
about 500 words. At one extreme, the passage might comprise 500 
different words, each used just once. A coding like this is dense, in 
that all of the available symbol types are used with equal frequency. 
Alternatively, the passage might employ fewer symbols, using some 
frequently and others rarely. This would be a sparse code: the coding 
resources are scanty, with some symbols used repeatedly.

Sequences of real language fall between these two extremes. 
Considering the first 500 words of this paper, several words are 
used repeatedly; 301 distinct word types compose the passage. 
Most are used once, but several more than once – “the” leads the 
pack with 29 occurrences. The passage is relatively sparse (or if 
you prefer, semi-dense). We can similarly examine the characters: 
3245 make up the passage, combinations of 56 different symbols 
(omitting spaces. The characters include capital and lowercase 
letters, numerals, and punctuation.) Lowercase “e” and “a” win, 
with 353 and 235 appearances. If the passage were spoken, we 
could do the same sort of analysis with its syllables or phonemes, 
with a similar general result. In these examples, then, we observe 
an unevenness in symbol token use. The coding schemes are rela-
tively sparse. Many symbols are rarely used, but a few of them are 
used extensively.

IntroductIon
In 1895, radio communication emanated for the first time from 
the workshop of Guglielmo Marconi; since then radio signals have 
propagated 115 light years in all directions, passing through sev-
eral thousand star systems. If alien astronomers happen to detect 
Marconi’s first tentative broadcast, and the myriad following, what 
could they infer about its source? After determining that the signals 
are neither random nor from natural sources, the distant astrono-
mers might speculate that energies of the signal could be tokens in a 
language. But what could the sequences of the purported language 
mean? Back on earth, one might begin with semantics, looking for 
aspects of the signal that correlate with the local environment, but 
this intuitive path is not available off world. They must therefore 
attend to formal properties of the signal as a stream of possible 
language tokens, its syntax.

How will the analysis of “language-likeness” proceed? Let’s 
assume that the aliens have figured out how to individuate tokens, 
perhaps using gaps or some regular markers to parse the stream. 
From there, several formal, numerical, properties of the stream 
can be measured, characterizing the possible code prior to any 
insight into its meaning. For example, imagine a short passage of 
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Human languages are sparse (Zipf, 1949; Meadow and Wang, 
1993)1. Although sparseness is a contingent property, the idea 
of sparseness captures an intuition about natural language, 
namely, that in semantics and syntax languages must compro-
mise between expressive power and learnability. Dense language 
streams, composed of unique tokens, each used exactly once, 
are possible but obviously increasingly impractical as streams 
lengthen: unlearnable, opaque to reasoning, generalization, and 
continuity, such fragile codes soon fail as communication. (As an 
exercise, the reader is invited to compose a unique-token essay 
of 500 words or more.) On the other hand, a language with few 
symbol types will be easy to learn but unwieldy. Specific con-
tents will either require long expressions or be ambiguous. In 
practice, continuity and reasoning will be loose, equivocal, and 
unreliable. (Homework: write 500 words using a language you 
have studied for 1 week.)

In the 500 word example above, we considered the sparseness 
of words and characters in their individual occurrences, a property 
we will refer to as first-order sparseness. But we could parse the 
signal in different ways. For example, we can regard word pairs as 
our basic unit, breaking the current sentence into “for example,” 
“example we,” “we can,” etc. Sparseness could be measured for the 
occurring pairs of words, or for triples, quadruples, and beyond. 
Sparseness is thus a property of languages at many levels of analysis. 
First-order sparseness (of single symbols) characterizes the usage 
of basic units, while higher-order measures characterizes some of 
the constraints governing language as it unfolds in time, indicating 
mutual constraints between symbol pairs, triplets, and more. Thus, 
sparseness is one mark of syntax. It is a statistic that informs us 
that not everything goes, that limitations and constraints govern 
symbol choices and combinations. What seems at first to be an 
obscure statistical property can be a useful tool to discover some 
very basic properties of a signal stream.

The several dimensions of sparseness thus afford a window into 
the structure of a language independent of its semantics. Passages 
of different languages will have different profiles of sparseness at 
different levels, and can be compared along these different dimen-
sions. Initially, no single level needs to be privileged. The alien 
astronomers can carve up the radio signal many different ways. 
If it is language (at least of the human type), they can expect to 
find sparseness, distinguishing the terran signal from noise. At that 
point, they can compare the mystery signal to signals in their own 
languages, and begin to understand the human world and mind.

The example is fanciful, but analogous to a mystery signal that 
ripples through real (earthly) science every day: the magnetic reso-
nance (MR) signal emitted by brains in scanners around the world. 
Tuned to detect the right segment of the signal, these scanners 
detect brain metabolism, and thus indirectly measure large-scale 
effects of neural activity (Logothetis, 2002). Most of the effort of 
cognitive neuroscience focuses on the semantics of functional 

MR signals, rendered as sequences of three dimensional images or 
“ volumes.” That is, the dominant issue of this science is the rela-
tionship between conditions outside the brain and those within, 
seeking the laws that synchronize our cognitive lives as behav-
ing organisms with the neural machinery. The fable of the alien 
astronomers suggests a different way in, inviting an examination 
of formal, syntactic properties of the global MR signal streams 
over time. These are properties that are not necessarily linked to 
the semantics of brains. Sparseness provides a systematic way of 
characterizing a series of activity patterns, opening a new avenue 
in the study of the dynamic brain.

The connection between sparseness and most language codes 
also affords a bridge between functional brain imaging and classical 
cognitive science. There, the concept of language and linguistic codes 
applies beyond the realm of communication between individuals. 
According to classical cognitive science, language is a basic vehicle 
of all cognition: this is the foundation of computationalism (the 
view that cognition is computation, and the brain a particular kind 
of computer). More specifically, language is the controlling meta-
phor for the “language of thought hypothesis” (LOTH; Fodor, 1975, 
2008). The evidence of LOTH turns on the necessary conditions 
for cognition – what computational resources must a brain have to 
display the behavioral capacities of human intelligence? In its strong-
est form, LOTH is not just a conjecture about the implementation 
of human language abilities, which at some level would have to be 
“language-like” in order to issue in language behavior. Rather, strong 
LOTH proposes a lingua franca for all cognition. Like a computer’s 
machine language, LOT, or “mentalese” is the medium for all neural 
computation. Strong LOTH further holds that mentalese is distinct 
from any natural language, that it can frame every actual or possible 
concept humans could entertain, and that it is innate (Fodor, 1975).

Initially, the hypothesis was defended with the claim that LOTH 
was the only available theory, and that as such one must embrace 
it and all of its implications. The renaissance in neural network 
modeling challenged the uniqueness of LOTH, while leaving intact 
the assumption that a representational system with language-like 
properties must underlie cognition (McClelland and Rumelhart, 
1986; Rumelhart et al., 1986; Smolensky, 1988). Even so, cognitive 
neuroscience and LOTH theorizing have developed independently. 
Functional brain imaging has seemed to be the wrong technique 
to probe the language of thought (Petersen and Roskies, 2001; 
Coltheart, 2006; Roskies, 2009).

The fable of the alien astronomers, however, offers a glimmer 
of encouragement in the pursuit of the underlying “language” of 
cognition. Sparseness and other syntactic properties can be meas-
ured in a signal stream, without any knowledge of the semantics 
of the stream. We can look at functional MRI (fMRI) as a mystery 
signal, and compare it to various language examples. In this way, 
we measure language-likeness, even at the relatively fine level of 
comparison with particular natural languages.

All signals are sparse to some extent, however. One might wonder 
if the “discovery” that fMRI signals are sparse might be hollow. 
Language-likeness denotes a loose and ambiguous spectrum. Just 
as everything is a computer – under some description – so every 
sequence is language-like, to some extent. Any empirical result 
would thus leave the LOT hypothesis unmoved. To put it in other 
words, we could not discover that a signal was not language-like.

1Sparsity in languages has been characterized more precisely with “Zipf ’s law,” the 
observation that the frequency of occurrence of individual words in a language is 
inversely proportional to their ranking in the frequency distribution for the lan-
guage, a relationship that holds in many domains outside of language as well (Zipf, 
1949; Meadow and Wang, 1993). A Zipfian “power law” distribution of frequencies 
is clearly rather sparse.
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finding correlations. In many experiments, including those we have 
used here, 20 independent components preserve 80–95% of the 
variance in the original data3. Thus, ICA is an attractive method 
for initial data analysis.

Twenty simultaneous channels still do not compare with the 
serial signals of language and melody. We address this by further 
filtering the signal to comprise just the most active component at 
each time point4. Informally expressed, we locate the component 
(brain region) that is the most active “hot spot” from moment to 
moment, where that hot spot has been identified by ICA. Each 
component, then, is understood as a symbol type, with a distinct 
(but unknown) meaning. The image stream is thus rendered as 
a sequence of symbol tokens, where each symbol is a distributed 
brain region identified by ICA.

In this three-way comparison, the common measure of 
sparseness is the relative frequency of occurrence of different 
symbol tokens in the signal stream. As long as symbols can be 
distinguished (unambiguously assigned to types), sparseness can 
be determined.

Assumptions are unavoidable. They are more (or less) rea-
sonable according to either conceptual or empirical standards. 
Conceptually, we ask whether words, notes, and hot spots are 
comparable concepts, occupying similar positions in the edifice 
of theory and intuition in their domains – issues we revisit in 
the discussion. However, these assumptions can also be tested 
for empirical adequacy. Conceptually, music and language are 
distinct. Whatever our approach, we want our methods to sort 
examples into these two types correctly. Music, however varied, 
should land in a different bin from language. If our methods sort 
correctly for known cases, then we can test MR series for their 
resemblance to either of the other two types. This will be our 
procedure here.

Empirical validity, then, is best tested against a variety of 
benchmarks. In this study, 194 musical examples from six musical 
traditions form one pole of the analysis. These include three folk 
traditions, African, British, and Chinese, and melodies of three 
composers, Stephen Foster, George Gershwin, and Franz Schubert5. 
The language examples include transcripts of spontaneous spoken 
language and written texts. The texts include compiled corpora in 
Chinese, Finnish, French, Spanish, and English. Transcripts include 
examples in Ingrian Finnish and English. Some sparseness meas-
ures are sensitive to the length of the sample tested. The language 

The alien astronomers and LOT theorists are overlooking an 
alternative, however. Not all sparse signals are instances of language. 
The other kind of signal stream that will have saturated our galactic 
neighborhood is music. Music is also sparse. If the aliens asked 
whether the signals received fell into distinct types, with distin-
guishable profiles of sparsity at different levels of analysis, could 
they determine whether a signal is language-like or music-like? 
When a human signal stream is parsed as words (in language) or 
tones (in music), it turns out that music and language are very dif-
ferent in sparsity at many levels – this is the first main finding of 
this paper. These syntactic distinctions lead then to a new analysis 
of fMRI signals, and to an alternative view of neural coding at the 
global level. The alternative to the Language of Thought is the Music 
of Thought, MOT rather than LOT.

The idea that the lingua franca of cognition is not a lingua at all 
is initially incredible, with aftershocks for semantics, method, and 
more. In the discussion, we will consider the implications of the 
Music of Thought hypothesis. But first, we will tour the empirical 
evidence. The landscape shared by LOT, MOT, and fMRI has never 
been mapped. This paper is an initial survey. In the next section, we 
will consider appropriate measures of sparseness and the units over 
which it can be measured. At several scales of analysis, music and 
language are distinct. Then, we will locate fMRI signals between the 
poles of language and music, using data from two studies involving 
nearly 100 subjects.

MaterIals and Methods
Sparsity and density are properties of any signal series, but coordi-
nating language, brain, and music requires a common framework 
for comparison. Language tokens are sequential; MR signals are 
separable into multiple simultaneous signals. Music can go either 
way. Monophonic note sequences – melodies – are serial streams 
like language. But musical scores can also symbolize simultaneous 
or more complex signals.

The present analysis uses representative language streams as its 
model, and will seek ways to coordinate other types of signals with 
examples of language. Language, both spoken and written, can be 
parsed as words, discrete identifying tokens realized in a sequence2. 
Music can be similarly parsed as notes, tokens usually represented 
in a score or something similar (e.g., a MIDI file). Melodies will 
be the target here, to allow comparison with language. The most 
“polyphonic,” however, is certainly the fMRI signal, spatially sepa-
rable into thousands of sequential streams. For this analysis, fMRI 
data have been streamlined in two steps. First, we preprocessed 
each volume image series with independent component analysis 
(ICA; Calhoun et al., 2002, 2008). ICA is a statistical method that 
locates ensembles of voxels (pixels in the MR image) that vary 
together. In effect, ICA locates “supervoxels” of correlated brain 
activity. Sometimes the component brain regions determined 
by ICA are spatially contiguous, but often they involve multiple 
anatomic areas. ICA is relatively “data driven,” in that external 
hypotheses are not needed to separate time points as a basis for 

2The analysis here begins at the lexical (word) level, while higher-order compari-
sons analyze patterns and constraints in short word sequences, patterns that could 
reflect syntax and pragmatics. Of course other levels of language could be analyzed, 
an issue discussed below.

3More specifically, images were registered, normalized, and spatially smoothed with 
SPM8 software. Spatial independent component analysis was conducted for each 
subject in this study using the infomax algorithm, implemented with GIFT software 
(http://icatb.sourceforge.net/). Data were initially reduced to 20 dimensions using 
principle component analysis, followed by independent component estimation. For 
each analysis, obvious artifacts (due to eye movement or whole head movement) 
were removed, and the analysis repeated, yielding the component time series used 
for the present study.
4Maximum activity was identified as follows: Component magnitudes were norma-
lized to fall between 1 and −1; at each time point, the component with the largest 
normalized magnitude was retained in the serial stream.
5The musical examples are melodies collected in the KernScores database (http://
kern.humdrum.org/), including 24 African folksongs, 38 British children’s songs, 
30 Chinese folksongs, 38 songs by Stephen Foster, 29 by George Gershwin, and 35 
by Franz Schubert. They range in length from 27 to 478 notes, with a mean length 
of 140 (SD = 94).
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each sample string. This will be termed “first-order sparseness.” In 
language and music, however, the order of symbols is meaningful 
and constrained by the systems of production. Sparseness is relevant 
with respect to sequences – of the possible sequences, syntax allows 
some and excludes others. Accordingly, we can consider ordered 
token pairs, triples, and quadruples. If a signal stream is randomly 
shuffled, individual (first-order) sparseness will be preserved, but 
higher-order sparseness destroyed. Pairs in the random sequence 
will occur by chance, resulting in uniform density.

The underlying idea of sparse representation is the uneven use 
of symbol types. A sparse system uses fewer symbols more often. 
So, if we measure the average frequency of all symbols in a stream, 
in a sparse stream some will be considerably greater than the mean, 
and others less. The distribution of symbol frequencies around the 
mean is the basis for sparsity measures. Beyond that, researchers 
disagree on the appropriate calculation. Here, we will circumnavi-
gate the debate by using three different measures. The simplest is 
the coefficient of variation (CV), the SD divided by the mean (of 
symbol frequencies) – the normalized SD, in short. The second is 
the Gini coefficient, as adapted by Hurley and Rickard, who argue 
that the Gini coefficient best captures the concept of sparseness 
(Gini, 1921; Deaton, 1997; Rickard and Fallon, 2004; Hurley and 
Rickard, 2009)9. The Gini index, often used as a measure of income 
inequality, also measures the dispersion of values from the mean 
(e.g., rich and poor). The third method derives from the ratio of 
the L1 vector norm to the L2 vector norm. (This is the ratio of the 
sum of vector elements to the magnitude of the vector.) We will 
refer to this as the Hoyer coefficient, after its author (Hoyer, 2004)10.

Figure 1 displays a notional example. The bar charts represent 
the relative frequency of particular symbols in coding schemes 
ranging from the dense to the sparse. The three metrics are found 
beneath the examples. The three measures deliver proportionately 
similar results. For simplicity, then, the main paper presents the 
results using the Gini index11.

sources are each very long, so the statistical measures were taken 
over random starting-point windows of equivalent length to the 
MR signal series. One hundred samples were extracted and analyzed 
from each linguistic corpus6.

Music and language have been produced and transcribed for 
hundreds to thousands of years. Nonetheless, in 20 short years 
functional neuroimaging data have been gathered in thousands 
of experimental settings. For the present probe, we conducted a 
secondary analysis of a small subset: 18 subjects performing a 
simple auditory oddball task7; 17 individuals with schizophre-
nia performing the same task; and 64 subjects in the “rest” state, 
also known as Default Mode8. The auditory oddball task broadly 
activates cognitive processes of attention and perception, while 
the rest state affords an unconstrained window into cognitive 
processes in general (Stevens et al., 2005; Biswal et al., 2010). 
Schizophrenia data allows us to further interpret the results and 
take a first look at sparseness in individuals with mental illness 
(Garrity et al., 2007).

None of the experiments considered here involve either lan-
guage or music as components of experimental tasks. If the sub-
jects wander into verbal reflection or musical reminiscence, they 
do so “on their own time,” and not within the task demands of the 
experiment. The “rest state” data are particularly useful. In rest state 
experiments, subjects are unconstrained in their mental activity. 
Although the scanner is an unnatural environment, the subjects 
entertain a thought process that may sample the common ground 
of all cognition “in the wild.” In asking whether these data are 
music-like or language-like, then, we probe cognition in general.

The music and especially the language examples fail to com-
pletely represent the diversity of human production, nor do the 
fMRI protocols capture the many facets of human cognitive life. 
But for an initial probe, they sample some of the variety within and 
across cognition, musical traditions, and languages. Future analyses 
will seek the empirical borders of all three domains.

Another kind of diversity affects the measures of sparsity/den-
sity of symbol streams. Here there are two questions: How should 
sparseness be measured? And over what? Beginning with the sec-
ond, initially sparseness is measured over tokens individually and 
independently. In other words, relative frequencies of words/notes/
hotspots is the basis for the first measure, measured separately for 

6The language sources: English, French, and Spanish texts: Parallel translations of 
UN proceedings (http://www.uncorpora.org/); Finnish text: a compilation of news 
(Helsingin Sanomat), and Wikipedia articles in Finnish; Chinese text: subset of PH 
Corpus, from Xinhua News Agency, 1990–1991, compiled by Guo Jin (ftp://ftp.cog-
sci.ed.ac.uk/pub/chinese); Finnish speech transcription: “Language Contacts in the 
Northeastern Regions of the Baltic Sea,” compiled by Savijärvi et al. (1997; http://
helmer.hit.uib.no/Ingrisk/ingrian.html); English speech transcription: Corpus of 
Spoken, Professional American-English (http://www.athel.com/cspatg.html).
7In the auditory oddball paradigm, subjects listen to a steady series of tones with 
the task of pressing a button when a tone of a different, target frequency occurs. 
Distracting noises occur randomly among the tones as well. For details, see Garrity 
et al. (2007).
8Functional MRI data: (1) The oddball task: 18 healthy control subjects (“Hc”), 
Olin Neuropsychiatry Research Center, Hartford, CT. For details, see Garrity et al. 
(2007) (TR = 1.5, no. timepoints = 248). (2) Oddball task, same protocol as (1): 
17 schizophrenia patients (“Sz”), from Garrity et al. (2007). (3) “Rest” (Default 
Mode): 64 subjects (26 F, ages 18–26) from the 1000 Connectomes database (Neu-
roimaging Informatics Tools and Resources Clearinghouse (NITRC), www.nitrc.
org/projects/fcon_1000/), a subset of data set Beijing_Zang (Zang, Y. F.; TR = 2; no. 
timepoints = 225).

9The Gini index algorithm can be conceptualized by ranking the frequencies of oc-
currence of symbols in the signal stream and plotting the ranked values from least 
to greatest. If we normalize these values to fall between 0 and 1, we have an approxi-
mation of the “Lorenz curve” for the data. In a maximally dense/least sparse stream 
this is a straight line. The Gini index compares the data curve to the line expected 
in a perfectly dense coding scheme, measuring the area between the purely dense 
line and the actual data plot. See Hurley and Rickard (2009) for a contemporary 
discussion of this much-used measurement. Here, the calculation was implemented 
in the Matlab function ginicoeff by Oleg Komarov (http://www.mathworks.com/
matlabcentral/fileexchange/26452-gini-coefficient), following (without mean nor-
malization) the proposed simplification by Deaton (1997).
10Specifically, sparseness( )x n x x ni i= − ∑ ∑( )( ) −| | / / ,2 1  where n is the 

 dimensionality of x. See Hoyer (2004).
11Hurley and Rickard (2009) write, “Intuitively, a sparse representation is one in 
which a small number of coefficients contain a large proportion of the energy.” 
They outline six criteria that a measure of sparseness should observe, described in 
terms of a distribution of wealth: (1) “Robin Hood”: moving wealth from rich to 
poor decreases sparsity; (2) Scaling: multiplying data values by a constant should 
not alter sparsity (i.e., sparseness is a relative measure); (3) “Rising Tide”: adding 
a constant to each coefficient decreases sparsity; (4) “Cloning”: If every member 
of a population is twinned, sparsity of the doubled population is not changed; (5) 
“Bill Gates”: Adding one or more very wealthy individuals increases sparsity; (6) 
“Babies”: Adding individuals with no wealth increases sparsity. The Gini coefficient 
observes these constraints, making it a reasonable measure of sparseness, which 
Rickard and Fallon (2004) successfully applied to assess various sparse representa-
tions of speech signals. For these reasons, we have adopted it for the main analysis 
in this paper.
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gating verbs and running nouns and modifiers through a gauntlet 
of 14 or 15 cases. Each inflection means a different token, possibly 
driving Finnish language streams toward syntactic density.

Figure 2B depicts second-order sparseness in the same data, 
comparing pairs of notes and words. Music and language permit 
some transitions from symbol to symbol but exclude others, a con-
straint of syntax. Music is evidently more limited in its preferred or 
permitted transitions. Language is more open. Each word might be 
followed by many others, and there is comparatively little tendency 
to favor particular word pairs over others. This contrast sharpens 
in third- and fourth-order comparisons (not shown). In symbol 
choice and transitions, then, music is the sparser code.

In spite of common strategies for data formatting, the examples 
for analysis vary in some basic statistical properties, which affect 
the sparseness measures. These include the length of samples and 
the number of symbols in the “lexicon” of possible symbols for 
each sample. To control for these effects, sparseness measures for 
each sample were normalized by contrasting them with sparseness 
measures for statistically similar random data. These surrogate data 
samples provide a baseline for each sparseness estimate. Specifically, 
for each data sample, 1000 random surrogate samples were created, 
each matching their originals in number of symbol types and length 
of symbol stream. Sparsity was measured in the surrogates in the 
same manner as the original data, and the median of these surrogate 
measures used to normalize measurements on the original data. 
Accordingly, for each sparseness measure, a value of one indicates 
that the data were indistinguishable from random surrogates. A 
maximally dense code uses its symbols with equal frequency, so a 
random code is not maximally dense.

To summarize, the exploration here rests on a three-way com-
parison of 194 musical examples, 700 language examples, and 99 
subjects in three experiments (in two laboratories). Sparsity/density 
will be measured over single symbols, and symbol pairs, triples, and 
quadruples, using three different methods for calculating sparse-
ness. Thus, 12 comparisons will support the conclusions below.

results
Figure 2 represents sparseness measures for the language and music 
examples, measured by the Gini coefficient, normalized by random 
baselines. Figure 2A depicts first-order sparseness, the unevenness 
of symbol use, comparing words, and notes. Triangles mark 95% 
confidence intervals; if intervals between triangles do not overlap, 
then the sample medians are significantly different at the p < 0.05 
level. Individual subtypes overlap, but on the whole music and 
language are distinct by this measure (as they are by the other two 
sparseness measures as well). Music is more sparse, using some 
notes frequently and others rarely. Composed music is most sparse, 
while folk traditions are less so. Word usage in the language exam-
ples is more densely coded. Overall, word use varies less in frequency 
from most- to least-used words. Spoken and written examples are 
similar in specific languages. Finnish, a non-Indo-European lan-
guage, is the most dense. Finnish has a complex grammar, conju-

FIguRe 1 | examples of sparseness in four codings: The bars chart the 
frequency of symbol use in an imaginary coding scheme with 10 symbol 
types. In a dense coding scheme (left), the symbols are used with nearly 
equal frequency. In a sparse code, some symbols are used often, and others 
hardly at all.

FIguRe 2 | Sparseness in music and language examples, as measured by 
the gini coefficient (normalized in comparison to statistically similar 
random surrogate data). Red: 194 melodies from six traditions; Blue: 700 
texts, written, and transcribed. Colored bars span the 25th to the 75th 
percentile. Triangle markers span the 95% confidence interval. The 
bottommost bars represent aggregate medians in the two groups. (A) 1st 
order sparseness, i.e., sparsity/density of single symbols (words or tones). (B) 
2nd order sparseness, i.e., sparsity/density of sequential pairs of symbols. 
Overall, the figure points to a robust and large difference in first- and especially 
second-order sparseness, as measured by the Gini coefficient.
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why these two groups seem to differ from the resting subjects. A 
 hypothesis for further testing is that specific tasks drive the brain 
toward sparser codings.

The striking observation, however, is the similarity of the brain 
data to music. Figure 3A depicts the first-order sparseness meas-
ures. The aggregate comparison of the three signal types is at the 
bottom of the figure. The musical examples tend to draw from their 
set of possible notes certain notes to the exclusion of others. In 
different musical traditions, these selections are different but share 
this statistical profile. The brain operates similarly, using areas of 
activity like notes in a melody, at least with respect to the density 
of usage of certain areas, and the relatively infrequent use of other 
areas. This similarity remains striking in the second-order analysis. 
Language is much denser in its use of symbol pairs. In music and in 
brain activity, transitions from one state to the next are constrained; 
certain transitions are preferred over others.

Sparseness measures using the CV and Hoyer coefficient are 
similar. Figure 4 plots the normalized sparsity values for the three 
data types, from first to fourth-order, for the three methods of 
measurement. In general, at the lower orders at least, music data 
resemble brain data; at higher-orders the brain and language data 
approach maximum density (where each sequence of symbols is 
used once). For ease of reference, we can combine these results 
(and others, developed below) by using the probability of the null 
hypothesis as a measure of similarity of groups, as calculated with 
the (Mann–Whitney) Wilcoxon rank sum test (a non-parametric 
comparison of group medians). Since the tested null hypothesis 
is that the groups are from the same population, a higher p value 
indicates greater group overlap, i.e., greater similarity. We can 
accordingly count instances where the rank sum statistic is higher 
for the brain–music comparison than for the other two compari-
sons (brain–language and music–language). Since we have three 
different measures at four orders, there are 12 cases to compile. 
For 10 of these, the closest resemblance was indeed between brain 
data and music12. In these observations, by all three measures and 
among single symbols, pairs, and triples, the dynamics of the brain 
are more similar to the dynamics of music. Indeed, in all cases brain 
data and music data are more similar to each other than brain data 
and language.

The figures above obscure another important contrast between 
the groups, which is displayed in Figure 5, a scatterplot of first- vs. 
second-order sparsity. All the data points are plotted individually, 
revealing a distinct pattern of dispersion with respect to sparsity for 
brains and melodies. Individual samples and subjects in the groups 
can have quite different sparseness values. The language samples, 
in contrast, cluster around characteristic sparseness for each one. 
Moreover, first and second-order sparseness is strongly correlated 
for individual melodies and subjects.

The correlation between first-order and higher-order sparse-
ness is not surprising. Streams with high first-order sparsity will 
use some symbols heavily, drawing from a short list of symbol 
types (notes, words, or hotspots). Thus, at the second level, pairs 

Languages vary greatly in many features (consider Finnish and 
Chinese, for example). The musical landscape that includes African 
and Chinese folk traditions, Gershwin, and Schubert is likewise 
variegated. Yet sparseness seems to be a property of symbol streams 
that can distinguish language from music. Accordingly, sparse-
ness measures can be applied to symbol streams whose domain 
is unknown, mapping their resemblance to one pole or the other. 
Figure 3 adds the fMRI data to the comparison. The brain data are 
similar in their medians and range, despite their different original 
sources. Healthy subjects and schizophrenia patients differ lit-
tle. They all performed the same task, and possibly this explains 

FIguRe 3 | Three-way comparison of music, language, and fMRI data. The 
figure scheme is as in Figure 2. Green bars represent data from 99 subjects in 
three experiments. Healthy and Schizophrenia subjects both performed an 
“auditory oddball task,” consisting of identifying a target tone in a stream on 
non-target tones and distracting noises. The largest group comprises 64 
subjects in the rest condition (also  known as Default Mode). (A) 1st order 
sparseness, i.e., sparsity/density of single symbols. (B) 2nd order sparseness, 
i.e., sparsity/density of sequential pairs of symbols.

12The means (and medians) of the data locate brain and language as most similar 
for triples as well, so it could be argued that the brain–music link is only valid for 
single symbols and their pairs. However, mean and median, unlike the rank sum 
statistic, are insensitive to the dispersion from the mean, an important feature of 
these data.
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and computational languages and the properties of a purported 
cognitive computational engine implemented in the brain. As a 
fruitful analogy deepens, it is promoted into a “model,” under which 
comparisons become more exact, and theorizing can be passed 
from the philosopher to the scientist. Can a different analogy, the 
Music of Thought hypothesis, gain any traction on a path from 
loose analogy to rigorous model? One way, perhaps the only way, 
to answer this question is to try, to use the analogy to generate 
and test hypotheses. Each of the initial steps on this long road 
will require choices among plausible alternatives. Here there are 
three domains in play, so the roadmap will be especially complex. 
Coordinating data from different sources inevitably raises ques-
tions of commensurability, so the first task in this discussion is to 
review the case for incommensurability. We need to take seriously 
the possibility that the three domains cannot be compared along 
the dimensions highlighted here.

The principle framework for coordinating the three domains 
is time. In every case, we are comparing a serial signal stream, 
examining the stream in “chunks” between about a 10th of a second 
(the fastest notes) and about 2 s (the fMRI images, spanning 1.5 s 
in the oddball task data, and 2 s in the Rest state data); this is the 
“second scale” of signal analysis. Speech and music signals lend 
themselves to the millisecond scale as well, but this information 
is lost in fMRI. However, even within this time window there is a 
fairly large spectrum of temporal windowing. Does this invalidate 
the comparison? We can reply to this worry both theoretically and 
empirically. Theoretically, at least regarding music and language, 
note and word share the honor of being the fundamental unit of 
symbolic interpretation. As such, they are the building blocks of 
syntax, making this the right level for syntactic comparison across 
the domains. Notes (single tones) and words are the items that 
humans learn and learn to manipulate. When signal streams are 
parsed, these are generally the smallest manageable chunks, the 
items most congenial to thinking about signals, learning them, and 
communicating them to others. Meanwhile, the signals recorded 
from the brain are undifferentiated, without the props of a conven-
tional scheme for parsing and symbolizing the information passing 
among brain areas. The starting-point, then, is the arbitrary one of 
the finest resolution afforded, and that is in the second range. Since 
we cannot improve upon this, it makes sense to parse the symbol 
stream in the other two domains in a similar range.

That is the theoretical reply. However, the question of time scale 
can be examined empirically as well. To this end, the ICA data were 
mapped onto a pseudo image series at twice and four times their 
initial sampling frequency. [Between each pair of component vec-
tors, an intermediate vector was interpolated, to create virtual TR of 
0.75 s (oddball task) and 1 s (rest state data).] The aggregate meas-
ures were similar. At twice the sampling rate, singletons, pairs, and 
triplets are nonetheless most similar in Gini coefficients between 
brain data and music, and likewise for the other two measures, using 
the p value as a similarity measure. (86% of the 12 measures; in all 
cases brain data and music are more similar than brain data and 
language data.) When the intervals between images is halved again, 
to 0.375 and 0.5 s, these results are unchanged. While it would be 
ideal to collect functional MR images at these rates, in their absence 
the interpolation strategy may be the best approximation of the 
changing hemodynamic response.

of symbols will often have the same initial element. This increases 
the likelihood of a match of both elements of the pair, even if the 
second is drawn randomly from the same (sparse) set of symbol 
types. Nonetheless, the similarity of the range of data points, and 
their distribution, seems not to be an artifact. The figure makes 
vivid a difference between language, on the one hand, and the other 
two data types. Music and brain activity are very similar in their 
mean sparseness. In this basic sense, brain activity is decisively more 
like music than language. However, within both groups, individual 
examples vary widely, and over a similar range. The differences 
between melodies can be bigger than the difference between music 
(in general) and texts. Likewise, the differences between individual 
subjects can be just as great. In the framework of this preliminary 
investigation, people differ from one another across a range similar 
to the range of music.

dIscussIon
apples and oranges?
The separate domains of language, music, and brain activity (as 
imaged with fMRI) each have their own “ontologies,” stable tax-
onomies of entities, and their properties. In language and music 
especially, categories like words and notes are taken for granted, 
along with the properties that we use to individuate them. In brain 
imaging, the ontology is not as stable, but generally depends on 
spatial or anatomical divisions within the brain. Any comparison 
across domains will depend on an analogy that coordinates ele-
ments of the separate domains. This is not unusual in science. 
The LOTH itself is an analogy, between the properties of natural 

FIguRe 4 | Normalized Sparseness measures for music, brain data, 
and language (median values). Single symbols (first order), pairs (second), 
triples, and quadruples and compared, as calculated with the Gini coefficient, 
the coefficient of variation, and the Hoyer index. For 10 of the 12 separate 
observations, the greatest similarity is between brain data and music. 
In all cases, brain data are more similar to music than they are to language, 
as measured by Wilcoxon rank sum probabilities (see text).
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variable; non-ICA (“standard”) studies test the oscillations of vox-
els one by one, and group together those that follow the variable 
of interest. In general, the outcome is a hypothesis about a single 
region or network of regions, a hot spot turning on or off over 
time. Activity less than the threshold for hot spot detection drops 
out of consideration. Brain imagers realize that hot spots must be 
modulated, and indeed that ultimately cognition is all modulation, 
supported by highly distributed and variable networks of activity 
(Friston et al., 1995, 1996a,b,c; Friston, 2002; Price and Friston, 
2005). Nonetheless, localist hypotheses continue to be confirmed 
in abundance; it is true that areas of the brain are associated with 
specific functions, even if that is less than the whole story. The 
isolation of hot spots used in this study, in short, conforms to the 
standard procedure of cognitive neuroscience.

Usually the language/music comparison is discussed theoreti-
cally, debating whether music just is a subtype of language (Kivy, 
2002; Patel, 2007). So yet another challenge to this study would be 
to declare MOT to be a mere modification the LOT hypothesis. 
Sparseness may characterize the type of language the brain deploys, 
leaving the main claim, that there is a language of thought, unmoved.

Again there are both theoretical and empirical replies. In this 
instance, however, there is a real underlying issue concerning 
the boundaries of music and language. Music does share many 

Another “apples and oranges” objection distinguishes language 
from the other two domains. The language stream, considered lexi-
cally, is “monophonic,” using its coding resources sequentially. Music 
is often polyphonic, and symbolized as such. However, music is not 
exclusively polyphonic (and in world music polyphony is rare; Patel, 
2007). Even among polyphonic traditions there are reasonable meth-
ods and conventions for isolating melody as salient in the symbol 
stream. For present purposes, serial language limits the comparison 
to sequential music, the melodies alone. The fMRI signal, however, is 
fundamentally polyphonic. Are we somehow violating the ontology 
of the data to reduce this multichannel signal to the progression of 
hot spots, jumping from one area of the brain to another?

Once again, language is our constraint. Its monophonic data 
are incommensurate with a polyphonic signal stream, so the only 
way we can meaningfully compare the two domains is by restrict-
ing data to a sequential representation. However, this study is not 
alone in funneling fMRI. Most of cognitive neuroscience aims at 
hypotheses that are “monophonic” in the same way, by seeking 
maximally activated regions that correspond to particular cogni-
tive functions. This is the strategy of functional localization, where 
anatomical regions are probed for the specific conditions that pro-
voke their activity. Studies that involve ICA look for the component 
or components that most strongly correlate with an experimental 

FIguRe 5 | First-order sparseness (x axis) compared to second-order 
sparseness (y axis), representing sparseness measures for all 
examples and subjects individually. Crosses are language examples; 
Open circles are melodies; filled diamonds are brain scan data for each 
subject. Among the language cases, first and second-order sparseness 

values are nearly constant. Finnish examples, both spoken and written,  
are outliers, perhaps due to the complex grammar of the language. In music 
and brain data, first and second-order sparseness varies across melodies  
and subjects, and the two orders of sparseness seem to be strongly 
correlated.
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the ballooning boundaries of art during the twentieth century. The 
main consequence of the previous century, in brief, is that in music 
(as in other arts), when the context is apt, anything goes (Danto, 
1981). John Cage’s “4′33′,” featuring a performer striking no notes 
at all, is the limit case. Thus, any signal stream could be music, 
in the appropriate context, and the finding that a signal is “musi-
cal” is empty. The second objection also stems from the concept of 
music itself: Is not music necessarily audible? To both of these, we 
could offer philosophical rebuttals, but the objections could also be 
granted. The concept of music in play here need not be the inclusive 
philosophical concept, but rather the empirical territory of musical 
traditions, the ground bass of composition and performance against 
which the avant garde is measured. Similarly, the empirical study 
here is based on music as a signal without specifying its medium or 
component frequencies. The energy fluctuations detected by fMRI 
are of course not audible. If this excludes these signals from “real 
music,” then the study is probing a property of “music-likeness,” 
characteristic of signals in various media. The properties of signals 
resembling music can be compared along these formal dimensions.

The skeptic might persist, observing that music is a cultural 
artifact, shaped by convention over a few millennia, while the brain 
is the product of long evolution. It seems incredible, then, that 
any cultural process could also characterize the biological brain. 
In reply, however, note that language is also a cultural convention. 
But neither language nor music are entirely conventional. Science 
assumes that language was shaped by selection within evolutionary 
time. Music may be just as ancient and also adaptive (for sexual 
selection, for example). The two might stem from a common origin. 
In any case, it is no less incredible to regard language as the founda-
tion of all cognition than to set music in that role. But also observe 
that the music in question is produced and shaped by the brain. 
It has the form it has in part because of the brains that produce it. 
From the structure of the effect we infer the structure of the cause. 
Again, this exactly parallels the argument for natural language as a 
model for the language of thought.

Caution is nonetheless warranted, on the grounds that the initial 
findings here may not generalize (and so, fail to replicate). Time 
will tell; however it does appear that the results are resilient across 
many variations in method, as discussed above13. The steps pre-
ceding the specific analyses in this paper are equally governed by 
various parameters. ICA, for example, involves numerous choices 
of algorithm, number of components, and more. Here we deliber-
ately adopted “default” values typical of research studies using ICA. 
The existence of numerous ICA studies strongly suggests that the 
method (with its standard parameters) validly identifies function-
ally significant brain regions, which in turn conform to the present 
anatomical and functional understanding of the brain across main-
stream cognitive neuroscience. The observations of this paper thus 
rest on the same foundations as many other papers. More important 
is the question of whether the properties tracked here generalize 

 properties with language, the most prominent being the  syntactic 
property of compositionality (Lehrdahl and Jackendoff, 1996; 
Huron, 2006; Patel, 2007). Music, like language, has a grammar 
that permits some combinations and excludes others, and both 
domains involve procedures for building larger units out of smaller 
one. (Beyond these broad commonalities, however, there is great 
controversy over the degree of similarity between musical and lin-
guistic syntax. See Patel, 2007 for discussion.) Like language, music 
has developed a diversity of subtypes, musical traditions that loosely 
govern local music dialects. Like language, children grow up within 
a tradition and become fluent in it – not necessarily virtuosos but 
able to recognize musical signals and detect syntactic violations. 
Like language, fluency has oral/aural and literate forms. Nearly 
everyone can hear music as music, but some can also read it and 
write it on the page. Theoretically, then, we could agree that music 
is a language subtype, but nonetheless it is distinct, apparently in 
a category separate from all (other) natural languages. Locating 
brain activity decisively in the category of music is nonetheless an 
important development for any version of a LOTH.

The music of thought hypothesis gains import when we consider 
the ways in which music is unlike language. Musical semantics funda-
mentally differs from linguistic semantics. Musical signal streams at 
all levels of analysis do not refer to items in the world in anything like 
the way that words and sentences do (Meyer, 1956; Narmour, 1990; 
Kivy, 2002). This point is underscored by the failures of every attempt 
to provide a semantics of music parallel to a semantics of language 
(Patel, 2007). “Program music” tells no stories without a program in 
hand, moving many philosophers and musicologists to link music to 
more general referents, like moods and bodily movement (Langer, 
1942; Clarke, 2001). Even if these referents are external to the musical 
work, the vagueness of this denotation is in striking contrast to the 
specificity of syntax. The third movement of the Beethoven’s fifth 
symphony may convey triumphal elation (see E. M. Foster’s Howard’s 
End for an elaboration), and Beethoven no doubt entertained many 
alternative formulations of his meaning. His alternatives might have 
been vastly different but have little overall effect on the vaguely felt 
emotions of the audience. But if the second-chair French horn player 
plays a B where B-flat is written, in measure 446 of the symphony, 
every member of the audience will know, and will know it to be 
wrong. Overall, the syntax of music is fine-grained while its seman-
tics is very coarse, according to any attempt to force the semantics 
to work like the semantics of language. This mismatch implies that 
music and language are deeply and interestingly distinct.

Empirically, music and language are fundamentally different as 
well, a corollary finding of the present study. Here we have measured 
a fundamental property of signal streams in hundreds of exam-
ples from the two domains. Within each domain, diverse subtypes 
have been included. The empirical measurements described above 
converge on the conclusion that in one conspicuous property, con-
sidered at several orders of organization, music and language are 
different. With the present data, that difference holds notwithstand-
ing any theoretical declarations of affinities between music and 
language. However that spectrum of difference is interpreted, the 
brain data land at a point nearer to music.

Philosophers might take the apples and oranges objection in two 
other directions, both resting on the nature of music. First, most 
music (unlike language) is a form of art, and thus a beneficiary of 

13Independent component analysis does not find brain regions of increased activity, 
but instead regions of coherent activity change over time. Accordingly, component 
magnitudes can be reversed in sign without changing the ICA results overall. Do 
these arbitrary sign changes affect the outcome here? In all of 50 simulations where 
component signs were randomly assigned, the qualitative results remained unchan-
ged: Brain data resembled music more than language at all levels, as tested with the 
Gini coefficient.
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both structurally complex and temporally dynamic. According to 
Husserl, every object of perception or reflection is apprehended 
in a context of its past and possible future. Accordingly, in any act 
of perception, we also perceive that the object is a new arrival or 
something that has already been before us, a first occurrence or 
a repetition. This is fundamental to musical perception as well. 
Indeed, one of Husserl’s favorite examples is music (although he 
did not extend the analogy to consciousness in general).

The dynamics of music may offer a rich analogy with the dynam-
ics of conscious life; the syntax of these two domains may be com-
parable (and discoverable in the brain). Moreover, the semantics 
of music can change our view of mind–world relations. Musical 
semantics is very specific, but internal to musical works themselves 
and music in general (Meyer, 1956; Narmour, 1990). That is, music is 
self-referential. What happens in the first measure of a musical piece 
is relevant to the “meaning” of every other measure. Thus, every 
time point of a piece of music is densely and specifically connected 
to every other time point (especially within time spans less than a 
minute; Levinson, 1997). Musical perception and cognition is the 
awareness of and reflection on the internal referents within music, 
as they unfold in time. The foundation of representation in music, 
then, is resemblance and difference. As noted above, detecting resem-
blances over time is fundamental to conscious experience. If we con-
sider consciousness overall as musical, then its contents are readily 
characterized by the analogy. What a state of mind is “about” is a 
complex history and expectations of other experiences. Of course, 
the world exerts a continuous causal influence on the dynamics of 
consciousness, but there is no need on this model for a special rela-
tionship between mind and world. Semantics on this analogy need 
not be grounded in reference (cf. Fodor, 2008). Philosophers who 
worry about mind–world relations might welcome this simplifica-
tion of the theory of representation (Lloyd, 1997). For the present, 
we offer this as an avenue for future exploration.

Conscious life, then, might be likened to the experience of a 
performer improvising at a keyboard: She is simultaneously the 
creator of the music, its performer, and its audience. But these 
elements are all combined in a single stream, a series of single acts 
of simultaneous creation and perception. And the improvisation 
weaves around a musical background, the causal influence of the 
body and world. However, we must remember that the music of 
mind will dwarf any actual music in its complexity. The polyphony 
of the brain is ultimately a counterpoint of millions of channels, 
and the temporal dynamism extends from milliseconds to years. 
Its articulations involve many more dimensions than the ear can 
discern. These are the articulations of full sensory and motor expe-
rience, along with the flow of reflection in all its forms.

conclusIon
Ancient philosophers (both Western and Eastern) held music 
to be the counterpart and equal to rhetoric and other practi-
cal arts. Their cultures were infused with music. This has not 
changed. Especially in the age of mass media, humans live in a 
world saturated with music. Yet cognitive science and philoso-
phy have privileged sight over sound, and language over other 
forms of expression and communication. Without denying the 
importance of vision or language, there is room to expand the 
conceptual tools available to  comprehend  consciousness and its 

toward other properties of music. Sparseness is one dimension of 
music, and a very useful one in that it seems to demarcate music 
from language. In examining first, second, third, and fourth-order 
sparseness, we have taken a first look at the components of a signal 
stream and some of their relations. Where sparsity is found, we 
conclude that we are looking at a system with formal constraints. 
Empirically, not everything is allowed. But of course music is empir-
ically characterized by many properties. Resembling music across 
four orders of sparseness might be an isolated finding about a signal 
type that in other respects has nothing in common with music.

Thus, a large project lies ahead, taking two general directions. 
First, we can search for further analogs of musical structure in brain 
activity14. Music from every tradition can be analyzed with respect to 
tonality, distribution of durations, rhythms, harmony among parts, 
and many more. These measures can be quantified, and compared to 
analogous features of brain signals. This study is underway. Second, 
the individual tones in most music have timbral properties, char-
acterized by component sound frequencies (and other features). 
Functional MRI signals can be similarly treated, while recogniz-
ing (and adjusting for) frequency differences of about two orders 
of magnitude. In a separate paper (submitted), we show that the 
component frequencies of fMRI signals have music-like timbral 
structures: their partials (overtones) are sparse, as in music, and their 
greatest power is in the lowest frequency (the “1/f” power spectrum, 
typical of music; Voss and Clarke, 1976). Both of these explorations 
probe properties that lack obvious analogs in language, so these 
studies rely on contrasts with various forms of surrogate data.

These promissory comments suggest a possible consequence for 
cognitive science, pursuing the analogy of cognition and music. 
Cognitive musicologists, building on a long tradition of music 
theory, have at hand a toolbox of concepts to characterize musical 
signals and their perceptual effects. There are many general features 
of music that only music has – features that either do not apply to 
other signal streams (like language) or that clearly demarcate most 
music (for example, in contrast with various forms of noise). Some 
of these features are structural, like the interaction of  timbre and 
tonality, but many of them are dynamic, characterizing the play of 
sound over time in musical signals (Sethares, 2005, 2007). Functional 
MRI “scores” could be explored with these tools as well. Since music 
is both structurally and dynamically complex, the musicologists’ 
tools may articulate the obscure multivariate dynamics of the brain.

Another domain of dynamics operating on complex structures is 
that of consciousness itself. The philosophical tradition of phenom-
enology has characterized conscious life as an interaction between 
the present moment and immediate memory and anticipation 
(Husserl, 1966/1928). This picture of consciousness is necessarily 

14We could, for example, further explore the relationship of brain data to Zipf ’s law 
(see note 1). Among many options, here this issue was provisionally explored by 
(first) calculating an ideal Zipfian distribution for sequences of comparable length 
and number of symbol types, i.e., the symbol frequency distribution if the data 
conformed to Zipf ’s law (with its ample empirical confirmation for natural langua-
ges). The Zipfian distribution was then compared to data in this study. In this case, 
language data most nearly resemble the ideal distribution. Music and brain data are 
not as similar to the Zipf distribution, and are most similar to each other at all four 
orders. This difference does not mean that music and brain data do not exhibit a 
distribution like Zipf ’s law (or some other power law), but only that they do not 
match the ideal law as closely as the language data in this study. This intriguing 
comparison will be a topic of future study.
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emergence from the activity of the brain. Here, just one dimen-
sion of music has been mined for quantifiable frameworks for 
coordinating music, language, and brain activity. The fMRI signal 
is different from both language and musical examples, but it is 
more similar to music. This is most true with respect to sparse 
coding of single tokens and consecutive pairs of tokens, and robust 
with respect to different measures of sparseness and with respect 
to a wide range of examples of music and language, applied to 
three experiments involving nearly 100 subjects. This could be 
a first step toward a novel framework for thinking about brain 
activity as the foundation of cognition and consciousness. For a 
new sound in cognitive science, we might do well to listen to the 
music of thought.
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