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Plants take up silicon as mono-silicic acid, which is released to soil by the weathering
of silicate minerals. Silicic acid can be taken up by plant roots passively or actively,
and later it is deposited in its polymerized form as amorphous hydrated silica. Major
silica depositions in grasses occur in root endodermis, leaf epidermal cells, and outer
epidermal cells of inflorescence bracts. Debates are rife about the mechanism of silica
deposition, and two contrasting scenarios are often proposed to explain it. According to
the passive mode of silicification, silica deposition is a result of silicic acid condensation
due to dehydration, such as during transpirational loss of water from the aboveground
organs. In general, silicification and transpiration are positively correlated, and continued
silicification is sometimes observed after cell and tissue maturity. The other mode of
silicification proposes the involvement of some biological factors, and is based on
observations that silicification is not necessarily coupled with transpiration. Here, we
review evidence for both mechanisms of silicification, and propose that the deposition
mechanism is specific to the cell type. Considering all the cell types together, our
conclusion is that grass silica deposition can be divided into three modes: spontaneous
cell wall silicification, directed cell wall silicification, and directed paramural silicification
in silica cells.

Keywords: cell wall, grasses, inflorescence bracts, root endodermis, silica cells, silicification mechanism,
transpiration, trichomes

INTRODUCTION

Silicon is a ubiquitous soil element that along with oxygen forms 50–70% of soil mass (Ma and
Yamaji, 2006). Plant roots absorb silicon as mono-silicic acid [Si(OH)4], a solute that is released
to soil by the weathering of siliceous minerals. Near most soil pH, silicic acid is an uncharged
molecule with pKa 9.8. Its concentration in soil solutions usually varies between 0.1 to 0.6 mM, but
may range anywhere between 0.01 to 2.0 mM (Haynes, 2014). Silicon affects plants’ physiology in
many beneficial ways, imparting tolerance against biotic stresses and alleviating adverse effects of
abiotic stresses (Liang et al., 2015). Although the benefits of silicon in agriculture are known for a
long time, no general mechanism of action was defined.

Silicon content across plants varies between about 0.1% to more than 10% on dry weight
basis (Epstein, 1994). Plants belonging to fern family Equisetaceae, and monocots belonging to
families Poaceae, Cyperaceae, and Commelinaceae have relatively large silicon content of about
4% (Hodson et al., 2005; Currie and Perry, 2007). Among them, Poaceae (the grass family) is
the agriculturally most important family, with rice, wheat, and barley constituting the basis for
human nutrition worldwide. In grasses, the root uptake of silicic acid (herein referred to as Si) is
mediated by the cooperative action of an aquaporin-like channel Low silicon 1 (Lsi1) and a proton
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antiporter, Lsi2. Afterwards, Si moves with the transpiration
stream and is unloaded from the xylem in the leaves by another
aquaporin-like channel, Lsi6 (reviewed by Ma et al., 2011; Ma and
Yamaji, 2015). In addition, so far unknown Si transporters might
be involved in directing further Si transfer within the leaf tissues
and concentrating it in target locations. The solute terminally
polymerizes with concomitant loss of water molecules, forming
hydrated silica (SiO2·nH2O). Plant silicification occurs in cell
walls, cell lumens, and intercellular spaces. While most of the
mineral is found in the shoot, some Si polymerizes in the roots
(Sangster, 1978).

Two contrasting hypotheses are often proposed to explain
silica deposition. The first is based on a passive mode of
silicification, relying on the spatial correlation between silica
deposition and organ transpiration (Yoshida et al., 1962; Sangster
and Parry, 1971; Rosen and Weiner, 1994; Euliss et al., 2005). In
this case, specific cell wall components and cuticular structures
may additionally affect the location of bio-silicification (reviewed
by Exley, 2015; Guerriero et al., 2016). This hypothesis infers
that silica deposition in plants is a spontaneous process resulting
from auto-condensation of Si molecules as the sap undergoes
dehydration (Yoshida et al., 1962). The second hypothesis
suggests that the formation of plant silica structures is catalyzed
by biological entities (Kaufman et al., 1969; Hayward and Parry,
1973; Sangster et al., 1983; Parry et al., 1984; Kumar et al., 2017).
Some authors suggest that silica deposition cannot be explained
solely by any one of the two hypotheses, and both the mechanisms
may be involved simultaneously (Hayward and Parry, 1975;
Sangster et al., 2001; Motomura et al., 2004; Markovich et al.,
2015). A review of literature is thus pertinent to better understand
this biomineralization process.

SITES OF SILICIFICATION IN GRASSES

Silica is deposited in all the organs of grasses. The most intensely
silicified tissues are usually root endodermis, leaf epidermis, and
abaxial epidermis of inflorescence bracts (Figure 1). In most
cases, silica impregnates the cell walls, directly laid down onto the
cell wall matrix (Bauer et al., 2011; He et al., 2013; Hodson, 2016).
The composition of the silicifying matrix may vary between
species and cell types, thus influencing silicification pattern
(reviewed by Guerriero et al., 2016; Hodson, 2016). In particular,
grasses have a unique hemicellulose composition, containing
glucuronoarabinoxylan and mixed-linkage glucans, instead of
the xyloglucan in non-commelinid monocots and dicots.
Furthermore, grass cell walls contain more phenylpropanoids
and less pectin compared with dicots (Guerriero et al., 2016).
Silica is often proposed to crosslink the cell wall polymers,
adding to their compressive strength (Currie and Perry, 2009;
He et al., 2013; Kido et al., 2015), similar to the role of lignin
in lignified walls (Salmén, 2015). In addition, structural trade-
off between silica, lignin and cellulose was observed in rice
(Suzuki et al., 2012; Yamamoto et al., 2012) and in a number of
wetland species (Schoelynck et al., 2010). As the metabolic costs
of silica deposition were estimated to be 20-fold lesser than that
of lignification (Raven, 1983), silicification can present preferable

solution for improving mechanical properties of plant tissues.
However, silica seems not to provide water repelling properties
comparable to lignin and its utilization thus require some degree
of regulation (Soukup et al., 2017).

Silicification in Inflorescence Bracts
Translocation of Si in plants is driven mostly by transpiration
(Sangster and Parry, 1971), and coordinated by specific
distribution of Si transporters. Silicic acid is selectively
transported to the panicle of rice during its maturation
(Yamaji et al., 2015), possibly due to its increasing sink strength
(Detmann et al., 2013). In panicles, Si is concentrated and
deposited in the inflorescence bracts (Hodson and Sangster,
1988), which serve as a tough protecting shield to the developing
caryopses. Silica deposition is restricted to the epicarp hairs
(Bennett and Parry, 1981; Parry et al., 1984) and the outer wall
of aleurone layer (Hodson and Parry, 1982), whereas it does
not accumulate in the caryopsis endosperm (Jones et al., 1963).
Bract silicification also provides a safe disposing location for
the mineral, which would polymerize anyway, as the transpired
water evaporates.

Silicification of the Glume Prickle Hairs, Papillae, and
Long Cells
The abaxial epidermis of the Phalaris canariensis glume consists
of stomatal complexes, long cells, prickle hairs, papillae, marco-
hairs and silica-cork cell pairs (Hodson et al., 1985). Figure 1B
shows a scanning electron micrograph of a Triticum aestivum
(wheat) glume, exhibiting stomata, prickle hairs, papillae, and
macro-hairs. In this section we will discuss silicification in glume
prickle hairs, papillae and long cells, whereas the silicification
of silica cell will be discussed in a separate section. Presence of
stomatal complexes on the abaxial epidermis indicates substantial
transpiration after their emergence. Nevertheless, the outer
tangential cell wall of papillae and prickle hair tips are already
silicified at emergence (Sangster et al., 1983; Hodson et al., 1985).
The flag leaf sheath encloses the inflorescence before emergence
and limits its transpiration, raising the possibility that the cell
wall is conducive for spontaneous silica deposition (Nissan
et al., 2015). Callose [β-(1→3)-D-polyglucose] induces silica
deposition in undersaturated silicic acid solution (Law and Exley,
2011), and it is possible that similarly, other polysaccharides
might play such role in cell wall silicification. Cross-sections of
mature prickle hairs and papillae show that the lumen of these
cells is also filled with silica, without the in-growth of cell wall into
the cell lumen to template the silicification (Hodson et al., 1985;
Hodson, 2016). Lumen silicification in dead cells suggests that it
might be driven either by passive transpiration via silica granule
formation (Bennett, 1982), or templated by organic matrix that is
accessible to Si only after cell death (Sangster, 1970). However, the
fact that lumen silicification continues long after cell death rather
supports the transpiration driven passive mode of silicification.
Thus, it might be possible that silica is deposited in two stages
in these cells, starting at the tip and the outer wall induced by
wall materials, followed by a spontaneous precipitation inside the
lumen driven by the degradation of the protoplast and evapo-
transpiration (Motomura et al., 2006; Markovich et al., 2015).
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FIGURE 1 | Silica deposition in grasses. (A) Diagram showing a full view of a generalized grass, and typical silicification patterns in the inflorescence (top), leaf
epidermis (middle), and root cross-section (bottom). White represent silicified cells. (B) Scanning electron micrograph (SEM) of the abaxial epidermis of glume in
Triticum aestivum L. (C) SEM of the abaxial epidermis of lemma in T. aestivum. (D) SEM of Sorghum bicolor (L.) Moench leaf cross-section showing silica cells in the
epidermis. (E) Fluorescence micrograph of prickles at the leaf tip in S. bicolor visualized by alkali-induced fluorescence (Soukup et al., 2014). (F) SEM of S. bicolor
root cross-section showing silica aggregates anchored in the inner tangential cell walls of endodermis. (G) Alkali-induced fluorescence micrograph of S. bicolor
primary root showing extensive distribution of silica aggregates in the endodermis. Root cortex was mechanically removed to expose the inner tangential cell walls.
Cx, cortex; En, endodermis; Ep, epidermis; LR, lateral root; ma, macro-hair; p, papilla; Pc, pericycle; PR, primary root; pr, prickle cell; sa, silica aggregate; sc, silica
cell; st, stoma. SEMs were collected at the back scattered electron mode, rendering silicon atoms brighter than carbon atoms.

In long cells, the outer wall thickens about 1 week after glume
emergence. Silica deposition seems to initiate 2 weeks after the
glume emergence, in parallel to cell death and collapse of the long
cells and parenchymatic cells (Hodson et al., 1985). Thus, long
cell silicification seems to depend on water evaporation.

The Outer Epidermal Cells and Macro-Hairs in
Lemma
The outer epidermis of the lemma of Phalaris canariensis lacks
stomata, suggesting low transpiration rates (Tambussi et al.,
2007). Silicification, however, occurs in macro-hairs and typical
rectangular epidermal cells (Hodson et al., 1984), a trait common
to many grasses. Before panicle emergence, both the macro-hairs
and outer epidermal cells have a large vacuole. The presence of
Si was not detected at this stage. Figure 1C shows a scanning
electron micrograph of a T. aestivum glume, exhibiting papillae,
and macro-hairs, but no stomata.

Macro-hairs are unicellular trichomes, often with lengths
greater than 1 mm on Phalaris canariensis lemma (Perry
et al., 1984a). Macro-hairs also start to silicify after panicle
emergence. Silica deposition initiates at the hair tip (Perry
et al., 1984b). During the week following emergence, wall

thickening proceeds to the base, and the outer layer of the
wall is silicified. The nanometric morphology of the deposited
silica is governed by the newly laid-down polysaccharides. Sheet-
like structures form during the deposition of arabinosylated
xylan and cellulose, globular particles deposit simultaneously
with mixed linkage β-(1→3, 1→4)-D-glucan, and fibrous
silica forms after the cell wall thickening stops. Apparently,
the polysaccharides provide chemical environments necessary
to stabilize the deposited silica (Perry et al., 1987). By
2 weeks after emergence, silicification of the wall material
continues in concentric rings (Hodson et al., 1984; Perry
et al., 1984a). The cytoplasmic content of macro-hairs breaks
down leaving behind an empty lumen (Hodson et al.,
1984).

Deposition of silica at the outer epidermal cells is also
templated by their cell wall. At emergence, the inner tangential
cell walls thicken to occupy most of the cell volume, leaving only
little space for active cytoplasm. In the week following emergence,
cytoplasm degrades and silicification initiates in the cell wall
region close to the pre-existing cytoplasm. Within 2 weeks, the
whole cell wall is impregnated with silica (Hodson et al., 1984).
We conclude that in macro-hairs and outer epidermal cells of the
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FIGURE 2 | Silica deposition in the epidermis of sorghum leaf. (A) Viability assay of epidermal peel showing viable cells’ cytoplasm green. Viable silica cells are
indicated with arrows whereas dead silica cells are indicated with asterisks. Micro-hairs are shown with broken ovals. (B) Back-scattered electron micrograph of the
same field of view, showing high signal intensity emanating from viable silica cells (arrow) and micro-hairs (broken oval). Dead silica cells are already silicified
(asterisks), although one dead non-silicified silica cell can also be seen [compare (A,B)]. (C) Silica cells displaying shrunken but viable cytoplasm (arrows) indicating
extra-membranous silica deposition. All scale bars represent 50 µm. Images adapted from Kumar et al., (2017) with permission from the John Wiley and Sons
publications. Copyrights of the image rest with the original authors and publisher.

lemma, silicification templated by the cell wall coincides with the
onset of spikelet transpiration.

Leaf Silicification
Among all plant organs, leaves usually exhibit highest
transpiration volumes. The evaporation of water promotes
xylem sap condensation and contributes to the formation of
solute sediments, including silica. However, even though most
of the water evaporates from mesophyll cells and passes through
stomata to the atmosphere, silicification of the guard cells occurs
at slow pace, advances with age, and never reaches all of the cells
(Figures 1D,E), (Motomura et al., 2004). Among other epidermal
cell types, long cells accumulate silica in their walls as soon as the
leaf starts to transpire (Sakai and Sanford, 1984). Silicification
in the mesophyll and bulliform cell walls is rather characteristic

to mature, sometimes senescent leaves (Sangster, 1970; Dinsdale
et al., 1979). Silicification is probably spontaneous in the cell
wall of these cells, resulting from Si auto-polymerization. In case
of lumen silicification in bulliform cells, granules of silica are
observed (Motomura et al., 2004).

Silicification of Leaf Micro-Hairs
Micro-hairs are bicellular trichomes having a basal and a cap
cell. Basal cells of micro-hairs in sugarcane are the first cell type
to silicify, even before leaf exposure to the outside environment
(Sakai and Sanford, 1984). In sorghum, silicification of the basal
cell initiates in viable cells (Figure 2), probably at the cell
wall. The cells probably die later on, and their lumen passively
fills up with silica (Motomura et al., 2000). In bamboo (Sasa
veitchii), cap cells accumulate significant amounts of silica only
after leaf opening. The number of silicified micro-hairs increases
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with age (Motomura et al., 2004), suggesting a dependency
on transpiration. Silicification in micro-hairs seems thus to
share similar mechanism to prickle hairs and papillae in the
inflorescence bracts.

Silica Deposition in Silica Cells
In grasses, silica cells are found as stretches of silica-cork cell
pairs in the epidermis of leaves (Sangster, 1970), stem internodes
(Kaufman et al., 1969) and abaxial epidermis of glumes (Hodson
et al., 1985). Silica cells are among the first type of cells to be
silicified in a tissue, sometimes even before the tissue is exposed to
the atmosphere (Kaufman et al., 1969; Sangster, 1970; Motomura
et al., 2006; Kumar et al., 2017). The silica deposition occurs over
hours (Blackman, 1969; Kaufman et al., 1969), suggesting that
the process is metabolically controlled. In rice, the walls of silica
cells lignify before silica deposition (Zhang et al., 2013). Prior
to silica deposition, silica cells are metabolically very active with
large nucleus and high numbers of ribosomes and mitochondria.
Silica cells are well connected to their neighboring cork cells,
but not to the neighboring long cells (Lawton, 1980). Silica cells
are viable at the time of silica deposition. The mineralization
process initiates in the extra-membranous space and proceeds
centripetally (Figure 2). The forming mineral is limited by the
cell wall on one side and by the membrane on the other side. The
shrunk cytoplasm maintains its viability and the deposited silica
does not interfere with cell-to-cell diffusion (Kumar et al., 2017).
Silica deposition occurs also in leaf segments with very limited
transpiration flow (Sangster and Parry, 1971; Kumar et al., 2017).
The deposition is reduced in leaves treated with a metabolic
inhibitor 2,4-dinitrophenol (Sangster and Parry, 1971) and does
not occur in dead silica cells present in live leaves (Markovich
et al., 2015; Kumar et al., 2017). These findings further indicate
on a metabolic process controlling the silicification.

Organic matter with N/C ratio indicative of amino acids is
continuously distributed in wheat silica cells (Alexandre et al.,
2015), suggesting possible role of proteins in the templating
process, similar to diatoms (Kröger et al., 1999). Depending
upon the phytolith extraction process, some of nitrogen detected
may result from the use of nitric acid in the extraction process
or represent acid hydrolyzed proteins occluded within the
silica structure (Watling et al., 2011), even without their direct
participation in silicification.

Silicification in Roots
Roots are the first organs exposed to silicic acid, allowing its
uptake and controlling the extent of Si supply to the entire
plant. In most cases, the deposition of silica in roots cannot
rely on evaporation of water for concentrating silicic acid.
A passive mode of silicification in roots thus assumes that Si
condensation occurs as water is absorbed by the symplasm,
leaving behind concentrated silicic acid solution in the apoplasm
(Exley, 2015). Such separation may occur at the Casparian
bands, where the passive diffusion of Si and water is blocked
(Sakurai et al., 2015). Indeed, in the aerial parts of adventitious
roots of Phalaris canariensis, silica deposition occurs in the
epidermis and outer cortical layer, but not in the endodermis
(Hodson, 1986). This observation suggests the involvement of

transpiration in silica deposition in these aerial roots. However,
transpiration-dependent model does not conform to silicification
at the endodermal inner tangential walls, which are located
centripetally to the Casparian bands (Sangster, 1978). Depending
on the grass species, silica impregnates the endodermal inner
tangential and radial cell walls (Parry and Soni, 1972; Hodson
and Sangster, 1989; Lux et al., 2003a), or forms discrete aggregates
anchored in the inner tangential wall (Sangster and Parry, 1976a;
Parry and Kelso, 1977; Sangster, 1977) (Figures 1F,G).

The active uptake of Si that bypasses the Casparian bands
occurs at the apical part of roots. Afterward, Si is transferred
with the transpiration stream basipetally through the central
cylinder (Lux et al., 2003b; Soukup et al., 2017). While most
of the Si is transported to the shoot, some Si binds to the
root endodermis with high affinity (Markovich et al., 2015).
Endodermal silicification is usually associated with the thickening
of inner tangential walls and the deposition of polyphenols
suberin and lignin in the mature parts of the roots (Parry and
Kelso, 1975; Sangster and Parry, 1976a). Since Si is taken up
actively in the root apex, the mature endodermis is supplied with
Si by its centrifugal flow from the central cylinder. This model
was evidenced in sorghum, where the aerial parts of adventitious
roots silicified even before reaching the growth medium (Sangster
and Parry, 1976b). Accordingly, silica deposition was detected in
the basal parts of roots grown with Si supply provided to their
apices only (Lux et al., 2003b), even if the cortical tissues between
those regions were removed (Soukup et al., 2017).

In sorghum, silica aggregation initiates in non-lignified
sites of the inner tangential cell walls, possibly templated by
arabinoxylan–ferulic acid complexes. The aggregation sites are
established even in the absence of Si, indicating that the
formation of silica aggregates is at least partially controlled by the
structure and composition of the endodermal cell walls (Soukup
et al., 2017). The aggregates seem to swell the silicifying wall and
protrude from the endodermal inner tangential wall toward the
cell lumen (Figure 1F).

In older roots, the deposition of silica can extend also to other
root regions, e.g., to the outer tangential walls of endodermis or
intercellular spaces of cortex. Such deposition is probably a result
of Si condensation due to water uptake by the symplasm, water
evaporation, or it can be induced by increasing ionic strength
of the apoplasm or pH changes. With the increasing age of the
roots, stele, sclerenchyma and conductive tissues may also silicify
(Parry and Kelso, 1975; Montgomery and Parry, 1979; Hodson
and Sangster, 1989).

CONCLUSION

Transpiration plays a major role in moving Si throughout the
plant. Water evaporation and water uptake by the symplasm can
efficiently condense Si and lead to silica precipitation. However,
uncontrolled and spontaneous silica deposition may be harmful
for the functioning of the plant. The evolution of mechanisms for
a safe disposal of Si was thus essential. Based on the matrix that
templates the silicification and the participation of transpiration
in this process, we identified three types of silica deposition in
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grasses that describe silicification in most of the cell types.
(1) Passive cell wall silicification: This type is distinctive to mature
and/or intensely transpiring organs, where the condensation
of Si is driven by dehydration. A continuous supply of
Si infiltrates the non-silicified cell walls and its deposition
occurs without being metabolically controlled by the cells.
(2) Controlled cell wall silicification: Silica is deposited directly
on the cell wall matrix, even before the organ is exposed to the
atmosphere/transpiration. Silicification is possibly templated by
the cell wall polymers inducing the silicic acid polymerization.
In some cases, the cell protoplast dies, allowing spontaneous
silica deposition driven by transpiration in the cell lumen,
without further organic template. (3) Silica cells are a special
case, where the mineral is deposited on the external side of
a functional plasma membrane, possibly in a volume that
contains materials that enhance silica deposition, independent of
transpiration.

Thus we saw, a plant as a whole does not follow one
silicification mechanism but the observed mechanism is specific

to the cell-type chosen for study. Sometimes, a cell type follows
two stage silicification: the early stage being cell wall silicification
followed by granular silica deposition in the dead lumen. Thus,
silicification in grasses is not an entirely active or passive process,
and its mechanism is cell-type specific.
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