putative miRNAs by alignment of sequences

to known plant miRNAs with 2 or fever mismatches. Candidate sequences are then searched for presence of pre-miRNA-like secondary structures by “SUmirFold”

while the candidates are further eliminated by “SUmirPredictor” based on miRNA precursor characteristics. Potential miRNA sequences are also inspected for

detection of any false-positive predictions with the alignment of candidates to other known small RNA sequences and organellar genomes. The obtained final list of

mature miRNAs and their precursors are inspected with a few more analysis for characterization and annotation of miRNAs. Detected putative pre-miRNA structures

are further evaluated for the representation and genomic/transcriptomic distribution analysis with the help of “SUmirLocator” script. Target identification and

enrichment analysis of miRNA candidates are conducted based on “psRNAtarget” and Blast2GO software. Candidate miRNAs are also analyzed for the in silico

expression evidence at both pre-miRNA and mature miRNA level. Additionally, miRNA precursors are searched for understanding their association with transposable

elements (TE) and based on their relation level; they are further characterized as TE-miRs or siRNA candidates.

putative mature miRNAs and their precursors along with post-
script format by UNAFold enabling the visualization of hairpin
structures of precursors.

“SUmirFind” and “SUmirFold” scripts basically provide
evidence for the presence of an appropriate secondary
structure, a “putative miRNA precursor or pre-miRNA,”
which contains a candidate mature miRNA sequence within.
Finally, “SUmirPredictor” evaluates qualified potential precursor
sequences with respect to the following pre-defined pre-miRNA
characteristics based on previous observations on genuine
miRNA features (Meyers et al., 2008; Kurihara and Watanabe,
2010).

(1) Potential precursors, or hairpins, cannot have multi-loop
structures above the mature miRNA location.

(2) Mature miRNA and miRNA∗ sequences cannot extend into
the head section of the hairpin.

(3) Mismatches at the DICER-LIKE enzyme cut regions of
mature miRNA and miRNA∗ sequences are not allowed.

“SUmirPredictor” directly processes the output of “SUmirFold”.
It must be noted that the “suspect” miRNA candidates which are
marked and separated by “SUmirFold” should be independently
processed by “SUmirPredictor” since the pool of these candidates
have a higher potential for false-positives such as confusion
with siRNAs (Lucas and Budak, 2012). “SUmirPredictor” outputs
two separate files: (1) Output file of the “SUmirFold” scripts
with remarks on each potential precursor: “OK” for qualifiers;
“Multiloop,” “Head,” “Dicer-cut” for non-qualifiers, indicating
the criterion failed to be fulfilled (Figure 2), (2) Qualifiers list,
including candidate miRNA name—mature miRNA/miRNA∗
and pre-miRNA sequences—homolog reference miRNA name.
It should be noted that the pre-miRNA structures referred as
“Multiloop,” which have branched loops at their terminal end,
are particularly discarded from the pool of genuine miRNAs
by “SUmirPredictor” since the stability of such structures is
problematic at the pre-miRNA level despite appearing as genuine
candidates at the pri-miRNA level (Zhu et al., 2013). The second
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FIGURE 2 | Different hairpins obtained as “SUmirFold” outputs and their filtration process with “SUmirPredictor”. (1) Mature miRNA starts at 21th base

and ends at 41th base where the miRNA* starts at 86th base and ends at 106th base [indicated by black (mature miRNA) and red ( miRNA* ) sticks]. There is no

mismatch in the DICER-LIKE enzyme cutting region and there is a proper loop structure. Such structures are remarked as “OK” by “SUmirPredictor” since it

represents genuine miRNA characteristics. (2) Mature miRNA start site aligns between 44 and 64th bases where the miRNA* detected in between 21 and 40th bases.

Since the two nucleotides of miRNA* aligns in the head section of hairpin structure, DICER-LIKE enzyme may not process it properly; thus, this miRNA is remarked as

“Head” by “SUmirPredictor”. (3) Mature miRNA aligns between 21 and 41th bases and there is a mismatch on the start area of mature miRNA where the DICER-LIKE

enzyme cutting region located. Enzyme may not able to process this sequences and such structures are remarked as “Dicer-cut”. (4) miRNA precursor has more than

one loop structure on its head, so this structure is remarked as “Multiloop” by “SUmirPredictor” (Two different loops were indicated by arrows).

output file of “SUmirPredictor” filters redundant blast hits blast
hits which may result in mis-annotation of putative miRNA
sequences. Since up to two mismatches are allowed in the
identification of candidates homologous to known plant miRNAs
by “SUmirFind,” single mature miRNA may be annotated as
more than one miRNA family and each annotation may align to
the same candidate sequence with different sets of mismatches
(Figure 3). “SUmirPredictor” eliminates such redundancies by
picking the best annotation with highest similarity to know plant
miRNA sequence and outputs the following information in the
secondary output file: “miRNA ID—mature miRNA sequence—
pre-miRNA sequence–index number (index of the respective
entry in the first output file of “SUmirPredictor” for tracing
back option if needed)-conserved miRNA ID-miRNA∗ sequence’
information. In case of equal similarity to different conserved
miRNAs, the all conserved miRNAs IDs are separated by a
comma and selection of the most suitable name for candidate
miRNA sequence is left to user preference. In this step, blast
searches (Camacho et al., 2009) for candidate miRNA precursors
might be performed to elucidate the similarity between the

precursor of redundantly-annotated homolog miRNAs and
putative miRNA name might be provided based on the
highest similarity score; however, such results may represent
controversies regarding the non-conserved nature of plant
pre-miRNAs.

Discrepancies in the naming of newly identified miRNAs are
problematic for miRNA researchers and no solutions have been
presented to this problem yet (Budak et al., 2015a). Problems with
miRNA naming include miRNAs from the same miRNA family,
having widely differing sequences, due to the location of the
mature miRNA on the precursor (either 3′ or 5′ end of precursor
sequence). For such miRNAs, we propose a revised naming to
avoid confusion:

(1) If the homologmiRNA from the reference list has the hairpin
arm information such as “miR156a-3p” and if the newly
identified miRNA is also generated from the same arm of
the hairpin-shaped precursor (in this case, 3′ of precursor
sequence), the newly identified also carries the hairpin arm
information (in this case,miR156-3p).
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FIGURE 3 | Redundant annotations detected by “SUmirPredictor”. Up to three mismatches criteria used in the initial identification of candidate mature miRNA

sequences may lead to redundant annotations of the same candidate sequence (indicated by arrows). Here, Arabidopsis lyrata miR156g-5p and miR157d-5p had

mismatched bases in different locations; consequently, the same mature miRNA sequence appears as twice as two different candidates (Aly: Arabidopsis lyrata). Since

the aly-miR156g-5p displayed higher sequence homology to putative mature miRNA sequence, candidate miRNA named as miR156 and miR157 was eliminated.

(2) If the homolog miRNA from the reference list does not have
the hairpin arm information, such as “miR156a,” the newly
identified miRNA is named according to the location of the
mature miRNA detected by “SUmiRFold” (If the miRNA is
detected on the 3′ arm of the hairpin, the miRNA is named
asmiR156-3p).

(3) If the homolog miRNA from the reference list has the
hairpin information such as “miR156a-3p” and if the newly
identified miRNA is generated from the opposite arm of
the hairpin-shaped precursor (in this case, 5′of precursor
sequence), the newly identified miRNA takes just the family
ID of conserved miRNA sequence, without the presence of
any extensions (in this case,miR156).

“SUmirPredictor” adjusts the name of each newly identified
miRNA according to above-defined rules. It does not specify
the letter extensions of miRNA IDs which requires a more
comprehensive analysis of pre-miRNA structures at the miRNA
family level (Budak et al., 2015a).

“SUmirPredictor” also discards all potential miRNA∗

sequences for defined mature miRNAs. One mature miRNA
sequence might be associated with several miRNA∗ sequences
which may vary in their flanking regions. Also, in some cases,
these differences may arise from the small bulges reside inside the
mature miRNA/miRNA∗ duplex. In this pipeline, all potential
miRNA∗ for each mature miRNA are reserved and further
utilized in the process of small RNA expression analysis (See
section: “miRNA expression analysis as an in silico evidence
for the genuineness of putative miRNAs”), however, one can
eliminate and determine particular miRNA∗ sequence for a
defined mature miRNA. Finally, “SUmirPredictor” eliminates
the miRNAs which have any undefined sequences marked
with “N” in their mature miRNA sequences since mature
miRNAs are short (around 20 nt.) and existing undetermined
sequences may lead to false-positive results in course of target
identification.

Elimination of Putative False-Positive Predictions

from New miRNA Pool
In some cases, other small non-coding RNA species such as
transfer RNA (tRNA), ribosomal RNA(rRNA), small nuclear

RNA (sn-RNA), and small nucleolar RNA (sno-RNA) together
with repetitive elements may generate false-positive predictions
in miRNA identification process (Kang and Friedländer, 2015).
However, elimination of such sequences is controversial for
miRNAmining considering recent studies revealing the presence
of miRNAs within tRNA genes (Maute et al., 2013). Thus,
decision for sorting out of these sequences depends on the
nature of the dataset and focus of research. In this updated
pipeline, any non-coding RNA species and repetitive sequences
are not eliminated prior to the miRNA mining analysis.
Following the miRNA identification, both mature miRNA and
their precursor sequences are aligned to other non-coding
RNA species using BLAST and positive hits which have query
identity and coverage with more than 95% are eliminated.
Additionally, pre-miRNA sequences are further analyzed in order
to detect transposable element related miRNAs [See Section:
Identification of Transposable Element Related miRNAs (TE-
MIRs)]. Manycrop species have contain high quantities of
transposable elements in their genomes which may code for
thousands of functionalmiRNAs (Piriyapongsa and Jordan, 2008;
Li et al., 2011).

Although the lack of evidence for the presence of miRNAs
coming from organellar genome in plants, a few organelle-
associated miRNAs have been detected in humans (Sripada et al.,
2012). Considering the potential presence of organelle associated
miRNA sequences across the candidate miRNA pool, mature
and pre-miRNA sequences are aligned to organellar genomes
with BLAST and putative miRNA sequences matching organellar
genomes, namely mitochondria and chloroplast, are separately
recorded.

Exploration of miRNA Distribution and miRNA

Representation by “SUmirLocator”
Genomic representation refers to the sum of all genomic
locations of a miRNA family in a genome across its
chromosomes. Genomic representation analyses provide
insights into the distribution and organization of miRNA
genes across the genome, providing information about putative
miRNA genes grouped in specific chromosomal locations.
In the absence of a reference genome sequence, genomic
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assemblies composed of non-overlapping sequence contigs can
still provide important clues into the genomic distribution of
miRNA families. With respect to our representation definition,
pre-miRNAs identical in sequence are included in the overall
representation if: (1) the pre-miRNA sequence is predicted from
different positions on the same assembled sequence, and (2) the
pre-miRNA sequence is predicted from a single genomic location
that carries two different mature miRNA sequences (Figure 4).
In our pipeline, putative miRNA precursors together with
the mature miRNA sequences which satisfy afore-mentioned
criteria are further analyzed for their genomic representation
using an additional Perl script, “SUmirLocator” (Supplementary
Document 1). Using the input of genomic data which is utilized
in in silico miRNA identification in prior steps, script defines
the location of unique pre-miRNAs individually. Also, it counts
the occurrence of unique locations for each member of the same
miRNA family in order to identify genome-wide copy number
variation amongmiRNA families, in other words, their respective
representations. Running time for “SUmirLocator” analysis is
relative to the size of input data, genome size and the number
of predicted pre-miRNA sequences. The output is contained
in two comma-delimited files, “pre-miRNA-count” and “pre-
miRNA-location,” and one text file “expression.tbl,” respectively.
The first file contains detailed information about the locations
of the miRNA precursors including the strand information as
“sense” or “antisense.” The second file provides a summary
for the family-based count of miRNAs and basically presents
the miRNA representation. The text output is generated for
downstream in silico miRNA expression analysis. Additionally,
“SUmirPredictor” reserves all associated the miRNA∗ sequences
for each mature miRNA and gives the user preference of either
choosing one of the sequences or analyzing all of them. If
miRNA∗ sequences are selected, “SUmirLocator” rechecks the
miRNA∗ sequences and writes them as a separate output file
which will be used for down-stream expression analysis (See

section: miRNA expression analysis as an in silico evidence for
the genuineness of putative miRNAs).

“SUmirLocator” can also be used for identified miRNAs
from transcriptomic data where the transcriptome-wide
representations (in this case the total count of miRNA families
with members coming from different contigs including different
isoforms) of miRNA families are assessed. If transcriptomic data
is utilized, “SUmirLocator” outputs for pre-miRNA sequences
may provide a rough idea about alternative splicing of miRNA
genes. A closer inspection of miRNA sequences generated from
different transcriptomic isoforms of the same gene may offer
information about alternative splicing patterns of related miRNA
genes together with its effect on mature miRNA sequences.
Alternative splicing of miRNA genes during transcriptional
process might have influence on the pre-miRNA sequences by
resulting in different stem-loop like structures (Melamed et al.,
2013; Agranat-Tamir et al., 2014). On the other hand, different
pre-miRNA like stem-loop structures obtained from various
isoforms of the same miRNA gene may make inroads to the
formation of distinct mature miRNA sequences which may
regulate separate targets (Melamed et al., 2013). In our analysis,
miRNA family members coming from all contigs including
different transcriptomic isoforms are also counted and recorded
as representation of related miRNA family. Additionally, in
case the presence of high quality genome data, the pre-miRNA
sequences obtained by miRNAmining from transcriptomic data,
can be aligned back to the genome with the help of alternative
splicing-aware aligners such as GMAP (Wu and Watanabe,
2005) and potential alternative splicing of miRNA genes are
confirmed by comparison with “SUmirLocator” results.

The representation of miRNA families may also give a rough
idea about the relative expression levels of particular miRNAs,
however; the representation of in silico identifiedmiRNA families
may not necessarily agree with experimental results. Since the
miRNA expression is highly time/condition/tissue specific, the

FIGURE 4 | Including pre-miRNA sequences which codes for different mature miRNAs into miRNA representation. Putative pre-miR156 sequence is

predicted to encode two distinct mature miRNA sequences for miR156 family. Both of these miRNAs are included in the genomic representation as separate units. It

must be noted that these sequences are not mature miRNA/miRNA* pairs; instead, they are two different sequences belonging to miR156 family.
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experimental condition where the data generated for in silico
miRNA mining and experimental validation must be same or
similar (Budak et al., 2014). In all cases, validation of in silico
identified miRNAs with experimental techniques such as, qPCR
or Northern Blotting, should provide a more accurate profile for
differential expression of miRNAs of interest.

miRNA Expression Analysis as an In Silico Evidence

for the Genuineness of Putative miRNAs
In miRNA biogenesis, miRNA genes are first transcribed into
pri-miRNA sequences by the activity of RNA Polymerase
II, which are then poly-adenylated and capped similar to
mRNA sequences (Kurtoglu et al., 2013). Consequently, miRNA
precursors can be detected in the ESTs and cDNA libraries along
with transcriptome assemblies. In order to provide evidence for
actual expression of putative pre-miRNA sequences, identified
pre-miRNAs are aligned to the EST/cDNA sequences and
assembled transcriptomic data via BLAST Algorithm (Camacho
et al., 2009). The sequences which satisfy a specific cut-off
for query identity and query coverage, determined by users
with respect to expression dataset and query, are defined as
“in silico expressed miRNA precursors.” In addition to this
expression evidence analysis, the reads from small RNA-Seq
studies can be aligned back to the putatively identified pre-
miRNAs to ensure the genuineness of computationally identified
miRNA precursors. Pre-miRNA sequences which have small
RNA reads aligning with the in silico predicted miRNA/miRNA∗

regions increases the confidence that these sequences do
represent precursor sequences for functional and expressed
miRNAs.

This pipeline also provides an in silico expression evidence
for putative mature miRNA/miRNA∗ duplexes, utilizing BLAST
alignments of putative miRNA/miRNA∗ sequences to small
RNA sequencing data. A series of specific parameters are set
for optimized alignment of short miRNA sequences to small
RNA-Seq reads: -task blastn-short–ungapped–dust “no”–e-value
1000–wordsize 7–strand “plus.” Importantly, the short blast
mode option is used (-task blastn-short) with a combination of
ungapped parameters in order to provide a reliable alignment
of mature miRNA and miRNA∗ sequences to small RNA-
Seq reads. Also, a high e-value is employed in alignment
process since the expectation value for short sequences is higher
compared to longer ones. Both miRNA and miRNA∗ sequences
which are also obtained as the output of “SUmirLocator”
process, inside the “expression.tbl” file, are aligned to small
RNA reads, trimmed and cleaned from adaptor sequences.
miRNA/miRNA∗ sequences which are present in the small
RNA-Seq libraries with 100% query identity and coverage are
accepted as “expressed.” The 100% cut-off is specifically chosen
for mature miRNAs since these sequences are tiny and any
mismatch tolerant alignment can affect the sensitivity of the
analysis. If at least three reads from the small RNA sequencing
data match each of the mature miRNA and miRNA∗ sequences
with the criteria above, then the predicted miRNA is accepted
as “in silico expressed.” This step is highly recommended
to increase the reliability of the computationally identified
miRNAs, since the presence of mature miRNA/miRNA∗ duplex

is essential for the validation of mature miRNA expression
(Kozomara and Griffiths-Jones, 2014). The cutoff for the number
of small RNA reads aligned to each mature miRNA and
miRNA∗ sequences can be modified by the user preferences;
however, this pipeline suggests at least three matching reads
considering the scarcity of plant small RNA sequencing
experiments, compared to animals, where the already available
data volume allows the ccutoff of 10 or more reads for in silico
evidence of miRNA sequences (Kozomara and Griffiths-Jones,
2014).

Identification of Transposable Element Related

miRNAs (TE-miRs) and Potential Small Interfering

RNA (siRNA) Candidates
Certain plant miRNAs are known to be identical or homologous
to transposable elements (TE), which are generally termed
as “Transposable Element-related miRNAs” or “TE-miR” (Li
et al., 2011; Kantar et al., 2012; Kurtoglu et al., 2014). This
miRNA identification pipeline checks for the presence of
such miRNAs by comparing the putative miRNA precursor
sequences against a given database of repeat elements using
RepeatMasker software that employs the Cross-Match alignment
algorithm (http://www.phrap.org/phredphrapconsed.html)
(http://www.repeatmasker.org/). The precursor sequences
covered by repeats more than 50% of their lengths are
recorded as TE-miR. The potential TE-miRs are also
further analyzed for repetitive element distributions by repeat
families.

Small interfering RNAs (siRNAs), a class of double-stranded
RNAs of 20–25 nucleotides in length, exhibit many similarities
to miRNAs despite the presence of major differences in their
biogenesis (Tang, 2005). siRNAs are generated from perfectly
base-paired, long, double stranded RNAs, by the activity of
several members of DICER-LIKE enzymes (Parent et al., 2015).
siRNAs generally target the same gene from which they are
transcribed although there are some examples of non-self-
targeting siRNAs such as trans-acting siRNA (ta-siRNA) (Zhang
et al., 2014). Thus, transposable elements are popular targets of
siRNA molecules and in fact, siRNAs are thought to be evolved
for transposon silencing in order to protect the genome and
sustain the genomic stability (Ito, 2012). Conversely, miRNAs
have the ability to target many other genes different from their
precursor (Carthew and Sontheimer, 2009). There are several
hypotheses about the shared origin of TE-miRs and siRNAs
where they both are very similar or identical to TEs (Piriyapongsa
and Jordan, 2008) and because of this similarity, it is troublesome
to differentiate between TE-miRs and siRNAs. Our pipeline first
reports potential siRNAmolecules at the “SUmirFold” step where
the perfectly complementary miRNA/miRNA∗ duplexes are
separated from the main output as “suspects” (Lucas and Budak,
2012). In addition, miRNA precursors passing all criteria set
by “SUmirFind,” “SUmirFold,” and “SUmirPredict,” are further
analyzed for repetitive content as described above. Precursor
sequences with almost perfect complementarity to TEs (up to 3
mismatches allowed) following the TE-miR analysis are accepted
as “potential TE-miR” which may also include some siRNA
sequences.
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miRNA Target Analysis and Target Enrichment
miRNAs mainly target mRNAs and regulate their expression by
inhibiting the translation of them into functional proteins
through translation repression or by suppressing their
transcription via mRNA cleavage (Zhang et al., 2006; Rogers
and Chen, 2013). Identification of genuine plant miRNA targets
is crucial for understanding their effects of at the molecular
level. This pipeline employs an online tool for detecting putative
miRNA targets, “psRNATarget” (http://plantgrn.noble.org/
psRNATarget/), selected as one of the most reliable and precise
tool for miRNA target mining (Dai and Zhao, 2011; Srivastava
et al., 2014). psRNATarget takes both target complementarity
and target site accessibility into consideration, together with
the assessment of multiple target sites present in a given mRNA
molecule; thus, it may assign more than one target for a given
miRNA sequence (Dai and Zhao, 2011). The target sequences
identified by psRNATarget are then annotated through similarity
searches against annotated protein databases from all or related
plants using BlastX tool of the BLAST toolkit (Camacho et al.,
2009) and Gene Ontology (GO) annotations are retrieved
using Blast2GO software at Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC) levels (Conesa
and Götz, 2008).

Following miRNA target identification and annotation, the
most significant target with a known functional annotation
for each mature miRNA is identified with the following
procedure based on the two important parameters defined by
psRNATarget tool for putativemiRNA-miRNA targets pairs: UPE
and Expectation. “UPE” is the binding energy between miRNA
and its target pair, and lower UPE values indicate a better
miRNA-target binding. “Expectation” is a statistical measure,
based on the randomness of particular miRNA sequences to
bind a mRNA molecule. Low “expectation” values, similar to e-
value in blast, demonstrates statistically more significant miRNA-
target pairs (Dai and Zhao, 2011). For detection of the most
significant targets, UPE and expectation values are summed up
for a given target for all targets of the same miRNA and the target
sequence which has the lowest sum is reserved as most enriched
miRNA target. In case the same UPE + expectation values,
the abundances of distinct Blast2GO functional annotations are
taken into account and the most abundant target is picked as the
most significant. It must be noted that this procedure operates
only on targets with known functional annotations to enable the
evaluation of a miRNA in a functional context together with its
target; therefore, hypothetical or predicted targets, targets with
unknown functions and with no known homologs are excluded
from the target enrichment analysis.

In addition to detection of the most significant targets based
on the previously explained analysis, determination of the most
statistically-significant GO terms for a given miRNA family
may provide insights about the pathways where the miRNA is
functioning. For enrichment of statistically significant GO-terms,
Blast2GO software can be utilized since it has an integrated
Fisher’s exact test analysis tool (Conesa and Götz, 2008). In
order to detect enriched GO-terms, the Fisher’s exact test
can be performed separately for each miRNA family followed
by retrieving associated target transcript IDs. The outputs of

statistical enrichment can also eliminated further based on
FDR< 0.05.

Modification of the Pipeline for miRNA Prediction

from Small RNA Sequencing Data
Although our methodology was originally designed and
automated for the prediction of homologous miRNAs from
relatively long next-generation sequence reads and/or assemblies,
this method can also be adapted to process small RNA reads.
This adapted version of the methodology incorporates an initial
step of sequence similarity analysis of short small RNA reads to
the homolog miRNAs with a Perl script “SUmirFind_smRNA.pl”
(Supplementary Document 1). This script basically utilizes
the same procedure with “SUmirFind.pl,” however; the blast
code is specifically optimized for identification of small RNA
reads which shows similarity to the known miRNAs. Following
the determination of miRNA-like small RNA reads, sequences
aligned to known miRNAs with 2 or fever mismatches, the
aligned part of reads to known miRNA are trimmed with an in-
house script and aligned back to the genomic or transcriptomic
data to discard the candidatemiRNA precursors via “SUmirFind”
and “SUmirFold.” In this secondary “SUmirFind” process, the
trimmed small RNA reads are utilized instead of homolog
miRNA list without allowing any mismatches to determine the
genomic/transcriptomic encounter sequence of sRNA reads.
“SUmirFold” utilize the outputs of the second “SUmirFind”
process to mark and discard the pre-miRNA sequences which
is followed by “SUmirPredictor” and down-stream analysis
processes. It must be noted that miRNA mining with our
methodology from small RNA sequencing reads is relatively
slow compared to genomic/transcriptomic miRNA mining since
it is not originally designed for this process. However, it has
the capability to identify both homolog miRNA and their new
family member with the precise determination of their precursor
structures.

Evaluation of the New Pipeline for Genuine
miRNA Identification
In order to analyze the efficiency and accuracy of our pipeline,
both genomic and transcriptomic data belonging to diploid
Brachypodium and hexaploid bread wheat were evaluated
following the procedure summarized in Figure 1: Whole
genome assembly of B. distachyon cultivar Bd21 [genome
version 3.0, downloaded from “Phytozome11” website (https://
phytozome.jgi.doe.gov/), leaf transcriptome assembly of B.
distachyon cultivar Bd1-1 (SRA 17815, obtained from https://
trace.ddbj.nig.ac.jp/DRASearch/submission?acc=SRA171815],
T. aestivum cultivar Chinese Spring genome (The International
Wheat Genome Sequencing Consortium, 2014) and T. aestivum
transcriptome data from spike tissues of cultivar Chinese
spring (obtained from Unité de Recherche Génomique Info
(URGI, http://wheat-urgi.versailles.inra.fr/Seq-Repository/
RNA-Seq). The de novo assembly transcriptomic data from
raw reads was constructed by Trinity software (Grabherr et al.,
2011). Quality trimming and adaptor removal of reads were
performed by Trimmomatic (v 0.32) using default parameters
“LEADING:5, TRAILING:5, MINLEN:36” (Bolger et al., 2014).
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After assessment of the assembly quality, all three datasets from
the two species were used for miRNA identification.

A reference list of miRNAs was constructed based on
miRBase Release 21 for this study (Kozomara and Griffiths-
Jones, 2011). Mature miRNA sequence of miRNAs referred as
high confidence by miRBase or with experimental evidence were
combined. Among these, redundant mature miRNA sequences
were eliminated and a non-redundant list of reference miRNAs
was obtained. This non-redundant list of 1404 miRNAs was
utilized for all downstream analyses (Supplementary Document
2). It should be noted that only miRNAs either cloned with PCR
and/or validated by Northern Blotting or Real-Time quantitative
PCR were accepted as “experimentally-validated” since these are
highly reliable experimental methods of miRNA detection (Chen
et al., 2010).

For candidate miRNA sequences with more than one
assigned miRNA family IDs by SUmirPredictor, a single miRNA
ID was chosen. For the renaming process, the pre-miRNA
sequences of mature miRNAs in miRBase21 were aligned to
the putative, newly-identified miRNA precursors. The miRNA
family ID with the highest similarity in precursor sequences
was picked. The predicted miRNA sequences were further
evaluated for any false-positive predictions. Both mature miRNA
sequences and miRNA precursors were blasted against the
sequence of other non-coding RNAs (tRNA, rRNA, sn-RNA,
and sno-RNA) which were gathered from National Center
of Biotechnology Information (NCBI) (http://www.ncbi.nlm.
nih.gov) and European Nucleotide Archive (ENA) (http://
www.ebi.ac.uk/ena) databases (-dust “no,” -e-value “1e-5”).
Additionally, all obtained mature miRNA sequences together
with their precursors was aligned to the organellar genomes
(for B. distachyon chloroplast sequence, Genbank Acc. No:
EU325680.1, for T. aestivum chloroplast sequence, Genbank
Acc. No: KC912694.1, for T. aestivum mitochondrion sequence,
NCBI Ref. No.: NC_007579.1) using parameters as -dust “no,”
-e-value “1e-15.” Positive matches with >95% identity and
query coverage were excluded. Subsequently, the representation
of putative miRNAs was assessed by “SUmirLocator.” In the
case of transcriptomic miRNA mining, pre-miRNA sequences
were aligned back to the respective genome with splicing-
aware alignment program GMAP (Wu and Watanabe, 2005)
(parameters: -n “1” -nofails -x 0) to detect the possible effect
of alternative splicing of miRNA genes. These alignments were
interpreted in combination with the “SUmirLocator” outputs
to assess the potential of our pipeline in identifying alternative
splicing events in of miRNA generation.

The in silico expression analysis for putatively identified
miRNAs was performed at both mature miRNA and pre-miRNA
levels. The miRNA precursors were aligned to the available EST
sequences and transcriptome assemblies which were constructed
by Trinity software. A detailed summary of alignment dataset
is provided in Supplementary Document 3. miRNA precursors
which were covered by more than 95% of their length with
a > 95% sequence identity were remarked as “in silico expressed
pre-miRNAs.” The mature miRNAs and miRNA∗ sequences
of B. distachyon and T. aestivum were also aligned to a set
of small RNA sequencing data (Supplementary Document 3)

followed by the quality check of small RNA reads by FastQC
toolkit (Andrews, 2010) and adaptor removal by Cutadapt
software (Martin, 2011). Additionally, the small RNA sequencing
reads from B. distachyon and T. aestivum (PRJNA115065 and
PRJNA115065, respectively, obtained from NCBI) were aligned
back to identified pre-miRNA sequences by “SUmirFold” with
both Bowtie2 (Langmead and Salzberg, 2012) and GMAP (Wu
and Watanabe, 2005) in order to show the mapping sites
of sRNAs reads on pre-miRNA sequences. The pre-miRNA
sequences were utilized to generate an index prior to Bowtie2
and GMAP analyses. sRNA reads were aligned to indexed pre-
miRNA sequences in the “local” alignment mode with Bowtie2.
GMAP alignment was performed with the “-n 1” and “-x
0”options in order to inhibit the chimeric alignments. Alignment
outputs, in bam format, were visualized with IGV software
(Thorvaldsdóttir et al., 2013) and compared with “SUmirFold”
outputs.

Putative miRNAs were further evaluated for detection
of TE-miRs and potential siRNA candidates. Putative pre-
miRNA sequences identified from all datasets were aligned
against a publicly available repeat library of the Poaceae
family (MIPS-REdat/Poaceae v9.3p, ftp://ftpmips.helmholtz-
muenchen.de/plants/REdat/) which contains 34,135 different
repeat sequences (Nussbaumer et al., 2013) RepeatMasker
version 4.0.5 (http://www.repeatmasker.org) at default settings.
The miRNA sequences aligned to repetitive elements with
more than 50% of their lengths were remarked as “TE-miR,”
while sequences with perfect complementarity to TEs (up to 3
mismatches allowed) recorded as “potential siRNA candidates.”
The distribution of sRNA reads on the precursors, obtained
with Bowtie2 and GMAP, were also controlled to support
the genuineness of TE-miR and siRNA candidates. When the
sRNA reads were detected as concentrated on the predicted
mature miRNA and miRNA∗ locations, similar to sRNA read
distribution on miRNA precursors, this accepted as a support for
presence of TE-miRs while the dispersed distribution of sRNAs
provided support for siRNA candidates.

Putative miRNA targets were also predicted separately for
each dataset with the utilization of psRNATarget web-tool
(http://plantgrn.noble.org/psRNATarget/) at default parameters
(Dai and Zhao, 2011). Coding sequences from B. distachyon
annotation version 3.1 (downloaded from https://phytozome.jgi.
doe.gov/) and T. aestivum annotation version 2.2 (downloaded
from ftp://ftpmips.helmholtz-muenchen.de/plants/wheat/
IWGSC/, The International Wheat Genome Sequencing
Consortium, 2014) were used for in silico target prediction.
Functional annotation of the putative miRNA targets was
performed using Blast2GO (http://www.blast2go.com) (Conesa
and Götz, 2008). The initial blast step was performed against all
non-redundant Viridiplantae (taxid: 33090) proteins (3,485,798)
at an e-value cutoff 10−6, and the following mapping and
annotation steps were carried out at default parameters by
Blast2GO. Statistically significant and enriched GO-terms
were further selected based on two sided Fisher’s exact test
outputs which provide the FDR cut-off “< 0.05.” Gene Ontology
(GO) terms were also recorded, analyzed, and visualized with
multilevel pie graphs. Target enrichment analysis was performed
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as detailed above, based on annotations, UPE and Expectation
values.

To test the small RNA adaptation of pipeline, a subset of
sRNA reads from B. distachyon (NCBI: PRJNA115065) and
whole genome assembly of B. distachyon cultivar Bd21 were
utilized. The small RNA reads were aligned to high-confidence
miRNA list via “SUmirFind_smRNA.pl” allowing 3 mismatches
and the aligned part of small RNA reads were trimmed. The
trimmed sequences were utilized as the query for second
“SUmirFind” process where the genomic encounters of sRNA
reads were discarded and utilized with “SUmirFold” for detection
of miRNA precursors. Small RNA reads carrying potential
miRNA candidates were named based on their homolog partners
and previously defined miRNA naming parameters.

RESULTS

Identification and Comparative Analysis of
Genomic/Transcriptomic miRNAs
In order to explore the effectiveness of our pipeline as well as
to compare and contrast the impacts of current refinements on
in silico miRNA identification process, we evaluated all scripts
with both genomic and transcriptomic dataset. The genome
sequence assembly of Brachypodium (version 3.0) was compared
against 1404 high-confidence reference miRNAs (Supplementary
Document 2) using “SUmirFind” script and a total of 14,379
sequences matched to the reference mature miRNAs with 2
or fewer mismatches (Table 1). Flanking sequences of these
candidate miRNAs were evaluated for secondary structure
characteristics by “SUmirFold” script and approximately, 36% of
these sequences (5152 different hairpin structures where 1062
of them stands as “suspect”) were able to fold into hairpin
structures, satisfying initial criteria, including those marked as
“suspect” (Table 1). “Suspect hairpins,” the sequences where the
miRNA-miRNA∗ duplexes do not contain any mismatches, were
eliminated from this study since both B. distachyon and T.
aestivum have high content of TE elements which may generate
false-positive predictions clustered in suspect hairpins. Following
the “SUmirPredictor” analysis, a total of 1015 different putative
Brachypodium miRNA sequences, ∼25% of putative hairpin
structures passing “SUmirFold,” corresponding to 40 different
miRNA families qualified all criteria in the final step of in silico
miRNA prediction (Table 1, Supplementary Document 4).

The transcriptome assembly of B. distachyon cultivar Bd1-
1 generated 161 Mbp of total data corresponding to 218,347
contigs where the average contig length was 741 bp. miRNA

prediction by “SUmirFind” yielded 9482 matches on 3020
contigs (1.3% of all contigs), which were fold into 1304 hairpin
structures including the “suspects” (Table 1). “SUmirPredictor”
suggested 81 different miRNA members corresponding to 21
miRNA families (Table 1, Supplementary Document 4). Putative
miRNAs identified from both genomic and transcriptomic
sequences of B. distacyon were comparatively analyzed. Twenty
miRNA families out of 21 detected from B. distachyon cultivar
Bd1-1 transcriptomic data were common with cultivar Bd21
genome. miR444 was only identified from transcriptomic data
which may potentially be a cultivar-specific miRNA; however,
further analysis for a firm conclusion is necessary. miRNA
sequences were also analyzed at the pre-miRNA level by aligning
the miRNA precursor sequences which were identified from
both datasets. Alignment results showed that 63 pre-miRNA
sequences out of 87 (∼72% of all identified miRNAs), identified
from Bd1-1 cultivar, were similar to Bd21 pre-miRNAs withmore
than 95% query identity and coverage. Twenty miRNA families
identified fromBd21 were not detected at the transcriptome level.
Considering the spatiotemporal expression of miRNAs, presence
of small portion of miRNAs in both data sets is an expected result.

The enormous genome of hexaploid bread wheat (∼17 Gbp)
generated 118,100 sequences associated with homolog miRNAs
in course of “SUmirFind” process where only 14,290 of themwere
proceed by “SUmirFold,” At the end of the “SUmirPredictor”
process, 7627 miRNA sequences corresponding to 48 miRNA
families were identified. On the other hand, Trinity-generated
transcriptome assembly of T. aestivum spike tissue, 114 Mbp in
total length with an average contig length of 456 bp outputted
5688 matches corresponding to 2556 contigs across 251,010
totally generated transcripts on the “SUmirFind” process (1.01%
of total transcripts). These sequences were fold into 297 hairpin
structures including “suspects” (Table 1). Final evaluation by
“SUmirPredictor” suggested the presence of 105 putative pre-
miRNA like hairpins, excluding “suspects,” coding for 20 miRNA
families (Table 1, Supplementary Document 4). Comparative
analysis of miRNAs at the transcriptome and genome level
revealed the common presence of 17 miRNA families whereas
miR1127, miR162, and miR818 were not detected from genomic
data. These sequences either might be false-positive results or
plant specific miRNAs. Even though the same cultivar of the
wheat were utilized in the analysis process, it is possible that
different plants of same cultivar might generate different miRNA
families, especially in species where a finished quality genome
sequence is not available. The pre-miRNA level comparison of
identified miRNAs from both datasets revealed the common
presence of 27 miRNAs out of 105 with more than 95% query

TABLE 1 | Summary statistics of miRNA identification and filtering corresponding to four different data sets from B. distachyon and T. aestivum.

Data name Assembly

length (Mbp)

# of SUmiRFind

hits

# of SUmiRFold hairpins # of identified different miRNA

and miRNA precursor sequences

# of corresponding

miRNA family

B. distachyon (genome) ∼272 Mbp 14,376 4090 (+1062 suspects) 1015 40

B. distachyon (transcriptome) ∼218 Mbp 9482 1198 (+106 suspects) 87 21

T. aestivum (genome) ∼17 Gbp 118,100 14,290 (+3116 suspects) 7627 48

T. aestivum (transcriptome) ∼114 Mbp 5688 265 (+32 suspects) 106 20
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identity and coverage. Although the relatively small amount of
common miRNAs between genomic and transcriptomic data
(∼25%), all the pre-miRNAs identified from transcriptomic data
were detected as identical to genomic miRNA precursors more
than 60%.

Characteristics of Putative miRNAs and
Elimination of False-Positive Results
The characteristics of the putative mature and pre-miRNA
sequences together with pre-miRNA like hairpins were analyzed
to control the genuineness of identified mature and pre-miRNA
sequences. The average mature miRNA length was observed
as ∼21 nt. long both across the miRNAs from B. distachyon
genome and transcriptome where it was detected as 21.8 and
21.5 nt. for T. aestivum genome and transcriptome miRNAs,
respectively. These results were consistent with previous studies
since many of plant mature miRNAs are ranging in 19–24
nucleotide with a bias toward 21 bases in length (Kurihara
and Watanabe, 2010; Kurtoglu et al., 2014). Regardless of the
length similarity detected in mature miRNAs, pre-miRNAs were
identified as highly different from each other respect to length
and sequence. The longest putative pre-miRNA identified from
B. distachyon both genome and transcriptome was pre-miR156
with 328 nucleotides long in length (identified from Bd21
genome) while it was miR1117 in T. aestivum genome with 332
nucleotides in length. The average length was observed as 135
nt. long (st.dev = 34.2, median = 128) among putative pre-
miRNAs identified from B. disctachyon genome while it was 153
nucleotide long (st.dev= 30.5, median= 142) for transcriptomic
data. For T. aestivum miRNAs identified from genome, the
average pre-miRNA length was 112 nt. long (st.dev = 27.86,
median = 102) while it was 111 nucleotide long (st.dev =

15.86, median = 117) in transcriptomic data. Minimum folding
energy (MFE) and Minimum Folding Energy Index (MFEI)
are other important criteria for the determination of miRNA
related putative secondary structures. In this analysis, the average
MFE value of identified miRNAs for B. distachyon genome was
−62.61 (st.dev = 15.60, median = −61.7) where MFEI was
detected as 1.04 (st.dev= 0.21, median= 0.99). For the miRNAs
identified from transcriptomic data of Brachypodium, average
MFE was detected as −69.19 (st. dev = 11.62, median = −66.1)
while the average MFEI was 0.90 (st.dev = 0.13, median =

0.87). Putative pre-miRNAs identified from T. aestivum were
represented similar values for both of the characteristics; the
average MFE values were observed as −63.07 (st. dev = 16.68,
median=−59.2) formiRNA identified from genome and−54.13
(st.dev = 13.12, median = −60.5) for transcriptomic miRNAs
while average MFEI was observed as 1.38 (st.dev = 0.40, median
= 1.26) and 1.13 (st.dev = 0.24, median = 1.02) respectively
which show an agreement with previous studies and the property
of real miRNA sequences (Axtell, 2013; Kurtoglu et al., 2014).

The final lists of putative miRNAs mined from B. distachyon
and T. aestivum were searched for redundant miRNA ID’s
deriving from the similarity in mature miRNA sequences of
conserved miRNAs presented in the reference miRNA list and
three different pairs of redundant miRNA IDs were detected

in B. distachyon genome while no miRNA with redundant
IDs detected among B. distachyon transcriptome and both of
transcriptomic and genomic data of T. aestivum. The most
convenient miRNA names for each redundant miRNA IDs
was assigned after manual control of similarity between newly
identified miRNA precursors and conserved miRNA precursors
which were taken from miRBase21. Using blast alignments,
“miR156-miR157” doublet was renamed as “miR157”; “miR159–
miR319” doublet was changed to “miR319” and “miR482–
miR2118” doublet was changed to miR2118 in B. distachyon
miRNA dataset. Following the control of miRNA IDs, mature
miRNAs and their putative precursors were aligned to known
non-coding RNAs and organellar genomes of B.distachyon and T.
aestivum with aim of detecting putative false-positive predictions
and miRNAs originating from organellar genomes. According to
results of blast alignments, any false-positive prediction among
putative miRNAs or organellar miRNA was not detected from all
the of the miRNA set.

Genome/Transcriptome-Wide Distribution
of Putative miRNAs and Representation
Analysis
“SUmirLocator” suggested that many miRNAs identified from
B. distachyon genome were located on chromosome 1 (311
miRNAs corresponding to 19 miRNA families) while miRNA
variety was the highest on chromosome 3 (Figure 5A, Table 2,
Supplementary Document 5). The distribution of miRNAs on
sense and antisense orientation was almost equal (521 miRNAs
on sense direction, 501miRNAs on antisense direction); however,
some miRNAs were likely transcribed from only one orientation.
For instance, miR167, miR394, miR397, and miR1127 were only
transcribed from antisense direction, while miR319, miR396,
miR393, and miR818 were transcribed only from sense direction.
Some miRNA families such as miR1122 or miR1128 had
multiple coding regions on different chromosomes, whereas
others, such as miR319 or miR529 had coding regions exclusive
to one chromosome (Table 2). Additionally, miRNA families
distributed virtually on all chromosomes were the most highly-
represented miRNA families. Remarkably, miR1436, miR1439,
and miR1122 were the most highly represented families on the
Brachypodium genome where their total count corresponded to
∼72% of all identified miRNAs. Many different sequences of
mature and pre-miRNA associated with these miRNA families
were detected across the genome which might be the reason
of their high representation (Supplementary Document 5).
Additionally, most of the sequences belonging to these highly
representative miRNA families were associated with TE elements
which might stand as the reason of their high representation.

Regarding to miRNA identification results of T. aestivum,
miR1117, miR1122, and miR1436 were detected as the
miRNAs families with the most members across the genome
with 4003, 3241, and 1037 miRNA isoforms, respectively
(Supplementary Document 5). Most of the miRNAs were
detected on chromosome 5B (699 miRNA associated region)
which is followed by chromosome 2B (696 miRNA associated
region) and 7B (673miRNA associated region) (Figure 5B). Also,
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FIGURE 5 | (A) Distribution of identified putative miRNAs on different chromosomes of B. distachyon. (B) Distribution of identified putative miRNAs on different

chromosomes of T. aestivum. (C) miRNA content of each sub-genome of T. aestivum.

many miRNAs were identified as coming from B genome (4429
miRNA associated region) while the D genome has the least
miRNA associated region with (2455 miRNA associated region)
(Figure 5C). Additionally, it was observed that the miRNA
distribution on sense and antisense strands is almost equal (5402
miRNAs on sense and 5394 miRNAs on antisense), similar to
BrachypodiummiRNAs.

miRNA identification from Brachypodium transcriptome
suggested that miR169, miR156, and miR166 family
members were the most representative miRNAs where
their precursors detected as generated from many different
contigs (Supplementary Document 5). Closer examination
of miRNA distribution on different isoforms of same contigs
demonstrated the effect of possible alternative splicing events
on miRNA generation. For instance, contig named as “c63509”
associated with two different miRNA families: miR169 and
miR1436 (Figure 6, Supplementary Document 5). The first and
second isoforms of this transcript resulted in the generation of
both miRNA families while the third isoform only associated

with miR169 family members. In order to validate this
result, the miRNA precursors obtained from B. distachyon
transcriptome were aligned to genome with GMAP and
alignment results confirmed that these miRNA precursors
are coming from the same genomic region (Supplementary
Document 5). In some cases, it was detected that alternative
splicing is not effective on miRNA sequence. miRNA results
from contig “c72093” suggested that 8 different isoforms of
same gene resulted in the same miRNA sequence (miR156-
3p-1: GCUCACUCCUCUUUCUGUCAGC) (Supplementary
Document 5). These results suggest that possible alternative
splicing events might be effective on generation of different
miRNA varieties which can be detected by examination of
“SUmirLocator” outputs. Additionally, the genomic locations of
Brachypodium transcriptome miRNAs, identified with GMAP,
and genomic locations of miRNAs identified from genome,
detected with “SUmirLocator” were compared in order to see
the similarity between identified miRNAs from genome and
transcriptome in more detail. Sixty-two (71% of all identified
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TABLE 2 | Distribution of miRNA families on the different chromosomes of the B. distachyon and T. aestivum.

Chromosome miRNA Family ID

Bd1 miR1122, miR127, miR1128, miR1133, miR1135, miR1432, miR1435, miR1436, miR1439, miR160, miR166, miR167, miR169, miR171, miR395,

miR396, miR399, miR437, miR528

Bd2 miR1122, miR1128, miR1133, miR1135, miR1139, miR135, miR1436, miR1439, miR156, miR157, miR159, miR164, miR169, miR319,

miR399,miR437

Bd3 miR1118, miR1122, miR1128, miR1133, miR1135, miR1136, miR1139, miR1435, miR1436, miR1439, miR156, miR160, miR164, miR166,

miR169,miR172, miR2275, miR394, miR395, miR397, miR437, miR529, miR818, miR845

Bd4 miR1122, miR1128,miR1133, miR1135, miR1435, miR1436, miR1439, miR156, miR157, miR166, miR167, miR169, miR2118, miR437,miR818

Bd5 miR1118, miR1122, miR1128, miR1133, miR1135, miR1136, miR1139, miR156, miR157, miR169, miR171, miR2118, miR2218, miR393,

miR395, miR399, miR479, miR482, miR530

Tae chr1A miR1117, miR1118, miR1120, miR1122, miR1128, miR1131, miR1135, miR1136, miR1137, miR1436, miR164, miR166, miR171, miR399,

miR9664, miR9666

Tae chr1B miR1117, miR1118, miR1122, miR1123, miR1125, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR164, miR166,

miR171, miR399, miR9664

Tae chr1D miR1117, miR1121, miR1122, miR1125, miR1128, miR1135, miR1136, miR1137, miR1139, miR1436, miR164, miR166, miR171, miR399,

miR9664

Tae chr2A miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1128, miR1131, miR1135, miR1136, miR1137, miR1436, miR169, miR393,

miR395, miR399, miR530, miR9666

Tae chr2B miR1117, miR1118, miR1120, miR1122, miR1123, miR1125, miR1128, miR1130, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436,

miR169, miR171, miR393, miR395, miR399, miR437, miR530

Tae chr2D miR1117, miR1118, miR1120, miR1122, miR1125, miR1131, miR1135, miR1136, miR1137, miR1139, miR1436, miR169, miR393, miR395,

miR399, miR530

Tae chr3A miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1135, miR1136, miR1137, miR1139, miR1436, miR156, miR393, miR399,

miR9666, miR9677

Tae chr3B miR1117, miR1118, miR1120, miR1121, miR1122, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR1439, miR156,

miR172, miR319, miR437, miR9677

Tae chr3D miR1117, miR1118, miR1122, miR1135, miR1136, miR1137, miR1138, miR1436, miR1439, miR156, miR399, miR9669, miR9677

Tae chr4A miR1117, miR1118, miR1120, miR1122, miR1125, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR167, miR169,

miR171, miR9666

Tae chr4B miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1128, miR1130, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436,

miR169, miR171

Tae chr4D miR1117, miR1118, miR1122, miR1128, miR1135, miR1136, miR1137, miR1436, miR166, miR167, miR169, miR171

Tae chr5A miR1117, miR1118, miR1120, miR1122, miR1125, miR1131, miR1135, miR1136, miR1137, miR1139, miR1436, miR156, miR166, miR167,

miR169, miR528, miR9666, miR9772

Tae chr5B miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR160,

miR166, miR167, miR169, miR2118, miR398, miR5062, miR9772

Tae chr5D miR1117, miR1118, miR1120, miR1121, miR1122, miR1135, miR1136, miR1137, miR1138, miR1436, miR1439, miR156, miR160, miR166,

miR167, miR169, miR398, miR9772

Tae chr6A miR1117, miR1118, miR1121, miR1122, miR1131, miR1135, miR1136, miR1137, miR1436, miR156, miR160, miR394, miR396, miR397,

miR9666, miR9670

Tae chr6B miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR160,

miR164, miR394, miR396, miR397, miR9663

(Continued)
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TABLE 2 | Continued

Chromosome miRNA Family ID

Tae chr6D miR1117, miR1118, miR1122, miR1125, miR1131, miR1135, miR1136, miR1137, miR1436, miR156, miR160, miR164, miR394, miR396,

miR9662, miR9670

Tae chr7A miR1117, miR1118, miR1121, miR1122, miR1123, miR1125, miR1131, miR1135, miR1136, miR1137, miR1436, miR160, miR169, miR2275,

miR396, miR399, miR9666

Tae chr7B miR1117, miR1118, miR1122, miR1125, miR1128, miR1131, miR1135, miR1136, miR1137, miR1436, miR160, miR166, miR169, miR396,

miR399

Tae chr7D miR1117, miR1118, miR1120, miR1121, miR1122, miR1125, miR1131, miR1135, miR1136, miR1137, miR1436, miR160, miR166, miR169,

miR2275, miR399

Tae chrUn miR1117, miR1121, miR1122, miR1128, miR1131, miR1133, miR1135, miR1136, miR1137, miR1436, miR169, miR171, miR399, miR9666

FIGURE 6 | Alternative splicing of miRNA precursors. miRNA genes might get through alternative splicing and the spliced variants might generate different

miRNA precursors. In order to understand such effects of alternative splicing, miRNA precursor identified from transcriptomic data were aligned back to genome with

GMAP and alignment results were visualized with IGV. In this example, three different contigs can be transcribed from the same genomic region of Brachypodium

genome (c63509_g1_i1, c63509_g1_i2, and c63509_g1_i3). The generation of isoform 1 and 2 leads to formation of miRNA members from both miR169 and

miR1436 families. If the isoform 3 is produced, the miR1436 sequences cannot be generated from this transcript.

miRNAs) of Brachypodium transcriptomemiRNAs were detected
as generated from exact same or near same location with their
genomic partners. The miRNA sequences which were identified
from transcriptomic data but not detected as coming from the
same genomic location with their genomic partners might still
stand as genuine miRNA candidates; however, they might be
encoded from different locations since the genomic miRNAs
detected from cultivar Bd21 while the transcriptomic miRNAs
were detected from cultivar Bd1-1.

In the transcriptome data of T. aestivum spike, the most
represented miRNAs were detected as miR1436, miR1122,
and miR1130 which approximately correspond to 51% of all
identified miRNAs (Supplementary Document 5). Interestingly,
miR1117 was not detected as represented with a high number,
likewise the result for identified miRNAs from genome. At
the end of “SUmirPredictor” process, only 86 of contigs were

associated with putative miRNA precursors. In most of cases,
more than one miRNA were detected as located on the same
transcriptomic contig where the highest number of associated
miRNA count within one contig was 5. miRNA sequences which
are detected as originating from same contig were generally
associated with the same miRNA precursor. In some cases,
transcription of same contig from different directions resulted in
the generation of different miRNAs which might represent the
importance of transcription direction for miRNA biogenesis. It
was also noticed that different isoforms of same contig generated
by Trinity were associated with different miRNA families.
Additionally, similar to B. distachyon miRNAs, some miRNAs
detected as transcribed from only sense direction (e.g., miR167,
miR1128, andmiR1131) while some of themwere generated from
only antisense direction (e. g., miR1125, miR1127, and miR1133)
(Supplementary Document 5).
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The miRNA location analysis on the T. aestivum
transcriptome also provided insights about genomic and
transcriptomic organization of different miRNA genes. Some
members of miR1135 and miR1136 families were detected as
proceed from the same transcript (Supplementary Document
5). Additionally, in some cases, different isoforms of same
transcript were associated with different miRNA sequences.
Across the miRNAs identified from T. aestivum transcriptome;
miR1120, miR1122, miR1128, miR1130, and miR1436 were
detected as relatively located in a close proximity to each other
while some of these miRNAs were associated with the same
precursor sequence (Supplementary Document 5). To analyse
the genomic organization of miRNAs in detail along with the
effect of possible alternative splicing events in miRNA genes
in wheat, miRNAs identified from transcriptomic data were
aligned back to genome with GMAP. miRNAs were aligned
to each chromosome separately and alignment result showed
convenience with “SUmirLocator” results of T. aestivum for
the miRNAs which are identified from both genome and
transcriptome. Many miRNAs were detected as distributed on
several chromosomes while some of them clustered on particular
ones. For instance, miR167 family members were detected as
located on chromosome three regarding to both GMAP and
“SUmirLocator” alignment results. Additionally, comparisons
of different alignment outputs also confirmed the possible effect
of alternative splicing event on T. aestivum. As an example,
“SUmirLocator” suggested that possible alternative splicing
event on the region which code for contig “c195255” might
have an effect on miRNA variety. First isoform give rise to
generation of a specific sequence belongs to miR1439 while this
miRNA is not detected on second and third splicing isoforms
(particularly in the chromosome 2A) (Supplementary Document
5). Genomic alignment of this miRNA confirmed that this entire
miRNA precursor is transcribed from same region and possible
alternative splicing can affect the miRNA variety. Overall,
the analysis of both genomic and transcriptomic locations of
identified miRNAs provided insights to the organization of
miRNA genes and their regulation at the transcriptional level.

miRNA Expression Analysis
In silico miRNA expression analysis provides evidence that the
computationally identified miRNAs are likely expressed, thereby
supporting the genuineness of the respective miRNA. For pre-
miRNA expression evidence, newly identified putative miRNA
precursors were aligned to known EST sequences together
with constructed transcriptome assemblies (Supplementary
Document 3), which suggested that expressed precursor
sequences likely exist for 22 miRNA families identified from
Brachypodium genome while all miRNA precursors were
detected as expressed for transcriptome miRNAs. Since the
pre-miRNA sequences identified from transcriptomic data are
coming from genuine transcripts, the presence of in silico
expression evidence for all transcriptomicmiRNAs is an expected
result. At the mature miRNA level, 596 and 437 of genomic
Brachypodium mature miRNA and miRNA∗ sequences were
aligned against sequence reads coming from small RNA libraries
(Supplementary Document 3) with 100% query identity and

coverage, respectively with at least 3 reads (Supplementary
Document 6). Among these, 374 mature miRNA/miRNA∗
duplexes had expression evidence both for miRNA and miRNA∗

and, thus, accepted as “in silico expressed.” For Brachypodium
transcriptome miRNAs, expressed mature miRNA count was
detected as 49 (56% of all identified miRNAs) corresponding to
13 miRNA families. The miRNA sequences for which expression
evidence could not be obtained with the currently available
expression data may still be expressed under highly specific
conditions or at specific tissues or developmental stages.

Across more than 7000 miRNAs identified from the T.
aestivum genome, 3867 of them showed corresponding to
40 miRNA families were detected as “in silico expressed” at
mature miRNA level while this number 2148 at the pre-
miRNA level. Of the 102 different mature miRNA/precursor
pairs identified from T. aestivum spike transcriptome, 37 (36%
of all identified miRNAs) miRNA precursors correspond to 14
miRNA families were detected as computationally expressed
by aligning to ESTs and contigs of transcriptome assemblies
with >95% query identity and query coverage, distinctly from
the B. distachyon transcriptome miRNAs where the utilized
data for pre-miRNA expression contains higher amount of
sequences. Additionally, 83 of maturemiRNA sequences together
with 90 of miRNA∗ sequences were aligned to small RNA
sequencing reads (Supplementary Document 3) with 100% query
identity and coverage. Across all identified miRNAs from T.
aestivum spike transcriptome, 73% of them corresponding to 75
miRNA/miRNA∗ duplex were detected as “in silico expressed” at
the mature miRNA level (Supplementary Document 6).

In order to check the genuineness of identified pre-miRNAs,
small RNA reads from Brachypodium and T. aestivum were
aligned back to pre-miRNAs with both Bowtie2 and GMAP and
alignment result were compared to predicted location of mature
miRNA/miRNA∗ duplexes via “SUmiRFold.” Approximately,
74% of pre-miRNAs identified from genome and 68% of pre-
miRNAs detected from transcriptome of Brachypodium were
aligned back to sRNA reads. For T. aestivum, only 29% of
miRNAs identified pre-miRNAs from genome were covered by
sRNA reads while this percentage was 80% for transciptomic
miRNAs. sRNA reads were detected as aligned the exact same
location with the one predicted by “SUmirFold” (Figure 7) for
many miRNAs and proved the effectiveness of “SUmirFold” for
determination of miRNA locations of the precursor sequences.
The miRNAs which are not covered or aligned to sRNA
reads may still stand as genuine miRNAs since the alignments
result are directly correlated with number of sRNA reads
used in the analysis. Additionally, some miRNAs, particularly
identified from genome may not be expressed under given
condition; however, their expression might occur in some
other specific conditions. Overall, these results showed that
this pipeline able to identify genuine miRNAs in a precise
manner.

Identification of TE-miR
Repetitive elements including transposable elements (TEs) can
constitute up to 80–90% of plant genomes (Feschotte et al., 2002).
In order to detect association of predicted Brachypodium and
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FIGURE 7 | Alignment of small RNA sequencing data to pre-miRNA. The small RNA sequencing reads are aligned to the predicted pre-miRNA sequences to

show the efficiency of “SUmirFold” and “SUmirPredictor” for detection of mature miRNA/miRNA* pairs on the miRNA precursors. Alignment result from GMAP and

Bowtie2 which are visualized with IGV showed that small RNA reads were successfully aligned to predicted locations of mature miRNA/miRNA* pairs for

miR1432-3p-1 from B. distachyon. This analysis can be used for inspection of genuineness of miRNA precursor sequences in an addition to in silico pre-miRNA

expression analysis expression analysis.

Triticum miRNA sequences with TEs, pre-miRNA sequences
were aligned to known plant TEs from Poaceae repeat library
which contains 34,135 sequences. Overall, 81% of Brachypodium
miRNAs identified from genome precursors contained TEs
with more than 50% of their lengths and termed as TE-
MIRs (Supplementary Document 7). Among these, 90 pre-
miRNA sequences were aligned to TEs with an almost perfect
complementary and classed as “potential siRNA candidates”
(Supplementary Document 7). Across putative TE-miRs of
Brachypodium genome, more than 200 of these sequences were
detected as “in silico” expressed at mature miRNA level while
only 23 of siRNA candidates were observed to have expression
evidence. TE-miR content of Brachypodium transcriptomic
miRNAs were relatively lower; only 38 miRNA precursors were
detected as “TE-miRs” while 9 of them separated as potential
siRNA candidates. All the siRNA candidates were detected as “in
silico expressed” at mature miRNA level while 37 of TE-miRs
showed the expression evidence (Supplementary Document 7).

The content of TE-miRs detected as higher in T. aestivum
in both genome and transcriptome. Approximately, 95% of
all identified miRNAs were detected as TE-miRs since they
contained TE elements with more than 50% of their lengths.
Of these, 74% of TE-miR candidates aligned to TE elements
with 3 or fewer mismatches and were grouped as siRNA

candidates. The expression analysis of these miRNAs showed
that 3634 putative TE-miRs were detected as expressed at mature
miRNA level while 2712 of them were detected as siRNA
candidates (Supplementary Document 7). Additionally, 98 out
of 105 miRNAs identified from T. aestivum transcriptome were
detected as “TE-miR” candidates while 30 of them represented
siRNA potential. Across TE-miR candidates of T. aestivum
transcriptome miRNAs, 68 of them showed in silico miRNA
expression evidence while all the siRNA candidates were detected
as putatively expressed. In addition to a number of hypotheses
on the mechanisms of plant miRNA origins, such as inverted-
duplication and spontaneous evolution, TEs can also contribute
the evolution of miRNAs (Voinnet, 2009). Thus, it is possible to
associate the high abundance of TEs across miRNA precursors
with the evolutionary source of plant (Li et al., 2011; Kurtoglu
et al., 2013; Alptekin and Budak, 2016). On the other hand,
it is highly challenging to differentiate between TE-miRs and
putative siRNAs (Piriyapongsa and Jordan, 2008). Thus, the
siRNA candidates might be actual TE-miRs, however, further
analysis are necessary to make this discrimination.

In this analysis, both Class I Retro-elements and Class II
DNA transposons were observed across all putative precursor
sequences, with DNA transposons being remarkably abundant
(Supplementary Document 7, Figures 8A,B, 9A,B). Tcl/Mariner
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DNA transposon family were detected as covering many
TE-miRs in B. distachyon, both at genome (Figure 8B) and
transcriptome level (Figure 8A), while En-Spm/CACTA was
the mostly found TE family in T. aestivum miRNAs identified
from genomic data (Figure 9B). Additionally, the miRNA
families associated with TEs were further analyzed and miR1122,
miR1436, and miR1439 family members were detected as the
miRNA families which has the most members of TE-miRs.
On the other hand, majority of non-TE-miRs belongs to
miR393, miR394, miR395, miR397, miR399, miR529, miR530,
miR845, miR221, and miR2175 families in B. distachyon and
to miR162, miR167, and miR1118 families in T. aestivum.

The distribution of sRNA reads on the precursors of TE-miRs
and siRNA candidates were also analyzed in order to further
support the genuineness of these candidates. In the majority of
the TE-miRs, the sRNA reads were detected as concentrated on
the predictedmaturemiRNA andmiRNA∗ locations (Figure 10).
Many siRNA candidates were also supported by relatively even
distribution of sRNA reads on the precursors where there
is sufficient sRNA sequence data (Figure 11). It is a known
phenomenon that siRNAs target the TE elements and suppress
their expression in order to maintain the genomic stability (Ito,
2012). Dispersed distribution of sRNA reads on the precursors of
siRNA candidates provides evidence for this kind of a silencing
mechanism.

Putative miRNA Targets and their
Enrichment
miRNAs regulate gene expression by binding on the
complementary sites of target mRNAs and suppressing
their expression through translational inhibition or mRNA
decay/cleavage (Fahlgren and Carrington, 2010). Thus,
identification of target transcripts of miRNAs provides
information about their functional role at the cellular level.
Putative targets of predicted miRNAs represented a diverse
distribution in T. aestivum and B. distachyon (Supplementary
Document 8). Some miRNAs suggested having important
regulatory roles for plant metabolism. For instance, miR397
from Brachypodium genome suggested that it is targeting
“probable magnesium transporter NIPA8 isoform X1” which
might have an essential role for magnesiummetabolism for plant
together with the enzymes which utilize this element. In another
example, miR160 from T. aestivum suggested that it is targeting
“Auxin response factor 22” which is an important factor in
hormone signaling in plants. Such miRNA-target pairs provide
a rough idea for the detection and selection of functionally
important miRNA families for validation among the pool of
putatively identified miRNAs.

Target enrichment analysis for known proteins helped the
key roles of several miRNAs in a more accurate way and
easier elimination. For instance, 1107 differentmiRNA associated
targets were decreased to 160 for B. distachyon genome
miRNAs. Target processing mode (cleavage and inhibition) of
most of the enriched targets were associated with “cleavage”
where the target transcript destroyed by cleavage of the
mRNA transcript. Multiplicity is a value which is given by

psRNATarget and shows the different target binding sites for
miRNAs (Dai and Zhao, 2011). Many enriched targets associated
with only one target binding site and their multiplicities
were counted as 1. Regarding to enriched target analysis
results, highly represented miRNAs suggested enriched targets
with key roles in essential molecular pathways (Table 3,
Supplementary Document 8). One of the mostly represented
miRNAs identified from B. distachyon genome, miR1436,
detected as targeting “methyltransferase 6 isoform X2” and
“WAT1-related At5g64700-like” proteins are the most enriched
targets. Also, some other miR1436 family members were
detected as targeting “Dead-Box Associated Protein,” “Heat
Shock Protein,” “DNA Excision Repair Associated Protein”
and “Early Dehydration Responsive Protein,” suggesting crucial
involvement in stress responses (Supplementary Document
8). On the other hand, miR1122, one of the most highly
represented miRNAs for both T. aestivum and B. distachyon, was
suggested that targeting “Pre-mRNA-processing-splicing factor
8” regarding to annotation of T. aestivum CDS even though
the most enriched target of this miRNA family was detected as
“PREDICTED: Uncharacterized protein LOC100837429 isoform
X1” regarding to Brachypodium annotation. Target analysis and
enrichment also revealed that miRNAs which are generated as
a result of alternative splicing are targeting different proteins.
For instance, the miRNAs which are generated different isoforms
of from T. aestivum “c195255_g1” associated with different
targets. The miR1439-3p-4 which the one expression is lost in
the second and third isoforms associated with “KH domain-
containing” protein while miR1436-3p-8 and miR1436-3p-1
were associated with “potassium transporter 13” and miR1130-
5p-10 is associated with “Tropinone reductase.”

Statistical enrichment of GO-terms was performed by
utilizing Fisher’s exact test method for each miRNA family
in each dataset (Supplementary document 8). The most
significant GO-terms was chosen based on FDR cut-off <

0.05 and outputs showed some essential regulatory features
of miRNAs in several pathways. Interestingly, no enriched
GO term was detected for the T. aestivum transcriptome
miRNAs with the given cutoff. Several miRNA families from
T. aestivum; miR166, miR169, miR171, miR2275, miR397,
miR5062, miR9662, miR9663, and miR9664; associated with
“kinase activity” which may suggest their roles in cellular
signaling. No information is detected about the specific kinase
family which these miRNAs are regulating even the presence
of several association with miR1429 and miR531 with MAPK
kinase pathway in rice (Raghuram et al., 2014). Enriched GO-
terms for miR397 from B. distachyon suggested its association
with stress response based on the presence of GO-terms
such as “response to stress,” “response to external stimulus,”’
and “response to biotic stimulus.” Additionally, miR167 from
T. aestivum was associated with “pollen-pistil interaction”
suggesting its regulatory role in development. This miRNA
family was also associated with the young tissues such as
shoot-tips and flowers in Arabidopsis (Glazińska et al., 2014),
therefore, further elucidation of its function in T. aestivum
might be important for understanding the developmental
regulations.
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FIGURE 8 | Distribution of TE elements families on Brachypodium pre-miRNA sequences. (A) Distribution of TE element families on B. distachyon

transcriptome miRNAs. (B) Distribution of TE element families on B. distachyon genome miRNAs.

FIGURE 9 | Distribution of TE elements families on T. aestivum pre-miRNA sequences. (A) Distribution of TE element families on T. aestivum transcriptome

miRNAs. (B) Distribution of TE element families on T. aestivum genome miRNAs.
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FIGURE 10 | Distribution of sRNA reads on putative TE-miR. miR156-3p-1 from T. aestivum genome is a TE-miR candidate which aligned to TE element

“RLC_36906|LTR_Sb_chr_09_853” with more than 50% of its length. The distribution of sRNA reads are concentrated on regions where the mature miRNA and

miRNA* sequences were predicted as located by “SUmirFold” (mature miRNA is between 101 and 122th (marked with black square) and star sequence is between

21 and 40th bases (marked with red square).

FIGURE 11 | Distribution of sRNA reads on putative siRNA candidates. miR1436-3p-156 from B. distachyon genome is a siRNA candidate which shows

similarity to TE element “DTC_155186|DTC_Jorge_3B_034_E06-2” and the dispersed distribution of sRNA reads on the precursor supports the genuineness of this

predicted siRNA. Instead of mature miRNA (marked with black sticks, from 82 to 102th bases) and miRNA* locations (marked with red sticks, from 21 to 41th bases),

sRNA reads are dispersed along the precursor.
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TABLE 3 | The most enriched known targets of mostly represented

miRNAs from B. distachyon and T. aestivum.

miRNA ID Predicted most enriched known target

miR1117 NA

miR1122 Pre-mRNA-processing-splicing factor 8, Uncharacterized protein

LOC100837429 isoform X1

miR1130 Tropinone reductase, Kinesin KIF15

miR1436 Methyltransferase 6 isoform X2, WAT1-related At5g64700-like

protein, Calcium-dependent kinase

miR1439 Uncharacterized protein LOC100824126, Weak chloroplast

movement under blue light 1-like, Ubiquitin carboxyl-terminal

hydrolase 27 isoform X1

miR156 Squamosa promoter-binding 3

miR166 Uncharacterized protein LOC106866306

miR169 Uncharacterized protein LOC100822852 isoform X1, Probable

transport Sec1a isoform X2

Small RNA Sequencing Adaptation of
miRNA Pipeline
In order to detect the feasibility of our method to small
RNA sequencing data, a small portion of sRNA reads from
B. distachyon (200,000 sRNA sequences) was used as a trial
data. Following the adaptor trimming of these reads, they
were aligned to high-confidence miRNA list allowing up
to 3 mismatches and these alignments resulted in 17,434
blast hits (Supplementary Document 9). The small RNA
reads which were detected as similar to known miRNA
sequences were trimmed at locations where they aligned to
known miRNA sequences. Trimmed sequences were aligned
back to Brachypodium genome with “SUmirFind” and their
hairpin sequences were detected with “SUmirFold.” SUmirFold
generated 740 positive hits were the small RNA reads were
aligned back to genome and 144 of this locations folded into
hairpin-shaped miRNA precursors (Supplementary Document
9). Processing of these sequences with “SUmirPredictor” resulted
with 82 miRNA sequences corresponding to 16 miRNA families.
These miRNA sequences were also compared to the miRNAs
detected from Brachypodium genome. Seventy-seven pre-miRNA
sequences identified from sRNA data were aligned to miRNA
precursors identified from B. distachyon genome with 100%
query coverage together with more than 70% identity and only
five of the miRNAs identified from small RNA reads were not
detected across Brachypodium genome miRNAs (miR1122-3p-8,
miR1122-3p-9, miR1122-3p-10, miR1127-5p-1, and miR160-3p-
1) (Supplementary Document 9).

DISCUSSION

In recent years, intensified focus on miRNA research has
resulted in the generation of many different pipelines and
software for the identification of miRNAs (Jones-Rhoades and
Bartel, 2004; Kleftogiannis et al., 2013). Previously, we have
developed an automated pipeline consisting of two consecutively
run scripts, “SUmirFind” and “SUmirFold” for in silico plant
miRNA identification from large-scale sequencing data (Lucas

and Budak, 2012), which helped unlock many potential
miRNA species from Triticeae family members (Akpinar et al.,
2015; Akpinar and Budak, 2016; Alptekin and Budak, 2016).
Herein, we refined our pipeline with the implementation of
two additional scripts by taking aim at providing increased
sensitivity and specificity in course of homology-based in silico
miRNA identification. In the virtue of current refinements,
this methodology provides mining of miRNAs from genomic
and transcriptomic data in a sensitive manner together with
their detailed annotation and characterization. Additionally,
we showed that this pipeline can be adapted to small RNA
sequencing data by incorporation of a few additional steps.

Utilization of an accurate reference miRNA set is crucial for
both homology and machine learning based miRNA mining.
Reference miRNA set selection is also important in the process
of miRNA identification from small RNA sequencing data since
many pipelines for small RNA data processing require a list of
known miRNA sequences (Kang and Friedländer, 2015; Tam
et al., 2015). Unfortunately, the genuineness of whole miRNAs in
the miRBase, which is the most comprehensive miRNA database,
is skeptical, because; many miRNA sequences lack experimental
evidence and mainly identified with in silico methods (Meng
et al., 2012; Kozomara and Griffiths-Jones, 2014). Using in silico
identified miRNAs in the process of computational miRNA
mining may not generate reliable results since the genuineness
of in silico miRNAs is not certain. As a suggestion to this
issue, a set of high-confidence miRNAs were release in the latest
version of miRBase; however, some other problems has arisen,
in this case (Kozomara and Griffiths-Jones, 2014). One of the
major constraints of being a “high-confidence” miRNA is the
alignment of mature miRNA/miRNA∗ sequences with least 10
different reads of existing small RNA sequences (Kozomara and
Griffiths-Jones, 2014). This stringent parameter is subservient in
order to prove the genuineness of miRNA sequences identified
from animals, particularly humans, however; this rule might
be critical for plant miRNAs since the small RNA sequencing
projects are relatively fewer compared to animals. Consequently,
such situation may cause to overlook some important plant
miRNAs which are experimentally well-characterized but cannot
be detected among the high-confidence plant miRNAs because
of small RNA alignment evidence. Consideration of defined
problems, we constructed a list of high confidence miRNAs
by prying out of high-confidence and experimentally-validated
plant miRNAs from miRBase Release 21 which might be
useful for future miRNA analyses in plants along with their
identification. We believe that this miRNA list increase the
sensitivity of our miRNA methodology for detection of genuine
miRNA candidates in course of analysis.

The suggested methodology was tested with both genomic
and transcriptomic data from T. aestivum and B. distachyon.
These crops were particularly included in the analysis since
both have an available genome sequence and different small
RNA sequencing studies present in public databases. The outputs
of “SUmirFind-Fold-Predictor” processes suggested that the
number of identified miRNAs from transcriptomic data is much
fewer compared to genome or both of the plants. Even though
transcriptome assemblies may contain miRNA precursors which
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can be used for miRNA identification, generally they represented
with a fairly small amount of transcriptome (∼1% of both
B. distachyon and T. aestivum transcriptomic data) since the
miRNA precursors are prone to quick maturation into mature
miRNA/miRNA∗ duplexes, thus, such distribution of miRNA
precursors in the transcriptomic data is expected (Kurihara and
Watanabe, 2010). Remarkably, T. aestivum genome suggested
much more miRNAs compared to B. distachyon (∼7-fold more).
Wheat is a hexaploid organismwith a huge (17Gbp) and complex
genome which consists of three different sub-genomes (A, B, and
D) (Brenchley et al., 2012; Choulet et al., 2014); thus, the big
difference between miRNA counts might be associated with the
genome size differences.

Identified miRNAs from T. aestivum and B. distachyon were
carefully named prior to the other down-stream analysis. Since
some miRNA family members such as miR156/miR157 or
miR159/miR319 show high similarities at the mature miRNA
level (Voinnet, 2009; Jones-Rhoades, 2012), redundant miRNA
annotations, meaning that exact same mature miRNA sequences
with more than one miRNA ID in, may occur in the
process of homology-based computational miRNA identification
(Figure 3). The idea behind the addition of “SUmirPredictor”
script to the pipeline was providing a more automatic and
precise miRNA annotation, specifically considering the presence
of redundantmiRNA annotations and associatedmiRNAnaming
problems. In course of testing the pipeline with genomic and
transcriptomic data, “SUmirPredictor” successfully detected and
discarded redundant miRNA annotations where it also provide
the name of miRNA sequences as separated by comma in case
of equal similarity, which is a rare case (only three different
pairs of miRNAs in identified from Brachypodium genome).
This problem is mainly cause from ambiguous naming and
mis-annotations of miRBase miRNAs (Budak et al., 2015a);
consequently, the decision about the naming of such miRNA
sequences is left to the user preference. Another problem arising
from the mis-naming of miRBase miRNAs is the absence of
hairpin arm information such as 3′ or 5′ arm of the related
miRNA hairpin. The sequences of miRNAs which are coming
from the different arms of the same hairpins are highly different
from each other. The lack of this arm information in the
miRNA naming cause the presence of many miRNA sequences
which are associated with the same miRNA family but relatively
different in the sequence level. This methodology also suggested
a solution for this naming problem and it successfully named the
newly identified miRNA sequences respect to both the hairpin
information about the homology miRNA presented in reference
miRNA set and the miRNA hairpin information coming as a
result of “SUmirFold” process.

Following the naming process, putative miRNA sequences
were inspected to detect any presence of contaminations which
may come from any other type of small non-coding RNA
sequences in the process of computational identification steps
are also controlled. The existence of miRNA sequences derived
from other non-coding sequences, tRNA sequences in humans
has been shown in a few studies even though no evidence has
been detected for plants yet (Schopman et al., 2010; Maute
et al., 2013). Presence of such miRNAs might cause false-positive

identification of miRNA sequences. In another case, the miRNA
coding precursor might have dual coding capacities for both
miRNAs and other type of small RNAs (Petfalski et al., 1998;
Lee et al., 2009). Thus, elimination of small non-coding RNA
sequences prior to the miRNA identification analysis may cause
fails to notice such sequences. With the consideration of all
these points, identified miRNA sequences and their precursors
were aligned to other non-coding small RNA sequences via
Blast algorithm and any such contamination was not detected
across the whole identified miRNAs from both Brachypodium
and Triticum which shows the sensitivity of our pipeline
for specifically identifying miRNA sequences. Additionally,
any present association of identified miRNA sequences with
organellar genome was also checked by BLAST alignment of
miRNA sequences to organellar genomes; however, no organelle-
related miRNAwas identified. The miRNA sequences originating
from organellar genomes is an emerging topic, specifically in
human miRNA research (Borralho et al., 2015; Srinivasan and
Das, 2015). Up to now, no organelle genome associated miRNA
sequence was detected in plants. Such situation may arise from
a different regulation and biogenesis of organelle originating
miRNA sequences; however, further research is necessary.

In order to check the genuineness of identified miRNAs,
several other analyses were conducted in this methodology.
The in silico expression analysis of identified putative miRNAs
showed the presence of identified miRNAs both at the pre-
miRNA and mature miRNA levels even though mining evidence
for the precursor sequences from EST and transcriptome data
can be less productive, compared to mature miRNAs. Since
the processing of plant mature miRNAs from the precursor
sequences quickly happens and their lifespan is very limited,
the abundance of these precursors is relatively rare across EST
and cDNA sequences (Kurihara and Watanabe, 2010; Budak
and Akpinar, 2015). However, it is still possible to detect a
few precursor sequences which serve as an evidence for the
genuineness of the computationally identified miRNAs. Thus,
the fewer detection of miRNA precursors in the in silico miRNA
expression analysis is an expected result. In the small RNA
expression analysis, both the mature miRNA and miRNA∗

sequences were aligned to the reads of small RNA sequencing
since the miRNA/miRNA∗ is presented as duplex inside of the
cell and they are separated from each other in the complementary
target binding step (Naqvi et al., 2012; Rogers and Chen, 2013).
As a result of in silico small RNA expression analysis, overall more
than 40% of all identified mature miRNA/miRNA∗ duplexes
from B. distachyon and T. aestivum were aligned to the small
RNA libraries with 100% query identity and coverage together
with satisfying at least three reads cut-off which supports the
genuineness of these identified miRNAs. The miRNAs which
did not provide small RNA expression evidence with regard
to our parameter might still be genuine miRNAs since the
expression evidence for miRNA∗ sequences is hard to obtain. The
miRNA∗ sequences are generally much less stable compared to
mature miRNA sequences and the detected miRNA∗ sequences
in small RNA sequencing libraries are generally associated with
highly expressed miRNAs (Finnegan and Pasquinelli, 2013).
Additionally, the mature miRNA/miRNA∗ duplexes which are
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not detected in the small RNA libraries might be still expressed
under highly specific conditions. In another case, these miRNAs
might be detected in the sequencing experiment when they bind
to their targets; however, the experimental evidence is necessary
in order to prove their existence under given conditions. In
addition to in silicomiRNA analysis, the reads from sRNAs were
also mapped identified pre-miRNA sequences to show evidence
for the genuineness of identified miRNA precursors. Alignment
results showed that many pre-miRNAs were covered by small
RNA reads on the location that “SUmirFold” detect the miRNA
presence (Figure 7). The pre-miRNAs which were not covered
with small RNA reads can still be genuine miRNA sequences
since the small RNA libraries are highly condition/time/tissue
specific. Particularly in consideration of miRNAs identified from
genome, they might be expressed just under specific condition
which may not be covered by the aligned sRNA libraries, thus it
is an expected result that whole genome miRNAs are not covered
by sRNA reads.

Along with in silico expression analysis, the genuineness of the
identifiedmiRNA sequences were also controlled by inspection of
specific miRNA-miRNA precursor characteristics such as length
of mature miRNA and miRNA precursors, MFE and MFEI
values. In this analysis, the most of the mature miRNAs were
detected as 21 nucleotide long which is an expected situation
for plant miRNAs (Thakur et al., 2011). Identified mature
miRNA hairpins showed low MFE value which is consistent with
previous results from literature (Kurtoglu et al., 2014; Akpinar
and Budak, 2016). Despite low MFE is a crucial indicator for the
presence of miRNA-associated hairpins (Bonnet et al., 2004), it
might be an unreliable source for plant miRNA mining process
since miRNA precursors have significant variation in length
(Thakur et al., 2011). Thus, high MFEI values were considered
as significant point for discrimination process of miRNAs from
other RNA species such as tRNAs (MFEI = 0.64), rRNAs
(MFEI = 0.59), mRNAs (MFEI = 0.62–0.66) or pseudo-hairpins
produced by coding sequences (Schwab et al., 2005; Kantar et al.,
2012). Detected high MFEI values from this study also showed
convenience with previous studies (Zhang et al., 2007; Jin et al.,
2008; Kantar et al., 2012) and serve as a consistent point for the
genuineness control of our miRNA identification method.

Understanding the genomic organization of miRNA genes
together with their transcriptional regulation provide insights
into their biogenesis (Guo et al., 2014). The genomic location
of MIR genes may affect the generation and maturation of
miRNAs. It was shown that multiple miRNAs sometimes
come from the same transcript or from different alternative
spliceoforms of the same gene (Olena and Patton, 2010; Nozawa
et al., 2012). For such miRNAs, it is also possible to have a
type of regulatory circuit which may generate fluctuations in
the miRNA expression level under biotic and abiotic stresses
(Rajwanshi et al., 2014; Dolata et al., 2016). In the light
of such information pointing out the importance of miRNA
location, “SUmirLocator” script was added on our pipeline and it
successfully represented the genomic/transcriptomic distribution
of identified putative miRNA families. Both in Brachypodium and
T. aestivum genome, miRNA sequences from the same family
were generally detected as located in a close proximity with

each other. These sequence isoforms of same miRNA family
members may target either the same or different target genes.
It is also possible that the primary transcripts of such miRNA
genesmight be common and their regulationmight be conducted
with other regulator elements at the pre-miRNA level andmature
miRNA level. The presence of many mature miRNA sequences
transcribed from same pre-miRNAmay represent some examples
of such situations (Supplementary Document 5). Although the
regulation of miRNA genes is well-studies and the presence of
such miRNAs were shown in animals, there is not adequate
information for plants (Cai et al., 2009; Slezak-Prochazka et al.,
2010; Schanen and Li, 2011). “SUmirLocator” results provided
a rough idea regarding to the genomic organization of miRNAs
together with their regulation at the transcriptomic level. In
addition, it is possible to detect the chromosomal and sub-
genomal distribution of miRNA sequences. For instance, results
of “SUmirLocator” process suggested that B sub-genome of T.
aestivum contains more miRNA coding regions.

The outcomes of “SUmirLocator” process from the
transcriptomic data further provided insights about biogenesis
and transcriptional control of miRNA genes. Several miRNAs
identified from T. aestivum transcriptomic data such as miR1120
and miR1436 were detected as generated from the same miRNA
precursor. Both of these miRNA sequences has a potential to
be transformed into genuine mature miRNA sequences by
the effect of DICER-LIKE enzyme or in another case, one of
these miRNAs might turn into functional mature miRNAs.
Interestingly, the generation of different isoforms of same
contig, which might have resulted from a possible alternative
splicing event, did not affect the possible miRNA coding region
of transcript in case of miR1120–miR1436 (Supplementary
Document 5). However, it might also be possible that alternative
splicing events on miRNA genes has an effect on the generation
of different mature miRNA sequences. Although there is a lack
of such studies for plants in the literature, research from other
organisms shows the possibility of such events (Rasschaert et al.,
2016). “SUmirLocator” results also show the importance of
transcriptional direction for the miRNA generation process.
In the case of miR1128 and miR1436 (contig c199396_g2_i3,
Table 3), the sense and antisense transcription of exact same
miRNA gene resulted in the generation of different miRNAs.
Regarding to associate transcriptional signal, which comes from
upstream regulatory processes, the choice of transcriptional
direction might be done, consequently the choice of miRNA.
Thus, we suggest that “SUmirLocator” script might be useful in
the further search of such transcriptional regulation of miRNA
genes.

“SUmirLocator” also offer important information about
possible genomic copy number and expression profiles of
identified putative miRNA families under given condition
based on their genome/transcriptome-wide representation. In
our analysis, some miRNAs such as miR1436 and miR1439
from Brachypodium and miR1122 from Triticum have been
represented with more genome/transcriptome-wide copy
number compared to others. Such miRNA families were
remarked as “highly-representative” which tends to obtain
robustness at both mature and precursor miRNA levels. The
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high representation of miRNA families may be associated
with several other factors. First of all, TE-associated miRNA
families might show high expression compared to others since
repetitive elements are ubiquitously found all around the
genome, specifically in crops like wheat. Also, highly-represented
miRNAs may target specific mRNAs which have essential
functions in the regulation of cellular life. As an example,
many targets of miR1436 family members were associated
with important enzymes such as “serine-threonine protein
kinases” involved in signal transduction pathways. The post-
transcriptional regulation of signaling elements via miRNAs has
already been shown with a few animal studies (Inui et al., 2010;
Zhao et al., 2013) and the robust expression of this miRNAmight
be associated with its regulatory function in signaling pathway.
On the other hand, the miRNA families targeting the molecules
which have many isoforms also be expressed highly compared to
others, which also might be the case for miR1436. However, in
both cases, experimental validation of the miRNA-target pairs
is necessary and “SUmirLocator” may provide a more focused
experimental design for such experiments.

In many organisms, TE–miRNA association has been fairly
represented; hence identification of miRNAs from overall
sequences including TEs is crucial with the aim of unlocking
the complete set of miRNAs in a given species (Yao et al.,
2007; Piriyapongsa and Jordan, 2008; Li et al., 2011; Gim
et al., 2014; Budak and Kantar, 2015). Common practice in
miRNA identification both in plants and animals usually involves
elimination of these repetitive sequences prior to miRNA
identification, in order to avoid mis-annotation of repeat-related
siRNAs as miRNAs; however, this approach overlooks genuine
miRNAs encoded by TEs (Li et al., 2011; Budak and Akpinar,
2015). In order to avoid inadequate detection of miRNAs, our
miRNA identification guideline does not include repeat-masking
step prior to miRNA mining from genomic/transcriptomic data;
instead, it analyzes identified putative pre-miRNA structures
with respect to their relation with TEs. In our analysis,
majority of the identified miRNAs was associated with TEs,
particularly DNA transposons. There are a few hypotheses which
attempt to describe the relation of miRNAs and TEs. One
of the miRNA evolution hypothesis claims that miRNAs are
evolved as a result of TE-to-MITE (Miniature Inverted Repeat
Transposable Elements) transition (Piriyapongsa and Jordan,
2008; Fattash et al., 2013). In addition to TE-to-MITE transition,
current studies propose that miRNA genes are generated with
accumulation of mutations in inverted repeat sequences, while
some other hypothesis suggesting direct transcription of miRNAs
from TEs with the assistance of transcriptionally regulative
elements (Fahlgren et al., 2007; Feldman and Levy, 2012; Roberts
et al., 2014). According to high content of repetitive elements
associated with pre-miRNA sequences, our results also agree with
previous studies and highlight the importance of identification of
TE associated miRNAs. Additionally, an important proportion
of identified TE-miRs showed in silico expression evidence at
the mature miRNA level which may indicate their genuineness.
In order to obtain a detailed observation about TE-miRs,
experimental validation of concerned ones might be necessary.
However, it must be underlined that the elimination of repetitive

sequences in course of miRNA analysis stands as a highly
speculative option.

Another puzzling issue about TE-miRs is the discrimination
siRNAs across TE-miR pools. siRNA molecules have many
common characteristics with miRNAs and this situation
sometimes result with false-positive prediction of TE-miRNAs
and siRNAs (Tang, 2005; Lucas and Budak, 2012). siRNA
molecules are evolved to suppress the activity of transposable
elements in plant genomes; thus, they show a high degree of
complementarity to TE elements (Ito, 2012; Thiebaut et al.,
2014). Considering this, we grouped the miRNAs which show a
resemblance to TE elements as siRNA candidates and TE-miRs,
where themiRNAs which their precursors aligned to TE elements
with a perfect or almost-perfect complementary manner. The
amount of siRNA molecules were generally detected as “low”
except the miRNAs identified from T. aestivum genome. Across
all themiRNAs associated with TE elements, a significant amount
of siRNA candidates (2712 sequences, Supplementary Document
7) were also detected as showing in silico miRNA expression
at mature miRNA level which means that they were aligned to
small RNA sequence together with their star sequences. Thus, it
is not certain that these sequences are “actual siRNA” and further
experimental evidences are necessary to show whether this
sequences are TE-miRs or siRNAs. Additionally, miR1117 which
shows evidences for being siRNA candidate did not represent any
CDS target in the target analysis process which might suggest
that its original target can be TEs where this sequence must be
annotated as siRNA, in such case. Additionally, the association
of this miRNA with TE element and chromosome-wide high
representation was previously shown in wheat (Lucas and Budak,
2012). In order to understand the genuineness of this miRNA,
further experimental characterization remains necessary.

Accurate and precise identification of microRNAs is the key
step for the miRNA research both in animals and plants. Despite
the presence of many comprehensive and reliable miRNA
detection methods in animals, accurate identification of plant
miRNAs still stands as a problematic issue. Here, we presented a
comprehensive methodology for plant miRNA identification and
its further computational characterization. Our method relies
on homology-based and comparative prediction of miRNAs
in a given genomic or transcriptomic sequence and it has
ability to predict miRNA sequences in a sensitive manner with
their further detailed characterization across different plants.
Currently, the most popular miRNA identification method
is small RNA sequencing which is an expensive and highly
condition-specific tool. Identification of miRNA sequences from
DNA-RNA sequences provides an overview of the potential
miRNA repertoire of the plant species which might not be
represented by small RNA sequencing studies since the miRNAs
obtained from small RNA reads are specifically expressed
miRNAs in a given condition. Considering this, we designed our
methodology as optimized for genome and transcriptome-wide
miRNA mining. Independently of this optimization, we also
showed that this pipeline can be used with small RNA sequencing
data, with minor modifications. Consequently, we were able to
identified miRNA sequences from genomic/transcriptomic and
small RNA sequencing data.
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Despite the presence of several miRNA identification pipelines
present in literature, there is a lack of comprehensive guideline
for characterization of plant miRNAs. We believe that our
methodology suggests insightful solutions to cover this absence
by providing a detailed analysis of identified miRNAs. It provides
a miRNA naming strategy which takes into consideration
of redundant miRNA annotation problem together with the
miRNA hairpin characterization. It suggests a methodology for
inspection of miRNA & TE association both in the manner of
TE-miR and siRNA candidates’ identification. It also provides
detailed information about miRNA localization together with
clues about possible effects of alternative splicing events in
MIR genes. Additionally, it suggests a solution to miRNA-
target pair enrichment problem where the precise elimination
of false-positives targets can conduct. Furthermore, it offers
an in silico expression analysis for both at pre-miRNA and
mature miRNA level. Our pipeline, with further refinements
presented in this study, has already provided efficient results
for complex crop species and it can be utilized for all of
the other genomic/transcriptomic data associated with diploid
or polyploid plant species. Additionally, the high-confidence
miRNA list released in this study can be used as a reference guide
for several miRNA analyses.
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Glazińska, P., Wojciechowski, W., Wilmowicz, E., Zienkiewicz, A., Frankowski,
K., and Kopcewicz, J. (2014). The involvement of InMIR167 in the regulation
of expression of its target gene InARF8, and their participation in the vegetative

and generative development of Ipomoea nil plants. J. Plant Physiol. 171,
225–234. doi: 10.1016/j.jplph.2013.07.011

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: ten
years of next-generation sequencing technologies.Nat. Rev. Genet. 17, 333–351.
doi: 10.1038/nrg.2016.49

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I.,
et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nat. Biotechnol. 29, 644–652. doi: 10.1038/nbt.1883

Guo, L., Zhao, Y., Zhang, H., Yang, S., and Chen, F. (2014). Integrated evolutionary
analysis of human miRNA gene clusters and families implicates evolutionary
relationships. Gene 534, 24–32. doi: 10.1016/j.gene.2013.10.037

Hackenberg, M., Rodríguez-Ezpeleta, N., and Aransay, A. M. (2011).
MiRanalyzer: an update on the detection and analysis of microRNAs in
high-throughput sequencing experiments. Nucleic Acids Res. 39, 132–138.
doi: 10.1093/nar/gkr247

Hendrix, D., Levine, M., and Shi, W. (2010). miRTRAP, a computational method
for the systematic identification of miRNAs from high throughput sequencing
data. Genome Biol. 11:R39. doi: 10.1186/gb-2010-11-4-r39

Howell, M. D., Fahlgren, N., Chapman, E. J., Cumbie, J. S., Sullivan, C.
M., Givan, S. A., et al. (2007). Genome-wide analysis of the RNA-
DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis
reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19,
926–942. doi: 10.1105/tpc.107.050062

Inui, M., Martello, G., and Piccolo, S. (2010). MicroRNA control of signal
transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263. doi: 10.1038/nrm2868

Ito, H. (2012). Small RNAs and transposon silencing in plants. Dev. Growth Differ.
54, 100–107. doi: 10.1111/j.1440-169X.2011.01309.x

Jin, W., Li, N., Zhang, B., Wu, F., Li, W., Guo, A., et al. (2008). Identification
and verification of microRNA in wheat (Triticum aestivum). J. Plant Res. 121,
351–355. doi: 10.1007/s10265-007-0139-3

Jones-Rhoades, M. W. (2012). Conservation and divergence in plant microRNAs.
Plant Mol. Biol. 80, 3–16. doi: 10.1007/s11103-011-9829-2

Jones-Rhoades, M. W., and Bartel, D. P. (2004). Computational identification of
plant MicroRNAs and their targets, including a stress-induced miRNA. Mol.

Cell 14, 787–799. doi: 10.1016/j.molcel.2004.05.027
Kang, W., and Friedländer, M. R. (2015). Computational prediction of miRNA

genes from small RNA sequencing data. Front. Bioeng. Biotechnol. 3:7.
doi: 10.3389/fbioe.2015.00007

Kantar, M., Akpinar, B. A., Valárik, M., Lucas, S. J., Doležel, J., Hernández, P., et al.
(2012). Subgenomic analysis of microRNAs in polyploid wheat. Funct. Integr.
Genomics 12, 465–479. doi: 10.1007/s10142-012-0285-0

Kantar, M., Unver, T., and Budak, H. (2010). Regulation of barley miRNAs
upon dehydration stress correlated with target gene expression. Funct. Integr.
Genomics 10, 493–507. doi: 10.1007/s10142-010-0181-4

Kleftogiannis, D., Korfiati, A., Theofilatos, K., Likothanassis, S., Tsakalidis, A.,
and Mavroudi, S. (2013). Where we stand, where we are moving: surveying
computational techniques for identifying miRNA genes and uncovering
their regulatory role. J. Biomed. Inform. 46, 563–573. doi: 10.1016/j.jbi.2013.
02.002

Kozomara, A., and Griffiths-Jones, S. (2011). miRBase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157.
doi: 10.1093/nar/gkq1027

Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.
doi: 10.1093/nar/gkt1181

Kurihara, Y., and Watanabe, Y. (2010). Processing of miRNA precursors.Methods

Mol. Biol. 592, 231–241. doi: 10.1007/978-1-60327-005-2_15
Kurtoglu, K. Y., Kantar, M., and Budak, H. (2014). New wheat microRNA

using whole-genome sequence. Funct. Integr. Genomics 14, 363–379.
doi: 10.1007/s10142-013-0357-9

Kurtoglu, K. Y., Kantar, M., Lucas, S. J., and Budak, H. (2013). Unique and
conserved microRNAs in wheat chromosome 5D revealed by next-generation
sequencing. PLoS ONE 8:e69801. doi: 10.1371/journal.pone.0069801

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lee, Y. S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of
small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649.
doi: 10.1101/gad.1837609

Frontiers in Plant Science | www.frontiersin.org 26 January 2017 | Volume 7 | Article 2058

https://doi.org/10.1371/journal.pone.0137773
https://doi.org/10.1093/jxb/erq087
https://doi.org/10.1038/srep05501
https://doi.org/10.1038/srep21106
https://doi.org/10.1126/science.1249721
https://doi.org/10.1155/2008/619832
https://doi.org/10.1371/journal.pone.0142753
https://doi.org/10.1093/nar/gkr319
https://doi.org/10.1104/pp.16.00830
https://doi.org/10.3389/fpls.2015.00741
https://doi.org/10.3732/ajb.1200020
https://doi.org/10.1038/nrg3074
https://doi.org/10.1007/978-1-60327-005-2_4
https://doi.org/10.1371/journal.pone.0000219
https://doi.org/10.1139/gen-2012-0174
https://doi.org/10.1534/genetics.112.146316
https://doi.org/10.1038/nrg793
https://doi.org/10.3109/10409238.2012.738643
https://doi.org/10.1038/nbt1394
https://doi.org/10.1016/j.cub.2005.10.016
https://doi.org/10.5808/GI.2014.12.4.261
https://doi.org/10.1016/j.jplph.2013.07.011
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1016/j.gene.2013.10.037
https://doi.org/10.1093/nar/gkr247
https://doi.org/10.1186/gb-2010-11-4-r39
https://doi.org/10.1105/tpc.107.050062
https://doi.org/10.1038/nrm2868
https://doi.org/10.1111/j.1440-169X.2011.01309.x
https://doi.org/10.1007/s10265-007-0139-3
https://doi.org/10.1007/s11103-011-9829-2
https://doi.org/10.1016/j.molcel.2004.05.027
https://doi.org/10.3389/fbioe.2015.00007
https://doi.org/10.1007/s10142-012-0285-0
https://doi.org/10.1007/s10142-010-0181-4
https://doi.org/10.1016/j.jbi.2013.02.002
https://doi.org/10.1093/nar/gkq1027
https://doi.org/10.1093/nar/gkt1181
https://doi.org/10.1007/978-1-60327-005-2_15
https://doi.org/10.1007/s10142-013-0357-9
https://doi.org/10.1371/journal.pone.0069801
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1101/gad.1837609
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Alptekin et al. Prescription for Plant miRNAs

Lei, J., and Sun, Y. (2014). miR-PREFeR: an accurate, fast and easy-to-use
plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30,
2837–2839. doi: 10.1093/bioinformatics/btu380

Li, Y., Li, C., Xia, J., and Jin, Y. (2011). Domestication of transposable
elements into microrna genes in plants. PLoS ONE 6:e19212.
doi: 10.1371/journal.pone.0019212

Liu, H.-H., Tian, X., Li, Y.-J., Wu, C.-A., and Zheng, C.-C. (2008). Microarray-
based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14,
836–843. doi: 10.1261/rna.895308

Liu, J., Han, L., Huai, B., Zheng, P., Chang, Q., Guan, T., et al. (2015). Down-
regulation of a wheat alkaline/neutral invertase correlates with reduced host
susceptibility to wheat stripe rust caused by Puccinia striiformis. J. Exp. Bot.
66:erv428. doi: 10.1093/jxb/erv428

Lucas, S. J., and Budak, H. (2012). Sorting the wheat from the Chaff: identifying
miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL.
PLoS ONE 7:e40859. doi: 10.1371/journal.pone.0040859
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