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Consider the following passage, written by Edmund Husserl in the
early part of the twentieth century:

every entity that is valid for me [is]. . . an index of its sys-
tematic multiplicities. Each one indicates an ideal general set
of actual and possible experiential manners of givenness. . .
every actual concrete experience brings out, from this total
multiplicity, a harmonious flow. . . (Husserl, 1970, p. 166)1.

Husserl emphasizes how, in experiencing things – in tasting coffee,
driving through a neighborhood, or studying a mathematical the-
orem – we are related, in some sense, to “systematic multiplicities”:
all possible ways this coffee, this neighborhood, this theorem could
be experienced. Now consider a second passage, this one written
by Paul Churchland in 2002:

. . .human cognition involves. . . many hundreds, perhaps
even thousands, of internal cognitive “spaces,” each of which
provides a proprietary canvas on which some aspect of
human cognition is continually unfolding (Churchland,
2002).

Churchland is elaborating on the connectionist approach to cog-
nitive science. According to this approach, as we taste coffee, travel
through a neighborhood, or study a theorem, patterns of activity
unfold in various parts of the brain, and these unfolding patterns
correspond to trajectories in mathematical spaces which describe
all possible patterns of activity for the relevant neural systems.

These are striking parallels, especially given the contrast
between Husserl (the transcendental idealist) and Churchland (the
reductive physicalist)2. Despite their philosophical differences,

1The passage is from The crisis of European sciences and transcendental phenomenol-
ogy, written between 1934 and 1937, just before Husserl’s death. On the history of
this text see the editor’s introduction to Husserl (1970).
2Though Husserl himself was open to a kind of naturalistic investigation (Yoshimi,
2010).

their methods are similar – both focus on a system’s possibili-
ties, and represent those possibilities using mathematical struc-
tures3. Rather than simply introspecting on his actual conscious
states, Husserl considers manifolds of possible conscious states.
Rather than simply considering what some actual brain happens
to do, Churchland considers spaces of possible brain states. More-
over, I will argue that the theories they describe have a shared
mathematical form.

Parallels between cognitive science and phenomenology are
by now widely recognized. With the emergence of consciousness
studies in the early 1990s came “neurophenomenology” (Varela,
1996) and “naturalized phenomenology” (Petitot et al., 2000), as
well as the journal Phenomenology and the Cognitive Sciences4.
However, there have been few attempts to develop the paral-
lels suggested by the Husserl/Churchland comparison: that is,
to understand how the dynamics of neural activity, as described
using a connectionist formalism, relates to the dynamics of con-
sciousness, as described by Husserl5. I will argue that there is a
systematic set of parallels between the two domains, which has
broad relevance for the study of consciousness and its neural basis.

The plan of the paper is as follows. First, I consider the notion
of a state space, and describe the main state spaces of interest in
neurophenomenology: the space of possible brain states B, and the
space of possible conscious states C (state spaces are denoted by

3This is perhaps more surprising in Husserl. However, his Ph.D. was in mathemat-
ics, under Weierstrass, and mathematical themes run throughout his work (Yoshimi,
2007).
4On the history of the scientific study of consciousness prior to the 1990s, see
Mangan (1991), Yoshimi (2001).
5However, there have been some studies along these lines, including Petitot (2000)
and Lloyd (2004). Churchland (2002) and Palmer (2008) consider the relationship
between neuroscience and Kant’s transcendental philosophy. Spivey (2007) consid-
ers similar ideas from the standpoint of psychology and cognitive science. There is
also an important line of research integrating dynamical systems theory, phenome-
nology, and cognitive science, with an emphasis on Heideggerean phenomenology
(Wrathall and Malpas, 2000; Dreyfus, 2007; Thompson, 2007). On the relationship
between this kind of account and my own, see Yoshimi (2009).
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upper case bold-faced letters throughout). Then, I define dynam-
ical constraint in a state space, and show how neuroscientists and
phenomenologists independently describe such constraints. To
connect phenomenology and neuroscience, I describe a “superve-
nience function” that links B to C, and argue that dynamical con-
straint in phenomenology can be formally derived from dynamical
constraint in neuroscience. I argue that these connections can be
drawn in a way that brackets certain recalcitrant philosophical
issues, e.g., the mind–body problem and the “hard problem” of
consciousness. I end by showing how the abstract considerations
developed in the paper can be applied to real-world research, by
considering subspaces of B and C and relations between these sub-
spaces. The overall result is a formal framework for studying the
relationship between neural and phenomenological dynamics.

In discussing dynamical systems theory, and in particular con-
nectionist dynamical systems, I make a number of simplifying
assumptions, and treat certain concepts in non-standard ways. To
avoid confusion I should make these simplifications and depar-
tures explicit at the outset. Dynamical systems comprise a broad
class of mathematical models, encompassing iterated functions
and most differential equations. Dynamical systems theory is typ-
ically used to analyze the behavior of complex systems, especially
when traditional methods are difficult to apply. For example, it can
be difficult to predict the motion of three or more celestial bodies
using analytic techniques (the “n-body problem”), but consider-
able insight in to the nature of these motions can be achieved by
visualizing collections of orbits using dynamical systems theory. I
put dynamical systems theory to philosophical use here, empha-
sizing abstract features of dynamical systems (e.g., the concept of a
state space, and what I call“dynamical constraint”) that help bridge
neuroscience and phenomenology, but that are rarely focused on
otherwise. Moreover, I do not treat dynamical systems theory as
an alternative to other approaches to cognitive science (as in, e.g.,
Van Gelder, 1998), but rather as a mathematical framework that is
neutral with respect to cognitive architectures.

Connectionist networks (or neural networks) are a specific
class of dynamical systems, consisting of nodes (model neurons)
connected by weights (model synapses)6. They are “brain-like”
models, but they abstract away from important details of neural
processing (Smolensky, 1988). For example, spikes and spike tim-
ing, axonal delays, and dendritic morphology – all thought to be
essential to an understanding of the brain’s dynamics – are left
out of most connectionist networks. Moreover, weights in con-
nectionist networks are often treated as fixed parameters, which
is misleading, because real synapses are constantly changing their
state. Even though I focus on simple network models in this paper,
I am ultimately interested in real nervous systems – and thus in
the kind of model we will have in the imagined future of a perfect
theoretical neuroscience7. Throughout I assume that the claims I
make based on simplified connectionist models could be refined
in light of more detailed neural models.

6For an overview of the connectionist standpoint, see Rumelhart and McClelland
(1987a, Vol. 1, Chap. 1–4).
7Compare O’Brien and Opie (1999). For an overview of theoretical/computational
neuroscience (as opposed to connectionism), see Dayan and Abbott (2001).

STATE SPACES AND THEIR STRUCTURE
A dynamical system is a rule defined on a state space, which is a
set of possible states for a system, a set of ways a system could
be8. Thus, dynamical systems theory is a form of possibility analy-
sis. In focusing on possibilities, dynamical systems theory follows
a tradition extending back to Aristotle, who made the distinc-
tion between potentiality (dunamis) and actuality (entelecheia or
energeia) central to his metaphysics. The distinction is familiar. In
science, observations of the actual behaviors of a physical system
are used to frame laws governing all possible behaviors for that
system. For example, in neuroscience, laws governing all possible
behaviors of a neural circuit are abstracted from observations of
the actual behaviors of that circuit. The perspective is also promi-
nent in Husserl (Yoshimi, 2007). Rather than just introspecting
on consciousness and describing its contents – in the manner of
a literary “stream of consciousness” (think of Molly Bloom’s train
of thought at the end of Ulysses) – Husserl describes laws gov-
erning all possible conscious processes, where those possibilities
exist in what he calls “manifolds” (Mannigfaltigkeiten) of possible
experiences.

Formally, a state space is a set of points with some structure, a
“space” in the mathematical sense, where each point in the space
corresponds to one possibility for the system it represents9. Assum-
ing a state space meaningfully represents a set of possibilities, we
can reason about those possibilities using the mathematical prop-
erties of the state space. For example, state spaces are often metric
spaces, which means that we can associate pairs of points with
numbers (distances) which indicate how close those points are
to one another, and thus how similar the possibilities they rep-
resent are. State spaces are often also vector spaces, which means
(among other things) that vector addition is defined, so that we
can consider some possibilities to be the result of adding other
possibilities together. Vector spaces also have a dimension, which
implies (for spaces with dimension ≥ 2) that we can think of the
represented possibilities as being “built up” from constituents in
lower dimensional spaces. A common form of state space, which
combines these properties, is an n-dimensional Euclidean space
(or region of such a space), the set of all possible n-tuples of
real numbers together with an inner product. For example, R3

is a three-dimensional Euclidean space, the set of all triples of
real numbers. R3 is a metric space (we can compute the distance
between any two points in R3) and a three-dimensional vector
space: it is the product of three lower dimensional spaces (three
lines). If a set of possibilities is represented by R3, this implies that

8I treat states as properties insofar as they can be instantiated by numerically distinct
things. I also assume that states apply to objects at instantaneous moments (or dura-
tions), and that only one state in a state space can be instantiated by an object at a
time. The states of interest here are complex properties (sometimes called“structural
universals”), e.g., the property of having 100-billion neurons firing in a particular
way, or the state of experiencing a complex visual scene in a particular way. Some of
these points are developed in Yoshimi (2011b).
9The points in the state space and the possibilities they represent are, strictly
speaking, distinct. Following standard practice, however, I (largely) suppress the
distinction and allow “state” to refer either to points in the mathematical repre-
sentation or to possibilities for the real system they represent. The concept of a
meaningful representation of an empirical structure by a numerical structure is
studied in measurement theory (Narens and Luce, 1986).
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we can say how similar any two possibilities are, and that we can
think of any possibility as a combination of three constituents,
each of which can itself be represented by a point in a line.

What is the structure of the space B of possible brain states?
We can begin to answer this question by considering the standard
connectionist representation of a neural network with n neurons.
The state space of such a network is a region of an n-dimensional
Euclidean space Rn . Each point in this region corresponds to a
possible pattern of firing rates over the network’s n neurons. For
example, the state space for a network with 40 neurons is a region
of a R40, a 40-dimensional Euclidean space. As noted above, this is
a metric space, so that we can use the Euclidean metric to say how
similar any two network states are to one another. We can also think
of any particular network state as a combination of the states of
40 individual neurons. Since it is a vector space, we can talk about
adding network states together as well. A network’s state space
in this sense is sometimes called an “activation space,” because it
describes a network’s fast-changing activity, as opposed to more
slowly changing structural features (in particular, weight strengths,
which incrementally change via a learning process). When the fir-
ing rate of each neuron is normalized to lie in the interval (0,1), a
connectionist activation space has the form of a solid hypercube
with 2n vertices. For example, the activation space in this sense for
a brain with 100-billion neurons is a 100-billion dimensional solid
hypercube, with 2100-billion vertices10.

This connectionist representation assumes a fixed number of
neurons. However, we want to allow that brains gain and lose neu-
rons over time. To address this issue, we can posit another space
G of possible brain structures, where a brain structure is taken
to be a weighted graph, a set of vertices (neurons) connected by
labeled edges (synapses), where the edge-labels correspond to the
strengths of synapses11. There are other ways of representing brain
structures, but this representation is convenient for our purposes.
Let G be the space of all such graphs, a brain structure space12. The
activation space for each brain structure g ∈ G is a solid hypercube
in Rn , where n is the number of neurons in g. B can then be defined
as the union of activation spaces for all brain structures in G. It
trivially follows that for each brain structure g ∈ G, there will be
a subset of B containing patterns of neural activity possible for g,
what I call an “accessible region” Bg ⊆ B for brain g13.

10See Smolensky (1987). Other discussions of the use of state space representations
in cognitive science include Edelman (1998) and Gärdenfors (2004).
11This is a generalization of a connectionist “weight space,” the set of all n x n
matrices, where each matrix describes a pattern of synaptic connectivity over the n
nodes of a neural network. In such a representation, the values of ith row and jth
column of the matrix correspond to the strength of the weight connecting neuron i
to neuron j. Absent connections are represented by zeros.
12There are a number of problems with G. Some network structures in G will not
correspond to human brains, or perhaps not to any biologically possible brain at
all. Moreover, different graphs can have the same state space on this account. For
these and other reasons a more nuanced representation of brain structure space will
ultimately be needed.
13A similar but subtly different approach to modeling brain states in relation to con-
scious states is in Tononi (2008), Balduzzi and Tononi (2009). Like me, Balduzzi and
Tononi approach neurophenomenology by emphasizing the possibilities of a system
and the mathematical structure of those possibilities. For example they refer to a
“a mathematical dictionary relating neurophysiology to the geometry of the quale
and the geometry to phenomenology” (Balduzzi and Tononi, 2009, p. 2). However, I

The distinction between a structure space and an activation
space is important below, where we consider slow changes in the
structure space G and the way these changes affect the dynamics of
brain activity in B. Such a distinction also occurs in dynamical sys-
tems theory, where a parameter space is sometimes distinguished
from a main state space. In dynamical systems theory, parame-
ters are usually fixed (though they can be artificially manipulated
in order to identify comparatively dramatic changes to a system’s
dynamics known as “bifurcations”). This is somewhat misleading,
since structural features of a brain are constantly changing,albeit at
a slower rate than neural activity. To address this we could consider
a combined structure–activity space – one in which both brain
structure and neural activity change at the same time, but at differ-
ent rates. However, the distinction between slow structural changes
and more active dynamics will be useful here, because it highlights
important parallels between neuroscience and phenomenology.

Now consider the space of possible human conscious states C.
I take a conscious state to encompass everything a person is aware
of at a moment in time. For example, I now see my computer,
think about what I am writing, hear conversation in the periph-
ery, and feel some pain in my joints. I take the totality of these
phenomenal properties or “qualia” to correspond to my current
conscious state14. What is the structure of C? Some (in particu-
lar mind–brain identity theorists) have simply identified C with
B. In that case, the structure of C just is the structure of B. This
approach is taken by, for example Zeeman (1964) who describes
something like the connectionist view of an activation space qua
hypercube, and then refers to it as a “thought cube.” However,
multiple realization considerations suggest that B �= C, in which
case C may have a different structure than B. What that structure
is remains largely unstudied15.

Even though the exact structure of C is unknown, we can make
some conjectures. C seems to be a metric space, insofar as some
conscious states are more similar to one another than others are.
My conscious state now (sitting and typing) feels more similar to
that same conscious state with the addition of a feeling of an itch in
my foot than it is to a conscious state in which I am skydiving. Per-
haps C is a vector space, so that we can think of any particular
conscious state as a combination of more elementary compo-
nents: a sensory state (itself composed of visual, auditory, and
other states), a cognitive state, etc. Perhaps scalar multiplication

assume that an instantaneous state of a brain (a state in Bg ) is sufficient to determine
a person’s instantaneous conscious state. This is sometimes called a “synchronous
supervenience” thesis, since the idea is that the base state of a system at a time is suf-
ficient to determine the supervenient state of that system at that time. Balduzzi and
Tononi deny this (“it does not make sense to ask about the quale generated by a state
(firing pattern) in isolation” p. 11), focusing instead on information relationships
between probability distributions defined on (something like) activation spaces in
my sense. Fully developing the relationship between the ideas presented here and
Balduzzi and Tononi’s important work is beyond the scope of this paper, but it is
worth noting the difference. In this regard also see Fekete (2010).
14On the concept of a “total” conscious state, cf. Gurwitsch (1964), who described
“fields of consciousness” as “totalities of co-present data” (p. 3). Also see Carnap,
who based his foundationalist program on Erlebs, “experiences themselves in their
totality and undivided unity” (Carnap, 2003, Sec. 67).
15Stanley has studied “qualia space” and concluded that it is a “closed pointed cone
in an infinite dimensional separable real topological vector space” (Stanley, 1999,
p. 11).
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corresponds to an increase in the intensity of a conscious state.
But none of this is obvious.

In fact, it is not even clear that certain basic properties of most
state spaces – e.g., the assumption that they can be meaningfully
represented using totally ordered sets like the real numbers – apply
to C. It is well-known that for a broad range of psychological data –
e.g., judgments of indifference with respect to pitch and tone – that
transitivity fails. Stimuli s1 and s2 might sound the same, s2 and
s3 might sound the same, and similarly for s3 and s4. However, s1

might not sound the same as s4: there might be a just noticeable
difference or JND between s1 and s4 but not between the other
pairs (this is the “intransitivity of indifference”). Such sets cannot
be meaningfully represented by a totally ordered set (like the real
numbers), but can be represented by “semi-orders” (Suppes and
Zinnes, 1963; Narens and Luce, 1986). The upshot could be that
C has some form of semi-ordered structure. Or, it could mean
that human judgments about their own states have a semi-ordered
structure, but C itself does not16.

DYNAMICAL CONSTRAINT
The static structure of a state space, though interesting, is not the
primary concern of dynamical systems theory. The main work
of dynamical systems theory is to describe rules which constrain
the way a system can evolve in time. As we will see, such con-
straints have been independently described in neuroscience and
phenomenology. Given that my brain is structured in a particular
way, and given that I exist in a structured environment, patterns
of neural activity in my brain can only unfold in some ways, and
not others. Similarly in phenomenology. Given the structure of
my background knowledge and my sensory environment (both of
these concepts are defined below) my conscious experience can
only unfold in some ways, and not others.

Formally, a dynamical system is a rule which associates points in
a system’s state space with future states. More precisely, a dynami-
cal system is a map φ: S × T → S, where S is the state space, and T is
a time space17. For any state x ∈ S at initial time t 0 ∈ T (i.e., for any
initial condition), φ says what unique state that system will be in at
all times in T. Thus dynamical systems are, by definition, determin-
istic – initial conditions always have unique futures – though their
behavior can be complex and in practice unpredictable. A dynam-
ical system generates a set of orbits or paths in the state space,
where each orbit is one possible way the system could evolve in
time18. Every point in the state space is associated with a path, so

16This is not as exotic as it may sound. It is often the case that measurement errors
create a semi-ordered structure. For example, judgments of length using a ruler
have some margin of error, so that “sameness” of judged lengths is intransitive. But
despite this intransitivity in sameness of judged lengths, the underlying space of
“true lengths” can still be meaningfully represented by a totally ordered set like the
real numbers. For discussion of these issues see Suppes et al. (1989, p. 300).
17Subject to several additional conditions; on the formal definition of a dynamical
system, see Katok and Hasselblatt (1996), Hotton and Yoshimi (2011). Note that
this abstract definition covers more familiar types of mathematical models as spe-
cial cases. For example, iterated functions and most forms of differential equation
satisfy this abstract definition, and are thus dynamical systems.
18The term “orbit” is standard in dynamical systems theory. The term “path” is
neutral between classical dynamical systems and open dynamical systems, and so I
will prefer that term here. When a differential equation is a dynamical system, its
solutions are its orbits.

FIGURE 1 | A phase portrait φ on S corresponds to a subset of Evol(S).

The relative size of φ and Evol(S) are for illustrative purposes only (similarly
for subsequent figures).

that the whole state space is filled with paths. The complete set of
paths of a dynamical system is its phase portrait, which describes
all possible ways the system could behave, relative to all possible
initial conditions19. We focus on phase portraits, because they are
uniquely associated with dynamical systems, and are relatively easy
to reason about, especially in this philosophical context.

An example of a phase portrait is shown in Figure 1. The phase
portrait describes the possible behaviors of a simple neural net-
work (a Hopfield network), with two neurons. (This type of system
was selected for illustrative purposes, not as a model of actual brain
dynamics). The state space S for this network is the set of possible
patterns of activity for its two neurons, a region of R2. Choose any
point in this space (any initial pattern of activity for these two neu-
rons) and the phase portrait shows what points will follow (what
patterns of activity will unfold in the network). It is immediately
evident from the picture that initial states spiral in toward a single
point – an “attracting fixed point” – shown as a black dot in the
center of the space. If the phase portrait looked different, for exam-
ple, if it were filled with concentric circles, or if the arrows pointed
in the other direction, then we would have a different dynamical
system, a network which behaved in a different way. (In the figure,
the light gray lines are the two nullclines of the system, where the
velocity in one direction is 0; their intersection is the fixed point,
where the velocity in both directions is 0. The nullclines and fixed
point indicate the intrinsic dynamics of the system.)

A more abstract way of thinking about phase portraits is in
terms of what I call “dynamical constraint.” Of all the logically
possible ways a system could change its state over time, only some
of these are consistent with the rule φ corresponding to a dynam-
ical system. To formalize this point, first consider the set of all
possible ways states in a state space S could be instantiated over
time. Each possible succession of states is what I will call a “time
evolution.” Formally, an evolution in this sense is an arbitrary
mapping from times in T to states in S. (Insofar as the term “evo-
lution” suggests a process consistent with a system’s dynamics, this
is non-standard terminology – an “evolution” in my sense is any

19“Phase portrait” usually refers to a visual depiction of a sample of a dynamical
system’s orbits. I use the term to refer to a complete collection of orbits for a system,
whether they are depicted in an image or not (what is sometimes called an “orbit
space”).
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arbitrary time-orderings of points in the state space). I designate
the set of all such time evolutions as “Evol(S)20.” Evol(S) is a time
evolution space or evolution space for S. It is a very large, abstract
space. In the case where S is the plane, for example, we can think
of Evol(S) as the set of all possible figures that could be drawn in
the plane, given a specified amount of time. There are no limits –
one can draw loops, figure eights, dot patterns, or simply keep the
pen on a single point – so long as at each moment in T a point is
being drawn somewhere. In the case where S is a neural network,
we can imagine that a set of electrodes has been connected to all
of the network’s neurons. Think of a modified Matrix machine,
with electrodes stimulating every neuron in a brain, rather than
just the sensory neurons21. Such a machine would be capable of
overriding a network’s intrinsic dynamics, and could thereby cause
a network to travel through any arbitrary sequences of states, and
thereby instantiate any point in Evol(S).

The crucial point is this: a phase portrait φ on S is a subset
(typically a proper subset) of the evolution space Evol(S). The
dynamics φ constrain the system to evolve in some ways and not
others. Of all logically possible ways the states in S could change
in time – of all possible time evolutions in Evol(S) – only those in
φ ⊆ Evol(S) are consistent with the system’s dynamics. It is in this
sense that a dynamical system imposes dynamical constraint on its
state space. Note that in most cases,φ will be much smaller than the
space Evol(S) which contains it22. For example, of all the figures
that could be drawn in S in Figure 1, only spiral-shaped curves like
those shown in the figure are in the system’s phase portrait. The
neural network’s structure constrains activity to unfold in these
particular ways, and prohibits many other logically possible time
evolutions.

One problem with dynamical systems theory as applied to the
study of mind and brain is that dynamical systems are in a certain
sense closed (Hotton and Yoshimi, 2010)23, but mind and brain
are in various ways open and embodied, as numerous philoso-
phers and cognitive scientists have shown in recent years24. In
Hotton and Yoshimi (2011, 2010) the issue is addressed by defin-
ing a more complex version of a dynamical system, what we call
an “open dynamical system25.” An open dynamical system is a
compound system, which separately models an agent when it is
isolated from any environment (its intrinsic or closed dynamics),
and the same agent when it is embedded in an environment. More
specifically, we separately model the intrinsic dynamics of an agent
on its own, and the dynamics of that same agent in the context of

20Evol(S) is a function space, the set of all possible functions from T to S. In set-
theoretic notation, Evol(S) = ST. When discussing Evol(S) in relation to a dynamical
system on S, I assume the time set T is the same for both.
21I am referring to the production of simulated experiences via artificial sensory
stimulation, as described in the movie The Matrix.
22To make the notion of relative size precise – so that we could meaningfully talk
about one set being “smaller than” another – measures would have to be defined on
both spaces.
23Classical dynamical systems must either assume a system is isolated from any
environment, or consider a higher dimensional system which incorporates the envi-
ronment (we take the latter strategy, but then provide tools for considering what
happens inside an “agent system”).
24For an overview of the embodiment literature, see Yoshimi (2011a).
25In doing so we formalize ideas that are present in various forms in earlier studies.
See Yoshimi (2011a) for more on precedent and references to earlier sources.

FIGURE 2 | Open phase portrait for the network whose closed phase

portrait is shown in Figure 1, when it is embedded in a simple

environment e. Like the closed phase portrait φ, the open phase portrait
φe corresponds to a subset of Evol(S).

a total system or environmental system e which contains that agent
as a part26.

When an agent is embedded in an environment, the set of paths
in its phase portrait S changes. The agent’s intrinsic dynamics, rep-
resented by a phase portrait φ in S, is morphed to become a more
complex open phase portrait φe in the same state space S. Each
path in this open portrait corresponds to one possible behavior
for the agent when it is in this environment.

An example of an open phase portrait is shown in Figure 2.
The figure shows what happens to the Hopfield network shown in
Figure 1 when it is embedded in a simple environment, consist-
ing of two objects which pass the network at regular intervals and
stimulate its two nodes (for details, see Hotton and Yoshimi, 2010,
2011). Four sample paths from the network’s open phase portrait
are shown. The complete open phase portrait for this embodied
agent is a superposition of these paths (and a continuum of others
intermediate between them) in the state space. Paths no longer
spiral in to the fixed point, but are rather pulled in loops around
the fixed point (the network is pulled away from the fixed point
when objects come in to view, but pulled back toward it when they
go out of view). However, the neural network itself, the “intrinsic
dynamics” of the agent, is the same (notice that the nullclines and
fixed point – which “pulls” all network states toward it – are the
same in Figures 1 and 2).

An open phase portrait, like a closed phase portrait, is a set
of paths, a subset of Evol(S). Thus, the concept of dynamical
constraint still applies when we consider open systems. For exam-
ple, the open phase portrait φe for the embodied neural network
shown in Figure 2 contains a continuum of loop-shaped paths.
Even though these paths overlap in a complex way, they still repre-
sent a substantial set of constraints on how the system can behave.
The open phase portrait φe , like the closed phase portrait φ, con-
tains a very specific set of paths in the evolution space Evol(S)27.

26I refer equivalently to“total systems”“environmental systems”and“environments,”
even though strictly speaking an environmental system is that part of a total system
distinct from an agent.
27Note that in the figure, I show φ and φe as intersecting, because they can have
paths in common, though in many cases they will not have paths in common.
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FIGURE 3 | Space of brain structures G, states of background

knowledge K, and corresponding “accessible” regions of the space of

brain states B and conscious states C.

The paths in φe are more complex than the paths in φ, but they still
correspond to a proper and very small subset of the full evolution
space. Of all logically possible sequences of states for this network,
only a few will ever occur, given the intrinsic dynamics of the net-
work, and, in the case of φe , the structure of its environmental
embedding.

Having consider dynamical constraint in simple closed and
open systems, let us consider how these ideas apply to our two
domains of interest: neuroscience and phenomenology.

Consider first a brain g with n neurons, whose state space is
a solid hypercube Bg ⊆ Rn . Recall that g is a member of a brain
structure space G, and that for any brain structure g ∈ G, there will
be a subset Bg ⊆ B containing patterns of neural activity possible
for g. That is, any brain structure g determines an accessible region
Bg of B, for a brain of type g. During development, as neurons and
synapses grow and die, and as synapses change their strength, a per-
son’s brain structure changes. This can be represented by a path
g 1. . .gn, where gi ∈ G. In fact the entire course of a brain’s devel-
opment, from the emergence of the first neuron to the organism’s
death, can be represented in this way. As this“life path”is traced out
during a brain’s development, there is a corresponding “window”
in B, a changing region of accessibility Bg 1,. . .,B gn (see Figure 3).
This captures the idea that brain states possible for me as a child
are not the same as brain states possible for me as an adult, though
both are subsets of an encompassing space B of all possible brain
states28.

Now consider an environment for brain g, that is, a total system
that contains g as a part. To do so, we first let c be a function that
associates any brain g with those environmental systems e that
contain it. Any environmental system in c(g ) has brain structure

28A background assumption is that there is another dynamical system on G, which
describes how an organism’s brain structure develops over time. It is, presumably, an
open system, insofar as organisms are reciprocally coupled to their environments.

g embedded in it. So, given a brain g, we can consider an environ-
mental system e ∈ c(g ) that embeds g, and then consider the open
dynamics of this brain in this environment, that is, an open phase
portrait in Bg . We can designate this phase portrait “φg,e .” In any
realistic case, φg,e will be a tiny subset of Evol(Bg ), containing just
those brain processes compatible with brain structure g when it is
embedded in environmental system e. Note the two superscripts
in φg,e . Dynamical constraint for embodied brains can vary in
two ways: with changes in underlying brain structure g, and with
changes in the environmental system e in which a given brain
structure is embedded. Thus we have two knobs we can turn when
considering possible constraints on the activity of an embodied
brain. As we turn the first knob, brain structure changes; as we
turn the second knob, the environmental system changes. As we
turn these two knobs we have a changing region of accessibility in
B, and a changing and morphing set of paths in this region.

Summarizing: for any brain structure g ∈ G and environment
e ∈ c(g ), there exists:

(1) An accessible region of brain space Bg ⊆ B
(2) An open phase portrait φg,e ⊆ Evol(Bg )

What do phase portraits like φg,e – those describing brains g in
environments e – actually look like? It is too early to say with much
precision, but work in the area is active and promising. One of the
most detailed modeling studies to date is Izhikevich and Edelman
(2008), which describes a model network with a million neurons
and over a billion synapses whose connectivity was determined by
images of white matter connectivity as well as physiological stud-
ies of cortical microcircuits (others are pursuing similar projects,
e.g., Markram, 2006). Among the dynamical features observed in
the model were (1) sensitivity to initial conditions, a hallmark of
chaos (adding a single spike could radically alter the state of the
entire cortical network in less than a second), and (2) global oscil-
latory rhythms (e.g., alpha, beta, and delta waves) in the absence of
inputs, which parallel those observed in humans. Other work con-
siders specific circuits in the brain and their dynamics, in relation
to various cognitive tasks.

Let us now turn to phenomenology. Though Husserl does
not introduce explicit governing equations for consciousness, he
clearly posits what I have called“dynamical constraint”in the space
C of possible conscious states. Given who a person is (that is, given
a person’s preexisting knowledge, skills, and capacities), and given
the way sensory data happen to be organized for a person, only
some sequences of conscious states (paths in C) will be possible,
and others will not be. That is, only some subset ψ ⊆ Evol(C) will
be possible for a person in a (phenomenological) environment.
These ideas parallel the neural case in what I think is a remarkable
way, especially insofar as they can be independently developed on
phenomenological grounds.

The notion of dynamical constraint occurs in the context of
Husserl’s “transcendental” phenomenology, which is a develop-
ment of themes that go back at least to Kant (who famously
claimed that space and time are conditions on the possibility of
coherent experience, rather than features of a mind-independent
reality). In Husserl, Kant’s conditions on the possibility of coher-
ent experience correspond to “rules” (Regeln) which regulate the
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way experience must be organized in order for a world to appear.
To explain what this means, Husserl sometimes considers what
would happen if there were no such rules at all, so that any arbi-
trary subjective process could occur (compare the random brain
processes induced by the customized Matrix machine). In such
cases, Husserl says, the subjective stream could be so chaotic that
the appearing world would, in effect, be “annihilated:”

Could it not be that, from one temporal moment on. . . the
series of appearances would run into one another in such a
way that no posited unity could ultimately be maintained. . .?
Could it not happen that all fulfillment whatsoever would
cease completely and the entire stream of appearance dis-
solve into a mere tumult of meaningless sensations?. . . Thus
we arrive at the possibility of a phenomenological maelstrom
. . . it would be a maelstrom so meaningless that there would
be no I and no thou, as well as no physical world – in short,
no reality (Husserl, 1997, pp. 249–250).

Husserl here describes two ways we could fail to have any sense of
a transcendent world. In the first case, the “series of appearances
would run into one another in such a way that no posited unity
could ultimately be maintained.” In other words, we would have
flashes of experiences – a house, a dog, a painting – but they would
appear to the mind in a random, haphazard order without any
internal coherence. In the other case, subjectivity at every instant
is a meaningless“maelstrom;”“the entire stream of appearance dis-
solve(s) into a mere tumult of meaningless sensations.” In neither
case does Husserl imagine “absolute nothingness” (as, one sup-
poses, with death or pre-natal non-existence)29. Rather, Husserl
imagines disruptions in the system of rules or transcendental laws
that determine how conscious processes are organized so as to
present or “constitute” a coherent world of things.

The concept of a phenomenological maelstrom shows how cer-
tain very general rules constrain the way consciousness must be
organized in order for a coherent world to appear. We will focus
on two specific forms of constraint, which parallel the forms of
neural constraint described above.

A first set of constraints is associated with a person’s “back-
ground knowledge”which I take to include skills,beliefs, capacities,
personality characteristics, and all the largely unconscious factors
that contribute to a person’s identity30. The totality of such knowl-
edge in some sense defines who a person is phenomenologically.
Husserl refers to this as a“horizon”of “pre-knowledge”(vorwissen)
informing the structure of a person’s conscious experiences over
time31. Given what I have learned over the course of my life, I will
experience things in a particular way from moment to moment,
which is different from how someone else, with a different stock
of knowledge, would experience those things.

Background knowledge imposes several kinds of constraint on
experience. First, it constrains what conscious states are possi-
ble for a person or being with that background. I cannot have
all the same conscious experiences as a child or a mouse, given

29“. . . a mere maelstrom of sensations, I say, is indeed not absolute nothingness. It is
only nothing that can in itself constitute a world of things” (Husserl, 1997, p. 250).
30Compare what Searle (1983) calls the “background of intentionality.”
31This is one of several distinct senses of “horizon” in Husserl.

my overall knowledge and capacities, and they cannot have the
same experiences as me. I am not sure Husserl ever makes the
point, but others have. Joyce for example, observes (in the voice
of Stephen Daedalus), that “the minds of rats cannot understand
trigonometry32.” Focusing on human conscious states, it seems
clear that someone without the requisite training (an average tod-
dler, for example) can not have an experience of understanding
quantum mechanics, even if they can have many different con-
scious experiences. These points suggest that, in general, someone
with background knowledge k will be constrained to have experi-
ences in some subset Ck ⊆ C. These are accessible conscious states
for a person with background knowledge k. As a person’s back-
ground knowledge changes, we have an unfolding path in K (the
set of all possible states of background knowledge), and a changing
window of accessible conscious states in C (see Figure 3).

Background knowledge not only places a person in an accessi-
ble region Ck ⊆ C, it also constrains the order in which experiences
in that accessible region can be instantiated. Suppose, for example,
that I have background knowledge k, and that I am standing before
my house, instantiating a conscious state s ∈ Ck . I know from daily
experience that the walls are painted white inside. Now I walk in
to the house, and discover that all the walls have been painted
orange. Given my background knowledge k, I must be surprised.
A sequence of experience that begins in s and has me experienc-
ing orange walls inside, where I am not surprised, is impossible,
given k. Given my background knowledge, some paths in Ck are
ruled out, and others are not – I am constrained to be in a subset
ψk ⊆ Evol(Ck )33. Note that, qua a set of paths in a state space, ψk

is just a phase portrait, and hence corresponds to a kind of phe-
nomenological dynamics. So, as background knowledge changes
on the basis of my ongoing experience, we have a path in K. For
each point along this path we have an accessible region of C, Ck .
We also have a set of possible conscious processes in that subset,
that is, a changing subset ψk of Evol(Ck ).

Husserl recognizes these points in a general way, noting that a
person’s horizon (in the sense of background knowledge) is con-
stantly changing, and that as it changes, one’s way of perceiving
objects changes as well: “[the] horizon is constantly in motion;
with every new step of intuitive apprehension, new delineations
of the object result” (Husserl, 1975, p. 122). He also refers to
changes in background knowledge using geological metaphors,
describing an accumulation of “sediments” (Niederschlag) as we
learn new things, as well as continuously varying “weightings”
associated with particular items of knowledge. For example, each
day I drive to work and see the same things on the road. Over
time my “weighted” confidence in the presence of these things is
strengthened34.

32Cf. the discussion of “cognitive closure” in McGinn (1989), which includes
references to earlier discussions of this idea in the philosophy of mind.
33The generation and update of expectations relative to background knowledge is a
prominent feature of Husserl’s account. Husserl describes these relations in math-
ematical terms, as an “interplay of independent and dependent variables” (Husserl,
2001, p. 52), where body movements are the independent variables and expected
perceptions are the dependent variables. For a provisional formalization see Yoshimi
(2009).
34See Husserl (1975, p. 119) and Husserl (1982, p. 332).
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In addition to these knowledge-based constraints on experi-
ence, there are “external” constraints as well, corresponding to the
organization of sensory data in the conscious field. It is a fact of
experience that things appear to consciousness in certain ways,
and that we only have partial control over these appearances35.
Husserl captures this idea with his notion of sensory or “hyletic”
data, which are (on one interpretation) “something ego-foreign
that enters into our acts [experiences of things] and limits what
we can experience – that is, limits the stock of noemata [spe-
cific ways a thing can be experienced] that are possible in a given
situation” (Føllesdal, 1982, p. 95)36. For example, if I am stand-
ing before a house with my eyes open, I am constrained to see a
house-like shape before me. I can not just “will” the house-shaped
form away, or force myself by sheer volition to have a full-blooded
experience of skydiving or scuba diving. Similarly over time: brute
facts about how sensory data are organized during a given stretch
of time constrain what kind of experiences I could have during
that period. We already saw that background knowledge con-
strains me to be in some subset ψk of Evol(Ck ) during a particular
period of time. Brute sensory forms further constrain me during
this time, limiting me to an even smaller subset of Evol(Ck ). To
formalize these idea let a “sensory system” h be a system of sen-
sory constraints that determines what sensory forms appear to
a person (with background knowledge k) over time, something
like a phenomenological environmental system. We can write this
as ψk,h ⊆ Evol(Ck ). As with neural constraint, phenomenological
constraint varies along two dimensions: we have two knobs we can
turn when considering possible constraints on consciousness over
time. As we turn the first knob, background knowledge changes; as
we turn the second knob, a system of sensory constraints changes.
As we turn the these two knobs we have a changing region of
accessibility in C, and a changing and morphing set of paths in
this region.

Summarizing, for a person with background knowledge k,
relative to sensory system h, there exists:

(1) An accessible region of the space of conscious states Ck ⊆ C
(2) A set of possible paths ψk,h ⊆ Evol(Ck )

NEUROPHENOMENOLOGY VIA SUPERVENIENCE
We have seen that phenomenology and connectionism have a sim-
ilar dynamical structure. However, there is reason to believe that
they do not have an identical structure. Consider the following
reductio. Suppose that brain states are identical to conscious states,
so that B = C. This implies that every alteration in a person’s brain,
however miniscule, corresponds to a change in consciousness. But
it seems that a single neuron can change its firing rate by a tiny
amount, or a neuron can be lost, without changing consciousness.
In fact, there is experimental evidence for this, insofar as it has been
known since the 1960s that there is a threshold of cortical stimu-
lation, above which subjects report a change in consciousness (the
presence of a subjective sensation), and below which they do not

35This idea has a long history: it is present in various ways in (for example) Heidegger,
Fichte, and the Stoics.
36It should be noted that Føllesdal’s reading of hyletic data as constraining perceptual
interpretations is controversial in Husserl scholarship.

FIGURE 4 | Schematic of a supervenience function.

(Libet et al., 1967). This in turn suggests that some changes in
neural activity do not produce changes in consciousness. If that
is right, the space of brain states is not the same as the space of
consciousness states, B �= C37. The argument is a variant on Put-
nam’s classic critique of the identity theory (Putnam, 1967), and
the upshot is similar: if the argument is sound, conscious states
are “multiply realized” not just in radically different physical sys-
tems (Putnam’s emphasis), but even in different states of the same
brain38.

To link the dynamics of brain activity with the dynamics of
consciousness, in a way that allows for a many-to-one relation
between brain states and conscious states, we can draw on the
philosophical concept of supervenience. Mental–neural superve-
nience is ontologically minimalist: it only says that people who
differ in their mental states must differ in their brain states, or,
equivalently, that being in the same brain state entails being in
the same mental state. I have shown elsewhere (Yoshimi, 2011b)
that a mental–neural supervenience relation in this sense entails a
“supervenience function” f. Such a function associates brain states
x with conscious states f(x), where any person in brain state x at
a time will also be in conscious state f(x) at that time [in such
cases I will say that x “determines” f(x)]. More precisely, assuming
mental–neural supervenience, any brain state in a subset B′ ⊆ B
determines a unique conscious states in C (see Figure 4; brain
states in B but not B′ do not determine any conscious state – they
correspond to coma, dreamless sleep, etc.)39.

37This denies a highly specific form of the type identity theory, since the relevant
types are states (brain states and conscious states), and states are here taken to be
complex properties (see note 8) – e.g., the property of having 100-billion neurons
firing in a particular way.
38“Multiple realization” canonically refers to the fact that the same mental state can
be realized in different kinds of physical systems; e.g., a human, an alien, and a
computer. However, multiple realization can also apply to different brain states for a
particular species, or to different states of a single person’s brain, given its structure
at a time (Shagrir, 1998; Bickle, 2006). It is this last, most narrowly scoped sense of
“multiple realization” that I focus on here. Also note that a view that allows multiple
realization can still be physicalist. In fact, non-reductive physicalism – according to
which the mind is physical even though psychology can not be reduced to neuro-
science or physics – is a standard position in contemporary philosophy of mind,
largely because of multiple realization arguments (Stoljar, 2009).
39Many interesting and open questions are raised by this formulation. Is B′ con-
nected, as the figure suggests? What is the relative size of B′ with respect to B? What
are the properties of f? Is it 1–1? Is it continuous? Is it differentiable?
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It should be obvious how f can be used to link neural dynamics
with conscious dynamics. Any path in B′ can be associated with a
path in C using f. As my brain changes state while I am awake, a
path unfolds in B′. Each state in this path has an image in C under f,
and thus we have a corresponding path in C. In this way any neural
evolution in B′ can be associated with a stream of consciousness
in C. One problem here is that paths in B will not always stay in
B′ (and thus would not always have an image in C); they weave
in and out of B′, entering B′ as a person wakes up, and leaving B′
when (for example) that person goes in to a dreamless sleep. To
address this issue, in the rest of the paper I will usually assume that
structures in B have been restricted to B′, and thus have an image
in C. For example, when discussing paths in B, I only consider the
restriction of those paths to B′.

The supervenience function is largely (and, I think, usefully)
neutral with respect to the mind–body problem40. Supervenience
only tracks correlations between physical states and mental states,
without specifying their ontological status. For example, superve-
nience is consistent with dualism: if dualism is true, a superve-
nience function could map physical brain states to non-physical
mental states. If the identity theory is true, the supervenience func-
tion maps physical brain states to themselves, and the function is an
identity map. If non-reductive physicalism (a form of physicalism
that allows for multiple realization) is true, then the supervenience
function associates neural states with the conscious states they
realize, and the function is many-to-one. It is even possible to
describe an idealist version of mental–physical supervenience (in
fact Husserl actually does this;Yoshimi,2010). I regard this neutral-
ity as a virtue of the supervenience relation. Using supervenience
we can make progress in our study of neuro-phenomenological
dynamics, without having to resolve the difficult (and perhaps
essentially intractable) metaphysical questions associated with the
mind–body problem41.

If it is the case that B = C and the supervenience function is
a 1–1 identity map, the dynamics of neural activity are identical
to the dynamics of consciousness. If the supervenience function
is many to one, the move from B to C via f involves a kind of
compression or simplification, where many brain states can deter-
mine the same conscious state, and conversely, the same conscious
states can be multiply realized in many brain states. This in turn
implies that the dynamics of neural activity are related to but dif-
ferent from the dynamics of consciousness. We can imagine, for
example, that a loop in B, corresponding to a neural oscillation in
the brain gets mapped to a single point in C, corresponding to a
particular conscious state42.

40Note that I only say that supervenience is “consistent” with these positions. Some
positions on the mind–body problem are also consistent with the denial of superve-
nience. For example, dualism is consistent with failure of supervenience: an unstable
pineal gland could break supervenience in the case of classical Cartesian dualism,
allowing that the same brain state gives rise to different conscious states at different
times.
41The idea that the mind–body problem might be essentially unsolvable is associated
with explanatory gap arguments (Levine, 1983) and “mysterian” arguments in the
philosophy of mind (McGinn, 1989), as well as the “hard problem” of consciousness
(Chalmers, 1995).
42Of course, a pressing question in this case is what the supervenience function is. I
am aware of no current investigation in to this question. Libet’s work suggests the

The dynamics of consciousness can now be derived from the
dynamics of neural activity:

(1) Consider a brain structure g ∈ G. g determines an accessible
region B′g ⊆ B′.

(2) Consider an environment e ∈ c(g ). There exists an open
dynamical system describing g in this environment, which
in turn determines an open phase portrait φg,e ⊆ Evol(B′g ).

(3) The image of B′g under f is Cg ⊆ C.
(4) The image of φg,e under f is ψg,e ⊆ Evol(Cg ).
(5) So, dynamical constraint in phenomenology can be derived

from dynamical constraint in the brain.

(1) says that for any brain structure g there is an “accessible”
region of B′ (the domain of the supervenience function). More
specifically, we begin with a brain structure g ∈ G, and we consider
the accessible subset Bg ⊆ B corresponding to g. We then take the
intersection of Bg and B′, and call it B′g . (This intersection may be
empty – it may be that a given brain structure g cannot determine
any conscious states. In that case the results below follow trivially.)

(2) says that we can describe the behavior of a brain g in an
environment by an open dynamical system. Consider an environ-
ment e that contains brain g, that is, an environment e ∈ c(g ). An
open dynamical system for g in this environment determines an
open phase portrait φg,e in Bg , which can be restricted to B′g . As
we saw above, any phase portrait can be thought of as inducing
“dynamical constraint” on its state space, i.e., as determining a
subset of the set of all possible time evolutions in that space. In
this case we have a phase portrait φg,e ⊆ Evol(B′g ), which contains
time evolutions in B′g consistent with the dynamics of brain g in
environment e.

(3) notes that we can take the image of the set of accessible brain
states B′g in C, which yields a set of accessible conscious states for
g, Cg ⊆ C (see Figure 5). This can be thought of as the set of con-
scious states possible for a person given the structure of his or her
brain.

(4) says that each path in φg,e can be associated with a path in
Cg using f. I call the resulting set of paths ψg,e . Since paths in ψg,e

are time evolutions in Cg , ψg,e ⊆ Evol(Cg ). Thus we have dynami-
cal constraint in the phenomenological domain. For a person with
a brain of type g in an environment e, some conscious processes
are possible (those in ψg,e ), and others are not (those in Evol(Cg )
but not ψg,e ).

Thus, (5), the dynamics of consciousness, as specified by
ψg,e ⊆ Evol(Cg ), can be formally derived from the dynamics of
neuroscience.

The overall picture we have is as follows. In the course of a
person’s life, neurons come and go, synapses become more or
less efficient in transmitting information, etc. We thus have a
changing “life path” g 1. . .gn in the brain structure space G. As
this path unfolds, we have a changing window of accessibility
Bg 1,. . .,Bgn in B (different brain states become possible as the

supervenience function partitions brain space into a collection of relatively uniform
classes (the pre-images of f), each of which occupies more or less the same amount
of brain space, but more work is needed.
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FIGURE 5 | A brain structure g ∈ G determines an accessible region

B′g ⊆ B′, which in turn has its image Cg under f in C. An open phase
portrait φg,e (not shown) defined on B′g also has its image under f, yielding a
phase portrait ψg,e in Cg . In this way phenomenological dynamics can be
derived from neural dynamics.

brain’s structure changes), which determines a corresponding win-
dow of accessibility in C relative to the supervenience function
(different conscious states become possible as the brain’s structure
changes). Within the changing window of neural accessibility we
also have a changing and morphing phase portrait, which deter-
mines which neural processes are possible for this person, once
we have specified an environment. This in turn determines which
conscious processes are possible for this person. In this way the
dynamics of consciousness can be derived from the dynamics of
an embodied brain.

I have shown how various phenomenological structures like
those described by Husserl can be derived from neural struc-
tures, but I have not shown them to be the same. I have not
reduced Husserlian phenomenology to neuroscience. For example,
are the conscious states in Ck determined on purely phenome-
nological grounds to be consistent with a person’s background
knowledge k the same as those that are possible given the struc-
ture of that person’s brain g ? That is, does Cg = Ck ? Similarly,
is it the case that the dynamical constraints implied by phe-
nomenology are equivalent to those implied by neuroscience?
One could address the issue by arguing that the phenomeno-
logically grounded constructs should be eliminated as a matter
of theoretical parsimony. We have seen that all the work the
phenomenological constructs do can be done by the neurally
derived constructs. Moreover, the neurally derived constructs are
subject to more precise measurement than constructs based on
introspection, which is known to be error-prone (Schwitzgebel,
2008). Another approach would be to allow that the phenomeno-
logical constructs and their neurally derived counterparts might
be logically distinct (and to study that distinction philosophi-
cally), but to focus, in practice, on the neurally derived constructs,
given that the neurally derived constructs are more empirically
tractable.

SUBSPACES AND APPLICATIONS
We have seen how the dynamics of consciousness can be for-
mally derived from the dynamics of neural activity, and in
the process have developed a conceptual framework for neuro-
phenomenological investigation. However, it is not yet clear how
this framework can be applied to extant research. The problem
is that I have focused on very “large” spaces – in particular, B
and C – which are far removed from the concerns of working
neuroscientists and phenomenologists. States in B are patterns of
activity involving (for a typical human brain) billions of spiking
neurons. States in C are fields of consciousness or Erlebs, totalities
of phenomenal data for persons at times. How can these results
inform studies of specific neural systems or phenomenological
domains?

We can address the issue by considering subspaces of Bg and
Cg (in the rest of this section I assume an arbitrary human brain
structure g ). Recall that the state space Bg for a brain g with n
neurons is (on the standard connectionist representation) a solid
hypercube in Rn with 2n vertices. Any subset of g ’s neurons defines
a subspace of Bg , a “smaller” hypercube contained within it: visual
cortex space, temporal cortex space, fusiform face area space, etc.
These are the “internal cognitive spaces” Churchland refers to in
the opening quote. In some sense these are “part spaces”: each
point in visual cortex space, for example, corresponds to a pattern
of activity for g ’s visual cortex, which is part of a larger pattern of
activity over all that brain’s neurons.

Since it is not clear what the mathematical structure of C is,
it is not clear in what sense we can meaningfully speak of “phe-
nomenological subspaces.” However, it seems clear that can talk
about part spaces of Cg , which we can take to be subspaces. For
example, we can think of smell space as the set of all possible smell
experiences, where each smell experience is a part of some total
conscious field in Cg . In fact, Husserl himself makes use of this
idea when he refers to phenomenological “spheres” – the sphere of
visual experiences, the sphere of kinesthetic (bodily) sensations,
the “affective sphere,” etc. (Yoshimi, 2010).

Assuming we can meaningfully speak of neural and phenome-
nological subspaces, the question remains of how they are related
to each other. One possibility is that they are related by superve-
nience, so that subspaces of Cg supervene on subspaces of Bg and
are thus related by supervenience functions. For example, if visual
experiences supervene on states of visual cortex, we can define a
subspace supervenience function which associates states of visual
cortex (points in a subspace of Bg ) with visual experiences (points
in a subspace of Cg ). Any state of g ’s visual system will determine
a unique visual experience relative to this function. Numerous
questions arise here. For example, is it plausible to suppose, con-
sistently with the existence of a visual cortex-to-visual experience
supervenience function, that a patch of visual cortex in vitro could
support visual phenomenology?43 Perhaps not. I think there are
plausible ways of meeting this challenge (and related challenges),

43There has been very little work in these areas, to my knowledge, but see Wilson
(2001) and Mandik (2011) for tools that could be helpful. For example, it could be
that activity in visual cortex determines a specific visual experience, so long as suit-
able activity occurs in the rest of the brain (this is what Wilson calls a “background
condition” of realization).
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FIGURE 6 | A loop-shaped orbit in R3 projected to a two-dimensional

subspace. The loop in R3 does not cross itself, but its projection does,
twice. The orbit is taken from the Lorenz equation, for a parameter value
near one of its many bifurcations.

but here I will simply assume – as many others do, at least tacitly –
that neural and phenomenological subspaces can be defined, and
that they can be related by supervenience functions.

Using these functions, specific forms of phenomenology can
be studied in relation to specific brain circuits. Subspace superve-
nience functions can be used to move back and forth between
phenomenology and neuroscience, deriving phenomenological
predictions from neural data, and generating neural predictions
from phenomenological claims44. In moving from neuroscience
to phenomenology, we begin with a path or other structure in Bg ,
project this structure down to a lower dimensional subspace (e.g.,
visual cortex space), and then use a subspace supervenience func-
tion to map this projected structure to a corresponding subspace
of Cg – one of Husserl’s “phenomenological spheres” (e.g., the
space of possible visual experiences). It should be noted that these
paths and structures can be changed in the process. For example,
in Figure 6, a path in a three-dimensional space is changed when
it is projected to a lower dimensional space. We can also derive
neural predictions from phenomenology. To do so, we can begin
with a structure in Cg , project it to a phenomenological subspace,
and then consider that structure’s pre-image in a subspace of Bg

relative to a subspace supervenience function.
There are problems here, some of them substantial (for exam-

ple, we do not actually know what these subspace supervenience
functions are), and in practice various auxiliary assumptions must

44A prediction about a person’s phenomenology is less obviously testable than a
prediction about neuroscience is, though there are methods for assessing the coher-
ence of phenomenological claims, e.g., via convergence with other sources of data
(Mangan, 1991).

be made in order to perform any actual neuro-phenomenological
analysis of this kind. Still, as a way of understanding how the
dynamics of phenomenology and neuroscience are related, I
think the approach is promising, and again, I take myself to be
formalizing ideas already tacit in much of the literature.

To further develop these ideas, in the remainder of this section
I describe examples of existing research that can be interpreted
using this framework. The relevant hypotheses are preliminary
and subject to revision or falsification, but they collectively convey
a sense of how I envision neurophenomenology unfolding.

First, certain classical connectionist ideas concerning the struc-
ture of an activation space can be used to make phenomenological
predictions. Activation spaces are often hierarchically organized
in to subsets that correspond to psychologically significant cate-
gories45. For example, the activation space of Cottrell’s (1990) face
recognition network contains subsets corresponding to faces and
non-faces, male and females faces, and individual faces. These sub-
sets were not programmed in to Cottrell’s network, but emerged in
the course of training. The connectionist model can be thought of
as an approximation of a biological neural network (whose state
space is a subspace of Bg ), perhaps a network in the fusiform face
area in the temporal lobe, known to be implicated in face recog-
nition. Assume a subspace supervenience function links states of
this network with conscious perceptions of faces in a“face recogni-
tion” subspace of Cg . Relative to these assumptions, we can predict
that the category structure of the neural state space is preserved
under the subspace supervenience function. If that is right, then
every brain state in the male-face subset of the brain network
is mapped to an experience of a male-face, all the female-face
brain states are mapped to experiences of female-faces, etc. So
the neural category structure predicts a phenomenological cate-
gory structure. Similarly in other domains, e.g., for grammatical
and semantic categories, which have been studied using connec-
tionist networks (Sejnowski and Rosenberg, 1987; Elman, 1991),
and which could be used to predict our tacit phenomenological
awareness of linguistic categories.

A related set of ideas is associated with the notion that memories
are fixed points of attractor networks (Hopfield, 1984; Rumelhart
and McClelland, 1987b). In such cases a network’s settling in to
a fixed point attractor is interpreted as memory retrieval from a
partial cue. The settling process can be understood in terms of the
maximization of a “harmony function” defined on the activation
space, where the value of this function represents the “goodness
of fit” between the current sensory input and knowledge stored
in the connection weights (Prince and Smolensky, 1997, p. 1607).
Mangan (1991, 1993) links “goodness of fit” in this sense with a
felt sense of “meaningfulness” in the field of consciousness. The
degree to which inputs are consistent with stored knowledge struc-
tures is, according to Mangan, correlated with a phenomenological
continuum between states where we feel confused (low levels of
meaningfulness) to states that in some sense feel“right”(high levels
of meaningfulness, which Mangan associates with esthetic expe-
rience and scientific discovery). To formalize this, we can begin

45The philosophical implications of these ideas are also developed by Smolensky
(1988), Lloyd (1995), and Churchland (1996), among others.
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with a subspace of Bg corresponding to an attractor network in
the brain, say, a region of temporal cortex associated with semantic
processing. A harmony function can be defined on this subspace,
so that at any moment a degree of harmony can be associated
with activity in this network. If we assume the harmony values
of the neural patterns are preserved under the relevant subset
supervenience function, then the degree of meaningfulness of an
experience will correspond to the harmony of the neural pattern
that produced it. In this way we can predict meaningfulness of
experiences from neural patterns, at least in principle.

A third example comes from Churchland (2005), who predicts
new forms of color phenomenology based on the color opponency
theory of color vision. According to this theory, triples of retinal
ganglion cells code for colors, and patterns of activity across these
triples correspond to color experiences at points in the visual field.
Thus we have a collection of three-dimensional subspaces of Bg ,
one for each point in the visual field. Since Churchland is an iden-
tity theorist, we also have a subspace supervenience function for
each of these triples, which is an identity map (a pattern of activity
for a relevant triple of ganglion cells is identical to a color experi-
ence at the corresponding point in the visual field). What is exciting
about Churchland’s proposal is that it can be used to make spe-
cific predictions about visual phenomenology, without having to
directly intervene in the brain (compare the abstract and currently
untestable cases above). Churchland notes that chromatic fatigue –
induced by prolonged exposure to a color stimulus – makes retinal
cells change their activity, in a way that can be represented by vec-
tor addition in the three-dimensional color space. By fatiguing
ourselves with respect to specific color stimuli, we can force our
ganglion cells to move to points in the color space which they
otherwise could not visit, resulting in unusual color experiences.
In this way, Churchland predicts new forms of phenomenology,
arguing that color experiences not possible in normal conditions
can be induced in this way, e.g., impossibly dark blues, hyperbolic
oranges, and self-luminous greens. I encourage you to try it and
judge for yourself.

Finally, an example in the reverse direction, from phenomenol-
ogy to neuroscience. According to Husserl, conscious experience
is non-repeatable: “The same [mental state] cannot be twice, nor
can it return to the same total state” (Husserl, 1990, p. 315). One
reason Husserl gives is that we always experience the world against
the background of our past, and since our past is always changing,
we never see the world in precisely the same way. If this is true,
then it corresponds to a topological claim about paths in C: no
path in C can ever cross itself. However, even if this is the case for
total fields of consciousness in C, a projection of a path in C to a

subspace of C could cross itself (as in Figure 6). This is, moreover,
phenomenologically plausible. Even if I can not have the same
total experience twice, it seems possible that I can experience the
same visual image twice (e.g., by blinking while standing before an
unchanging scene), and it is all but guaranteed that the same color
can recur in a given part of the visual field. In fact it seems that as
we move from C to successively lower dimensional subspaces, that
the probability of repetition increases. These claims can be used
to generate neural predictions. If a path in C does not cross itself,
this suggests that its pre-image in B would not cross itself either.
Moreover, if paths in successively lower dimensional subspaces
of C are increasingly likely to cross themselves, this suggests that
the same is true of successively lower dimensional subspaces of
B. Again this seems intuitively plausible. The same total state of a
person’s brain may never recur, and recurrence is unlikely even for
states of the entire visual system, but by the time we consider the
one-dimensional activation space of a single neuron, repetition is
all but guaranteed.

CONCLUSION
We have seen that from a few relatively uncontroversial assump-
tions (e.g., mental–physical supervenience, which brackets the
mind–body problem and the hard problem of consciousness), a
framework for integrating phenomenology and neuroscience can
be developed. I have tried to convey some of the excitement asso-
ciated, at least for me, with this enterprise. Husserl describes a
complex set of rules governing the evolution of consciousness in
various domains, and these rules can be derived from dynam-
ical laws governing neural activity in embodied brains. Among
other things, this suggests that conscious processes – paths in C –
have shapes, which can be visualized via their pre-images in B.
Some have begun to look at such paths in animal brains (Ger-
vasoni et al., 2004), and it is also possible to study these paths
in simulations of embodied neural network agents (Phattanasri
et al., 2007; Hotton and Yoshimi, 2010). By interpreting stud-
ies like these in a neuro-phenomenological framework, we can
begin to understand the actual topology and geometry of “mani-
folds,”“horizons,” and other structures Husserl only describes in a
qualitative way.
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