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AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth.
Its physiological function remains unexplored. As the starting step of functional
analysis, here we report its subcellular localization and a non-canonical targeting
signal. Commonly used bioinformatics programs predicted a peroxisomal localization for
AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS).
The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and
the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and
nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus
almost ruled out the peroxisomal localization of GFP-AcCATPO13, and removing
the C-terminal decapeptide completely excluded peroxisomes as the residence of
GFP-AcCATPO110. Furthermore, this decapeptide as a targeting signal could import
GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate
that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal
localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which
contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme
of C-terminus. This work may further the study as to the physiological function of
AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue
to elucidate more non-canonic PTS.

Keywords: betalain biosynthesis, C-terminal GFP tag, N-terminal GFP tag, non-canonical peroxisomal targeting
signal 1 (non-canonical PTS1), plant catalase-phenol oxidase, peroxisome, red amaranth CATPO (AcCATPO),
subcellular localization

INTRODUCTION

Catalases (EC 1.11.1.6) are highly conserved metalloenzymes that are present in all aerobic and
many anaerobic organisms, including bacteria, fungi, plants, and animal cells (Mueller et al.,
1997; Engel et al., 2006; Kocabas et al., 2008; Mhamdi et al., 2010; Zhang et al., 2016). They are
generally classified into four groups, based on the variety of subunit sizes, the difference of heme

Abbreviations: Gene-GFP, GFP tagged at the C-terminus of the gene; GFP, green fluorescent protein; GFP-Gene, GFP tagged
at the N-terminus of the gene; RFP, red fluorescent protein.
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prosthetic groups, and the diversity of sequence groups
(Zámocký and Koller, 1999; Kocabas et al., 2009), namely
(1) monofunctional heme-containing catalases (typical),
(2) bifunctional heme-containing catalase-peroxidases, (3)
manganese catalases (non-heme-containing catalases), and
(4) minor catalases with slight catalytic activities. Their most
important function is the decomposition of hydrogen peroxide
(H2O2) into dioxygen and water (Goldberg and Hochman, 1989;
Bhaskar and Poulos, 2005; Zámocký et al., 2008; Yuzugullu
et al., 2013). The second function of catalases is the oxidation
of hydrogen donors such as ethanol, formic acid, phenols and
methanol, with the concomitant consumption of peroxide, which
is the characteristics of catalase-peroxidases (Levy et al., 1992;
Fraaije et al., 1996; Kocabas et al., 2009; Loncar and Fraaije,
2015). A new function of catalases, the oxidase activity in the
absence of hydrogen peroxide, was discovered by Vetrano
et al. (2005) on human catalases and bovine liver catalases,
although the enzyme was not further characterized. Later
on, Kocabas et al. (2008) characterized this type of enzyme
from the thermophilic fungus Scytalidium thermophilum, and
demonstrated its peroxide-independent phenol oxidase activity,
resembling that of catechol oxidases, but also possessing some
features of laccases. Thus, Kocabas et al. (2008) named it
catalase-phenol oxidase (CATPO). This phenol oxidase activity
was confirmed and the nature of the phenol oxidation, similar
mainly to those of laccases, was revealed by Avci et al. (2013) via
analysis of its spectrum of substrates that were oxidized. Besides
S. thermophilum catalase, some other heme-containing catalases,
such as those from Aspergillus niger, human erythrocytes, and
bovine liver, also display more or less phenol oxidase activity
(Kocabas et al., 2008). Recently, Baginski and Sommerhalter
(2017) reported that a manganese catalase from thermophilic
bacterium, Thermomicrobium roseum, showed phenol oxidase
activity. We previously identified a CATPO from a betalain-
producing plant, red amaranth (Amaranthus cruentus) (Teng
et al., 2016). Unlike microbial and mammalian CATPOs, this
plant CATPO (AcCATPO) exhibited both monophenolase
activity toward L-tyrosine and diphenolase activity toward
L-3,4-dihydroxyphenylalanine (L-DOPA), in addition to the
classical catalase activity toward H2O2, i.e., catalase-tyrosinase
activity.

The tyrosinase (EC 1.14.18.1; EC 1.10.3.1) has long been
proposed to be involved in the hydroxylation of tyrosine to form
L-DOPA, the first step in the biosynthesis of betalains (Mueller
et al., 1996; Steiner et al., 1996; Strack et al., 2003; Han et al.,
2009; Harris et al., 2012; Gandia-Herrero and García-Carmona,
2013). Although this step, recently proven at the molecular
level to be catalyzed by sugar beet CYP76AD1, CYP76AD5,
and CYP76AD6 (DeLoache et al., 2015; Polturak et al., 2016;
Sunnadeniya et al., 2016), the involvement of tyrosinase seemly
can not be excluded, because the co-expression of a tyrosinase
gene from non-betalain-producing mushroom (Lentinus edodes)
with a DODA gene from betalain plant (Mirabilis jalapa) resulted
in formation of betaxanthins in the cell cultures of non-betalain
plants, tobacco and Arabidopsis (Nakatsuka et al., 2012). Thus
the question raised is whether the AcCATPO, which possesses
both tyrosinase activity and catalase activity, may also be involved

in the hydroxylation of tyrosine, the first step of betalains
biosynthesis? Are there other, even general functions of this
enzyme? To address such questions, we started to investigate
the subcellular localization of AcCATPO, because the subcellular
compartment of a protein is often linked to its function (Grefen
et al., 2008; Bononi and Pinton, 2015; Itzhak et al., 2016; Xiong
et al., 2016). Here, we report on the subcellular localization
of AcCATPO by combing a bioinformatics approach with GFP
tagging at the N-terminal and C-terminal of AcCATPO and
identification of a non-canonical targeting signal by deleting the
C-terminal tripeptide and decapeptide of the AcCATPO and
using the decapeptide to guide GFP to the expected organelle.

MATERIALS AND METHODS

Gene and Plant Materials
AcCATPO (GenBank accession KP710221) was previously cloned
in our group (Teng et al., 2016). The mCherry-peroxisome-
localized marker, pBin20-mCherry-PTS1 (Li et al., 2014), was
generously donated by Dr. W.-C. Yang (Institute of Genetics and
Developmental Biology, Chinese Academy of Sciences, Beijing,
China). Binary vectors carrying 35S::N-GFP (Zhao et al., 2011)
or 35S::C-GFP (Zhao et al., 2015) were kindly provided by Drs.
C.-Q. Sun and Y. Guo (China Agricultural University, Beijing,
China), respectively. The mitochondrion-selective fluorescent
stain, MitoTracker Deep Red FM, was purchased from Thermo
Fisher Scientific (Waltham, MA, United States).

Plants of tobacco (Nicotiana benthamiana) were grown at
24 ± 2◦C under 16 h light/8 h dark cycle with a light intensity
of ca. 100 µmol m−2 s−1 in a culture room.

Construction of Vectors
A DNA fragment consisting of the coding sequence of
the C-terminal 10 amino acid residues (decapeptide:
ASRLNVRPTM) of AcCATPO, with respective EcoR I and
Kpn I restriction sites at the 5′- and 3′-end, was synthesized by
Sangon (Shanghai, China) and named 10aa.

The coding sequences of the C-terminal tripeptide (PTM)
and decapeptide of AcCATPO were PCR-deleted with specific
primer pairs (Table 1), and the deleted versions were designed
as AcCATPO13 and AcCATPO110, respectively.

The full-length coding sequence and the deleted versions
of AcCATPO with or without stop codon were PCR-amplified
by using gene-specific primer pairs (Table 1), linked to a
pGEM-T vector (Promega, United States) and sequenced for
authenticity. Then, the coding sequences without stop codon
were inserted into p35S::C-GFP and those with stop codon, into
p35S::N-GFP vectors in frame with correspondent restriction
enzymes (Table 1) to generate vectors p35S::AcCATPO-GFP,
p35S::AcCATPO13-GFP, p35S::AcCATPO110-GFP and
p35S::GFP-AcCATPO, p35S::GFP-AcCATPO13 and p35S::GFP-
AcCATPO110, respectively. For constructing p35S::GFP-10aa,
the synthesized DNA fragment (10aa sequence) was first
ligated to the pGEM-T vector, and sequenced. Then the 10aa
sequence was taken out with EcoR I and Kpn I, and inserted into
p35S::N-GFP cut by EcoR I and Kpn I.
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TABLE 1 | PCR primers and synthesized 10aa gene fragment used in this study.

Sequence (5′–3′) Restriction sites

Primer name

CATPOGFP-F CGAGCTCATGGATCCTTACAAGTA Sac I

CATPOGFP-R CGTCGACCATGGTTGGTCTTATGTTAAGTC Sal I

CATPO13GFP-R CGTCGACTCTTATGTTAAGTCTA Sal I

CATPO110GFP-R CGTCGACCACTTTCATACCCAGAG Sal I

GFPCATPO-F GGAATTCATGGATCCTTACAAGTAT EcoR I

GFPCATPO-R GGGTACCTCACATGGTTGGTCTTATGTTAAGTC Kpn I

GFPCATPO13-R GGGTACCTCATCTTATGTTAAGTCTA Kpn I

GFPCATPO110-R GGGTACCTCACACTTTCATACCCAGAG Kpn I

DNA name

10aa GAATTCGCAAGTAGACTTAACATAAGACCAACCATGTGAGGTACCA EcoR I/Kpn I

ACTTAAGCGTTCATCTGAATTGTATTCTGGTTGGTACACTCCATGG

Plant Transformation and Fluorescence
Detection
The peroxisomal marker, pBin20-mCherry-PTS1, and all GFP
constructs were transformed into Agrobacterium tumefaciens
strain GV3101. For transient expression of single construct, the
resultant bacterial suspension was directly infiltrated into young
leaves of tobacco (N. benthamiana) as previously reported (Han
et al., 2013). For co-expression of the fused GFP and peroxisomal
marker RFP, the bacterial suspension harboring GFP construct
and that carrying peroxisomal RFP marker were mixed in a ratio
of 1:1, and then the resulting mixture was co-infiltrated into
young leaves as reported before (Chen et al., 2017). Two to 3 days
after infiltration, the abaxial epidermis of the leaves was observed
for fluorescence under Carl Zeiss 710 confocal laser scanning
microscopy (CLSM). The GFP and RFP channels were acquired
and the fluorescence signals were detected as previously described
(Chen et al., 2017). MitoTracker Deep Red staining of GFP-
construct transgenic tobacco leaves was performed according to
the manufacturer’s instructions, and the far red-fluorescent signal
was detected using an emission bandwidth of around 665 nm
after scanning at an excitation wavelength of 644 nm. The images
were processed with Zeiss LSM Image Browser software and then
the combined pictures were generated with Photoshop.

Database Searches and Bioinformatics
Prediction
The whole amino acid sequence of AcCATPO was used for
database searches and bioinformatics prediction. The following
on-line prediction programs were consulted: targeting signal
prediction programs TargetP1.11, ChloroP1.12, SignalP4.13,
Protein Prowler4, PredSL5, and PredPlantPTS1 and subcellular
localization prediction programs WoLF PSORT II6, ProtComp

1http://www.cbs.dtu.dk/services/TargetP
2http://www.cbs.dtu.dk/services/ChloroP
3http://www.cbs.dtu.dk/services/SignalP/
4http://bioinf.scmb.uq.edu.au:8080/pprowler_webapp_1-2/
5http://aias.biol.uoa.gr/PredSL/
6http://www.genscript.com/wolf-psort.html

9.07, UniProtKB8, and CELLO V2.59. For each program, the
default “cut-off” and organism “Plant,” or “Eukaryotes,” was
chosen if “Plant” was not available.

RESULTS

Bioinformatics Prediction of Targeting
Signal and Subcellular Localization
Before performing experimental assays, we consulted six on-
line bioinformatics “individual predictors” and four “integrators”
programs widely used to predict targeting signal and subcellular
localization of AcCATPO, respectively, by using the whole amino
acid sequence. No targeting signal of any types was predicted in
AcCATPO with all six individual predictors used (Supplementary
Table S1). However, a peroxisomal localization of AcCATPO was
forecasted by all integrators programs except UniProt, which
did not contain any information on this protein (Table 2 and
Supplementary Table S1). These prediction results implied that
the AcCATPO might have some ways different from known
canonical peroxisomal targeting signal (PTS, including PTS1 and
PTS2) to target to peroxisomes.

To analyze possible non-canonical PTS and/or some other
motif(s) to import AcCATPO to peroxisomes, we compared the
AcCATPO amino acid sequence with those of common plant
catalases retrieved from the NCBI database, as reported before
(Teng et al., 2016), with focus on the carboxyl terminus (C-
terminus). We were able to identify a conserved internal SRL
motif, which is located in a distance of nine amino acids from
the C-termini of almost all catalases compared (Supplementary
Figure S1 and Figure 1, underlined). The web-logo analysis of
the last 12 amino acid residues from the C-terminus showed a
remarkable conservation of the residues around the SRL motif,
especially with the C-terminal tripeptide P-S/T-I/M (i.e., poline-
polar-non-polar) (Figure 1, shaded). This analysis suggested
the AcCATPO might use a peptide fragment of these 10–12

7http://www.softberry.com
8http://www.uniprot.org
9http://cello.life.nctu.edu.tw/
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TABLE 2 | Comparison of targeting signals and subcellular localizations of AcCATPO predicted and N- and C-terminal GFP tagged.

Gene name Length (AA) Cell localization (this study) Cell localization- bioinformatic prediction

C-TERM N-TERM WoLF PSORT II_Over 2 ProtComp 9.0 _ Over 1 CELLO V2.5

LDB PLDB NN PT ALL LOC RC

AcCATPO 492 NUC/CYT/PER NUC/PER PER 7 PER 3.1 1.2 0.96 8.12 3.53 PER 4.0

MIT 4 EC 1.9 0.7 0.96 0.05 2.28 MIT 0.4

CHL 2 CYT 2.0 1.2 0 0 2.02 CYT 0.2

MIT 3.0 0 0 0 2.00

AA, amino acids; C-TERM, C-terminal-tagged GFP; N-TERM, N-terminal-tagged GFP; NUC, nucleus; CYT, cytoplasm; PER, peroxisome; MIT, mitochondria; CHL,
chloroplast; EC, extra cellular; LDB, localization from database; PLDB, predicted location from database; NN, neural networks; PT, pentamers; ALL, combined results
from LDB, PLDB, NN, and PT; LOC, prediction of location; RC, reliability class.

FIGURE 1 | Web-logo image of the C-termini of AcCATPO and plant catalases selected. The amino acid sequences of plant catalases selected were the same as
previously reported (Teng et al., 2016). The C-terminal 12 amino acid sequences of AcCATPO and common plant catalases selected were subjected to weblogo
website (http://weblogo.berkeley.edu/logo.cgi). Underlined with solid line, Conserved SRL motif; Underlined with dash line; Putative non-canonical peroxisomal
targeting signal 1; Shaded, Conserved C-terminal extreme tripeptide.

amino acids, as a non-canonical PTS1, to target the enzyme to
peroxisomes.

Tagging GFP at the N-terminus of
AcCATPO and Its Mutants
In order to verify bioinformatics-based prediction and PTS
analysis results, we carried out subcellular targeting experiments
in vivo, according to “the gold standard for studying protein
localization in peroxisomes to date” (Reumann et al., 2016).
First, we deleted the coding regions of C-terminal tripeptide
(PTM) and then decapeptide (ASRLNVRPTM) from AcCATPO
and generated AcCATPO13 and AcCATPO110, respectively, to
weaken or abolish the putative non-canonical PTS1 analyzed
above. Then we fused GFP at the N-termini of AcCATPO,
AcCATPO13, and AcCATPO110 and transiently expressed the
fusion protein under the control of the constitutive CaMV
35S promoter (35S) in the epidermal leaf cells of tobacco
(N. benthamiana), with the peroxisomal marker, pBin20-
mCherry-PTS1, and the empty vector, p35S::N-GFP, as controls.
The subcellular localization of GFP and marker RFP was analyzed
with a Carl Zeiss 710 CLSM. Prior to proceeding further, however,
we verified, the punctum-like red fluorescence signal in the
peroxisomes of abaxial epidermal cells of the pBin20-mCherry-
PTS1-transgenic tobacco leaves distinguishable from that of the

MitoTracker Deep Red, a mitochondrion-selective fluorescent
dye (Supplementary Figure S2). With this putative confusion
being clarified, we went ahead and used the pBin20-mCherry-
PTS1 as the peroxisomal marker RFP in the following GFP tag
experiments.

In transgenic tobacco epidermal leaf cells, unfused N-GFP
was evenly distributed in the nucleus and cytoplasm (Figure 2,
35S::N-GFP), while the peroxisomal marker RFP, present as
red puncta, resided only in the peroxisomes (Figure 2, Pero
RFP). For the GFP-AcCATPO fusion protein, it targeted to
the nucleus and the peroxisome (Figure 2, GFP-AcCATPO),
and its GFP signal in the peroxisomes was overlapped with
the peroxisomal marker RFP, with a colocalization efficiency
of ca. 43.4%, when co-expressed with the marker (Figure 2,
GFP-AcCATPO), indicating peroxisomal targeting of the fusion
protein. When the C-terminal tripeptide was deleted, the fusion
protein GFP-AcCATPO13 was addressed not only to the nucleus
and the peroxisome, but also to the cytosol (Figure 2, GFP-
AcCATPO13), indicating that the tripeptide PTM at the extreme
C-terminus played an important role in sorting or rapid sorting
the enzyme to peroxisomes. It was noted that although GFP-
AcCATPO13 appeared to be present in peroxisomes, the number
of peroxisomes with a GFP signal (ca. 29.4%) appeared inferior
to those obtained with wild GFP-AcCATPO. In addition, its
GFP signals in the cytosol were diffusive and weaker than those
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FIGURE 2 | Confocal fluorescence scanning of AcCATPO and AcCATPO1 with N-terminal GFP tag (GFP-Gene). Each GFP construct and peroxisomal RFP marker
were co-transformed to tobacco (Nicotiana benthamiana) leaf epidermal cells by agro-infiltration, and 2 or 3 days after infiltration, the cells were subjected to Carl
Zeiss 710 confocal laser scanning microscopy for fluorescence detection. NUC, nucleus; PERO, peroxisome; Pero RFP, Peroxisome-localized RFP marker; 13 and
110, C-terminal 3 or 10 amino acids deleted, respectively; GFP-AcCATPO, GFP-AcCATPO13 and GFP-AcCATPO110, GFP tagged at the N-terminus of the
protein; Bar = 20 µm.

in the nuclei. When the C-terminal decapeptide was deleted,
the fusion protein GFP-AcCATPO110 was confined exclusively
to the cytosol and the nucleus, and no more GFP signal was
detected in the peroxisomes, which was confirmed by the absence
of overlay between the GFP and the peroxisomal marker RFP
(Figure 2, GFP-AcCATPO110).

These N-GFP tagging results demonstrated that AcCATPO
was localized to the nucleus and the peroxisomes, and this
peroxisomal localization is partly attributed to the C-terminal
tripeptide, and completely attributed to the C-terminal
decapeptide.

Tagging GFP at the C-termini of
AcCATPO and Its Mutant
In order to further verify the peroxisomal localization of
AcCATPO and validate the contribution of its C-terminal to this
localization, we alternatively spliced GFP to the C-terminus of
AcCATPO, AcCATPO13 and AcCATPO110 and expressed the
fusion proteins under the control of 35S promoter in tobacco
leaf epidermal cells, as for N-GFP tagging, with the peroxisomal
marker and the p35S::C-GFP (empty vector) serving as controls.
As in the N-GFP tagging, the leaf epidermal cells were examined
by CLSM with Zeiss 710 for green and red fluorescence.
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FIGURE 3 | Confocal fluorescence scanning of AcCATPO and AcCATPO1 with C-terminal GFP tag (Gene-GFP). See Figure 2 legend for detail, except
AcCATPO-GFP, AcCATPO13-GFP and AcCATPO110-GFP, GFP tagged at the C-terminus of the protein.

Identical to free N-GFP, the free C-GFP protein was uniformly
localized to the nucleus and cytosol in transgenic leaf epidermal
cells (Figure 3, 35S::C-GFP). However, different from N-GFP
fusion protein, the AcCATPO-GFP fusion protein targeted
mainly to the nucleus and the cytosol, and only few peroxisomes
showed a green fluorescence signal, which could coincide with the
red one from peroxisome-localized RFP (Figure 3, AcCATPO-
GFP), signifying a heavy interference of the peroxisomal
localization. Similarly, the fusion protein AcCATPO13-GFP
resided primarily in the nucleus and the cytosol, and it was hard
to see any peroxisomes that displayed a GFP signal co-localizing
with the peroxisomal marker RFP (Figure 3, AcCATPO13-
GFP). In line with AcCATPO13-GFP, the GFP signal of the
fusion protein AcCATPO110-GFP was recorded almost only in
the nucleus and the cytosol, but nearly not in the peroxisomes
(Figure 3, AcCATPO110-GFP).

The results outlined above, indicated that fusing GFP at the
C-terminus of AcCATPO shifted its peroxisomal localization
to the cytosol, without changing its nuclear localization, no
matter the C-terminal tripeptide and decapeptide were deleted
or not, and thus confirming the contribution of the C-terminal
of AcCATPO, especially the free and whole C-terminal, to its
peroxisomal localization.

Guiding GFP by the C-terminal
Decapeptide of AcCATPO
To further confirm the C-terminal decapeptide of AcCATPO
as a non-canonical PTS1 to import enzymes to peroxisomes,
we fused the decapeptide at the C-terminus of GFP and
expressed the fusion protein GFP-10aa in tobacco as we
did for the N-GFP, not only with the peroxisomal marker
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FIGURE 4 | Confocal fluorescence scanning of GFP guided by the C-terminal decapeptide of AcCATPO. See Figure 2 legend for tobacco leaf agro-infiltrating
transformation and fluorescence detection, except the leaf cells were stained, before the detection, with MitoTracker Deep Red FM according to the manufacturer’s
instruction. PERO, peroxisome; Pero RFP, Peroxisome-localized RFP marker; Bar = 20 µm.

RFP, and the empty vector, p35S::N-GFP, but also with
MitoTracker Deep Red as controls. The GFP and RFP as
well as far-red fluorescence signals were detected as described
above.

In the leaf cells of transgenic tobacco plants, the green
fluorescent signal from the fusion protein GFP-10aa was
exclusively detected in the peroxisomes, but neither in other
organelles such as mitochondria, nor in the cytosol, which
was demonstrated by the full co-localization of the GFP
signal with the RFP signal from the peroxisomal marker
(Figure 4).

DISCUSSION

In order to elucidate the physiological functions of AcCATPO,
the first catalase-phenol oxidase identified in planta (Teng et al.,
2016), we started the work by investigating its subcellular
localization, since a protein, once biosynthesized in cells, is
transported to a specific subcellular compartment to perform
its function (Zhang et al., 2007; Grefen et al., 2008; Li
et al., 2014; Bononi and Pinton, 2015; Reumann et al.,
2016).

Following the recommendation of Tanz and Small (2011),
we used the TargetP and other five “individual predictors”
to predict possible targeting signals in AcCATPO, including
PredPlantPTS1 (Lingner et al., 2011; Reumann et al., 2012), which
was recommended for PTS1-specific prediction in plants by
Cross et al. (2016). None of these widely used individual predictor
programs indicated the putative presence of a targeting signal
in AcCATPO (Supplementary Table S1). We then consulted
four “integrators” commonly used for subcellular localization
prediction. Intriguingly, three of four integrators, WoLF PSORT
II, ProtComp 9.0 and CELLO V2.5 targeted the AcCATPO to
peroxisomes, albeit the integrator UniProtKB did not yield any
useful result (Table 2 and Supplementary Table S1), probably
due to the lack of data on AcCATPO in the corresponding data
bank.

It is well known that the sorting of proteins to peroxisomes
mainly depends on either of two types of signal sequences,

PTS1 and PTS2 (see Rucktäschel et al., 2011; Baker et al.,
2016; Erdmann, 2016 for reviews and references within). The
PTS1 as the most common one, is a tripeptide present at the
C-termini of proteins and frequently ends with the sequence
S-K-L or its variants with a consensus sequence S/A/C-K/R/H-
L/M (Gould et al., 1989; Lametschwandtner et al., 1998; Brocard
and Hartig, 2006; Williams et al., 2012; see Dias et al., 2016;
Meinecke et al., 2016 for reviews and references within). In
contrast to PTS1, the PTS2 functions at internal locations,
with a conserved non-apeptide in the N-terminal domain, such
as R-L-X5-H-L, and R/K-L/V/I-X5-H/Q-L/A (X: any amino
acid) (Terlecky et al., 1995; Petriv et al., 2004; see Baker
et al., 2016; Meinecke et al., 2016 for reviews and references
within).

In plants like Arabidopsis thaliana, the PTS1 and PTS2
are used by about 70 and 30% of the known peroxisomal
proteins, respectively (Reumann, 2004). However, the plant
PTS1 and/or PTS2 is more or less distinct from typical PTS1
and/or PTS2 (Kamigaki et al., 2003; Oshima et al., 2008;
Reumann, 2011; Chowdhary et al., 2012; Lingner et al., 2012;
Ramirez et al., 2014; see Cross et al., 2016; Young and
Bartel, 2016 for reviews and references within). According
to Reumann et al. (2016), almost all experimentally verified
plant PTS1 tripeptides identified to date have the following
pattern: one low-abundance PTS1 residue (denoted as x, y,
or z) is combined with two high-abundance PTS1 tripeptide
residues (x-K/R-L/M/I, S/A-y-L/M/I, S/A-K/R-z), and at least 35
functional plant PTS1 tripeptide residues have been reported.
Plant PTS2 is located near the N-terminus of peroxisomal
proteins and is defined by the loose consensus sequence
R-L/I/Q-X5-H-L or its extended one, R/K-L/V/I-X5-Q/H-
L/A (X: any amino acids) (Glover et al., 1994; Reumann,
2004).

Even with those PTS consensus sequences in calculation,
all six individual predictor used, including plant PTS1-specific
predictor PredPlantPTS1, failed to forecast any kind of PTS
in AcCATPO, whereas the AcCATPO was predicted to localize
to the peroxisome by 3 integrators predictors (Table 2 and
Supplementary Table S1). Our comparison of amino acid
sequences between AcCATPO and common plant catalases,
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a group of the abundant enzymes in peroxisomes (Reumann
et al., 2016), achieved identification of a SRL motif of canonical
PTS1 within nine amino acid residues from the C-terminus
and a conserved tripeptide P-S/T-I/M at the extreme of
C-terminus in AcCATPO, with a consensus sequence S-R-
L-N-I-R-P-T-M (Figure 1 and Supplementary Figure S2).
This kind of C-terminal internal SRL motif and C-terminal
extreme P-S/T-I/M tripeptide were reported in some plant
catalases (Suzuki et al., 1994; Willekens et al., 1995) and
are conserved in nearly all plant catalases analyzed in this
study (Figure 1 and Supplementary Figure S1), suggesting
that the AcCATPO, as classical plant catalases, may use
the C-terminal internal SRL motif and C-terminal P-S/T-
I/M tripeptide as a non-canonical PTS1 signal to sort to
peroxisomes.

In order to validate the above-discussed non-canonical PTS1
hypothesis and to somehow arbitrate the quality of software-
based predictions, we chose to apply in vivo subcellular
targeting analyses. This approach is advantageous as compared
to other plant subcellular localization methods such as cell
fraction and immunohistochemical method (Geldner et al., 2009;
Tanz et al., 2013; Reumann et al., 2016). Our experimental
results with GFP tagging at the N-terminus of AcCATPO
demonstrated that the fusion protein GFP-AcCATPO was
indeed localized to the peroxisome as well as to the nucleus
(Figure 2, GFP-AcCATPO). The peroxisomal localization of
the GFP-AcCATPO is in agreement with the predication
by three integrators, WoLF PSORT II, ProtComp 9.0 and
CELLO V2.5 (Table 2), indicating the importance of the
C-terminal in peroxisomal localization. This importance was
reinforced by the fact that deletion of the tripeptide P-T-M at
the extreme of C-terminal end almost abolished peroxisomal
localization but not that one in nuclei of AcCATPO (Figure 2,
GFP-AcCATPO13), and removing the C-terminal decapeptide
excluded the peroxisomes but not the nuclei as the residence
of AcCATPO (Figure 2, GFP-AcCATPO110). Thus, our
above hypothesis that the AcCATPO uses the non-canonical
PTS1 signal in the C-terminal to sort to peroxisomes is
validated, and at the same time, the probability that the
AcCATPO might also be imported into tobacco peroxisomes by
heterooligomerization with tobacco endogenous CAT and piggy-
back import is excluded. Nevertheless, we note the report of
Kamigaki et al. (2003) that reads the tripeptide P-S-I, at the
extreme C-terminus of pumpkin catalase 1 is unnecessary for
targeting, but an internal PTS1-like sequence, Q-K-L, at position
−13 to −11 from the C-terminus, is essential for targeting to
peroxisomes.

To further verify the vital role of the non-canonical PTS1
signal in the C-terminal to the peroxisomal localization of
AcCATPO, we “masked” the C-terminal by fusing the GFP
at the C-terminus of AcCATPO. As expected, the fusion
protein AcCATPO-GFP nearly did not target to the peroxisome
indeed, but to the cytosol instead (Figure 3, AcCATPO-
GFP). Similar, if not identical results were also observed
for the fusion proteins AcCATPO13-GFP and AcCATPO110
(Figure 3, AcCATPO13-GFP and AcCATPO110-GFP). These
results indicate that just like deleting the non-canonical PTS1,

masking the non-canonical PTS1 signal-containing C-terminus
can lead to mislocalization of AcCATPO, and thus further
confirms that the non-canonical PTS1 signal is responsible for
peroxisome targeting of AcCATPO. Huh et al. (2003) observed
that proteins localized to the peroxisome and endoplasmic
reticulum (ER), which often contain C-terminal targeting signals,
were mislocalized due to the C-terminal GFP, while Simpson
et al. (2000) demonstrated that most signal peptides located
at the N-terminus of human proteins were masked by the
N-terminal GFP fusion. This may explain the discrepancy in
peroxisomal localization between N- and C-terminal GFP tagging
of AcCATPO (Figure 2 vs. 3). The disagreement between
N-terminal and C-terminal tagging of a protein in subcellular
localization was also reported by Thornton et al. (2011) for
ZnT5vA, by Palmer and Freeman (2004) for eight proteins with
various functions, and by Reuter et al. (2016) for Trichoderma
reesei hydrophobin HFBII and for Fusarium verticillioides HYD3
and HYD4.

Above “lost of function” results and discussion demonstrated
clearly that the C-terminal non-canonical PTS1 of AcCATPO
is responsible for importing the AcCATPO to the peroxisomes.
This role of the C-terminal non-canonical PTS1 was further
strengthen by the “gain of function” results: it did import
the fusion protein GFP-10aa to the peroxisomes exclusively
(Figure 4).

It is worth noting that GFP tagging at the N- and C-termini of
AcCATPO and its mutants (AcCATPO13 and AcCATPO110)
shared same localization in the nucleus (Figures 2, 3). However,
this nuclear localization of AcCATPO as well as its mutant forms
was not predicted by either individual predictors or integrators
used (Table 2 and Supplementary Table S1). The reason for this
kind of divergence between informatics prediction programs and
experimental data remains to be exploited, as the discrepancy
has been reported by larger number of investigators, such as
Nelson et al. (2007), Tanz and Small (2011), and Xiong et al.
(2016).

Given that the sugar beet CYP76AD1 and CYP76AD6,
which have been verified at the molecular level as the
major enzymes responsible for the hydroxylation of tyrosine
of betalain biosynthesis (Polturak et al., 2016; Sunnadeniya
et al., 2016), is localized in the nucleus and the cytosol
(Chen et al., 2017), it is plausible that the nucleus-localized
AcCATPO, may be involved in betalain biosynthesis also
via hydroxylation of tyrosine, as proposed by Teng et al.
(2016).

CONCLUSION

AcCATPO is localized to the peroxisome as well as to
the nucleus when expressed in tobacco leaf cells and the
peroxisomal localization is directed by the C-terminal non-
canonical PTS1, (A)-S-R-L-N-I-R-P-T-M. Revelation of the
subcellular compartmentation of AcCATPO, may expedite study
of its physiology function, and especially clarify its involvement
in betalain biosynthesis, and identification of the non-canonic
PTS1 from this plant catalase-phenol oxidase may provide a new
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clue to search more non-canonic and/or atypical peroxisome
targeting signals.
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