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Recent experimental work has demonstrated the existence of extremely rapid saccades
toward faces in natural scenes that can be initiated only 100 ms after image onset (Crouzet
et al., 2010). These ultra-rapid saccades constitute a major challenge to current models of
processing in the visual system because they do not seem to leave enough time for even
a single feed-forward pass through the ventral stream. Here we explore the possibility that
the information required to trigger these very fast saccades could be extracted very early
on in visual processing using relatively low-level amplitude spectrum (AS) information in
the Fourier domain. Experiment 1 showed that AS normalization can significantly alter face-
detection performance. However, a decrease of performance following AS normalization
does not alone prove that AS-based information is used (Gaspar and Rousselet, 2009). In
Experiment 2, following the Gaspar and Rousselet paper, we used a swapping procedure
to clarify the role of AS information in fast object detection. Our experiment is composed of
three conditions: (i) original images, (ii) category swapped, in which the face image has the
AS of a vehicle, and the vehicle has the AS of a face, and (iii) identity swapped, where the
face has the AS of another face image, and the vehicle has the AS of another vehicle image.
The results showed very similar levels of performance in the original and identity swapped
conditions, and a clear drop in the category swapped condition. This result demonstrates
that, in the early temporal window offered by the saccadic choice task, the visual saccadic
system does indeed rely on low-level AS information in order to rapidly detect faces. This
sort of crude diagnostic information could potentially be derived very early on in the visual
system, possibly as early as V1 and V2.

Keywords: natural scenes, fast saccades, Fourier transform, amplitude spectrum, face detection

INTRODUCTION
The time needed to detect the presence of an object in a com-
plex natural scene can be remarkably short (Potter, 1975; Thorpe
et al., 1996; Kirchner and Thorpe, 2006). The Kirchner and Thorpe
study showed that if two images are presented to human subjects
left and right of a fixation, they can selectively saccade on the image
containing an animal as early as 120–130 ms after stimulus onset.
Recently, it has been show that this processing time could be even
shorter if targets are human faces, with reliable saccadic responses
starting only 100 ms after image display (Crouzet et al., 2010).
Additionally, this extremely fast processing is associated with a
very strong bias toward faces, such that when subjects attempt to
saccade toward another category of stimulus such as vehicles (faces
in this case were used as distractors), performance is particularly
poor, especially when the saccades are initiated at short latencies.

This kind of extremely rapid processing puts very severe con-
straints on underlying visual processing. Given that the earliest
saccades toward faces can be initiated at 100 ms, it follows that the
brain mechanisms that trigger the response must be even earlier.
It is often assumed that the delays in the oculomotor circuit lead-
ing to activation of the eye muscles are of the order of 20 ms or
so, implying that the “decision” to move is presumably made at a
latency of only 80 ms. Even a pure feed-forward processing sweep

from the retina to the human homolog of inferotemporal cor-
tex (IT), where object selective neurons are found (Tanaka, 1996),
might be too long as it is suggested by single-cell recordings in
monkeys (see Lamme and Roelfsema, 2000 for a review; see also
Tsao et al., 2006) or Local Field Potentials in humans (Liu et al.,
2009). Instead, the visual system might base these rapid behavioral
decisions on information that is only partially processed, leading
to what might be termed a “quick and dirty” processing strategy.

A good candidate to be the basis of this “quick and dirty” pro-
cessing could be amplitude spectrum (AS) information of the
image in the Fourier domain. The analogy between the early
stages of processing in the visual system and Fourier analysis is
long standing (Marr, 1982; see Westheimer, 2001 for an histori-
cal review). Early visual processing has often been described as a
form of filtering operation (Campbell and Robson, 1968; Marr,
1982; Field, 1999). Although image semantics does not depend
on spatial-frequency amplitude but rather on phase information
(Oppenheim and Lim, 1981; Piotrowski and Campbell, 1982), the
Fourier spectral signatures of scenes have been used by computa-
tional models to infer scene categories (Oliva and Torralba, 2001;
Torralba and Oliva, 2003). Indeed, it has been suggested that the
human visual system can take advantage of these low-level nat-
ural image statistics to perform more complex tasks. For example,
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rapid image recognition can be biased by priming using infor-
mation concerning the AS (for global scene properties: Guyader
et al., 2004; or animal detection: Kaping et al., 2007). However,
studies that have directly manipulated the target images for recog-
nition suggest that it is not used for global scene categorization
(Loschky et al., 2007; Loschky and Larson, 2008) but see (Joubert
et al., 2009), animal detection (Wichmann et al., 2006; Gaspar and
Rousselet, 2009), even using fast saccadic responses (Wichmann
et al., 2010).

However, face detection could be a special case. Amplitude
information has been claimed to be responsible for face pop-
out in visual search (Vanrullen, 2006), but see also (Hershler and
Hochstein, 2006). Recently, a study explicitly tested the role of
amplitude information for fast saccades toward faces. Using a sim-
ilar design to Wichmann et al. (2010) but replacing the manual
response by a saccadic choice task, they showed that amplitude
alone can bias fast saccadic responses toward faces (Honey et al.,
2008). Furthermore, numerous studies have already showed that
faces have specific characteristics in the frequency domain (Keil,
2008, 2009; Keil et al., 2008; Nestor et al., 2008; Dakin and Watt,
2009). As a demonstration, an amplitude-only based classifica-
tion performs surprisingly well when separating the set of images
used in Crouzet et al., 2010; 85% on faces; and 84% on vehicles,
see Figure 1). This particularity could thus be used by the visual
saccadic system.

In the present study, using the same set of images than in
an earlier study, we investigated the role of AS information in
ultra-rapid detection of faces. In Experiment 1, we compared the

subject performance in a saccadic choice task where they had to
discriminate between faces and vehicles, using either unmodified
or amplitude normalized images. A performance drop in the nor-
malized condition would mean that this type of information plays
a significant role in the task. The observed decrease of performance
when subjects had to saccade toward faces suggests that amplitude
information is indeed important for fast face detection. However,
this decrease might at least partially be caused by the edge noise
added to images by the AS normalization rather than the absence
of specific amplitude information (Gaspar and Rousselet, 2009).
Experiment 2, designed to address this issue, showed that edge
noise alone cannot explain the result, but rather suggested that
amplitude information is effectively used to guide fast saccades,
even if phase information is still the most important. Together,
these results suggest that the visual system does indeed use incom-
pletely processed information to help make the extremely rapid
behavioral responses that are seen with face stimuli.

GENERAL METHODS
STIMULI
Two hundred photographs selected from the Corel Photo library
database and downloaded from the Internet were used to set up
two object categories of 100 natural scenes: human faces and vehi-
cles. The same set has already been used in a recent study by our
group (Crouzet et al., 2010). All the images were converted to gray-
scale and resized to 330 × 330 pixels. The global luminance (0.5)
and contrast (RMS = 0.26) were set to be equal between images.
All the image modifications were done using MATLAB.
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FIGURE 1 | Performance of a linear classifier feed with amplitude-only

information to classify face and vehicle images used in Crouzet et al.

(2010). After having resized images to 256 × 256, they were passed trough a
Hamming window function to remove boundary artifacts. The amplitude of
the Fourier transform was then computed on each image. The resulting
distribution of frequencies were divided into four bins of orientation
(horizontal, vertical, and the two obliques), each one covering 45˚. The
distribution of frequencies for each orientation was then encoded by 20
points, resulting in 80 values representing the global features of each image

to feed the classifier. A linear SVM was then trained on half of the images
(50% faces, 50% vehicles) and tested on the other half. After 1000
cross-validations with random train and test subsets, we computed the
mean performance of the classifier to correctly classify an image in its class.
The error bars correspond to the SD. The computing of the global and
unlocalized features was based on the MATLAB script
AverageAndPowerSpectrum.m (Torralba and Oliva, 2003), and the
classification was done using the LIBSVM 2.9-1 for MATLAB
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm/).
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APPARATUS
Participants viewed the stimuli in a dimly lit room with their
heads on a chin rest to maintain the viewing distance at 60 cm.
Stimuli were presented on a IIYAMA Vision Master PRO 454
monitor with the screen resolution set to 800 × 600 pixels and
a refresh rate of 100 Hz. The centers of the two images were
always 8.6˚ from the fixation cross, resulting in a retinal size
for each image of 14˚ by 14˚. Stimuli presentation was done
using MATLAB and the Psychophysics Toolbox 3 (Brainard, 1997;
Pelli, 1997). The background color is the only apparatus dif-
ference between the two experiments. In Experiment 1, a black
background was used. In Experiment 2, it has been changed
to a mid gray background, which seems to slightly improve
performance.

THE SACCADIC CHOICE TASK
A trial takes place as follows: observers had to keep their eyes
on a fixation cross which disappeared after a pseudo-random
time interval (800–1600 ms). After a 200 ms-time gap, two nat-
ural scenes (one face and one vehicle) appeared on each side of the
screen for 400 ms (see Figure 2). The task was to make a saccade
as quickly and as accurately as possible to the side of the target.

EYE MOVEMENT RECORDING
Eye movements were monitored with an IView Hi-Speed eye-
tracker (SensoMotoric Instruments, Berlin, Germany). This
infrared tracking system samples eye position at 240 Hz. Saccade
detection was performed off-line using the saccade based algo-
rithm of the SMI BeGaze Event Detection (Smeets and Hooge,
2003). Only the first saccade to enter one of the two images after
display onset was analyzed. Only saccades with onsets longer than
80 ms and shorter than 500 ms were kept for the analysis in order
to reduce the influence of outliers. Before each run, a 13-point
calibration was performed.

FIGURE 2 | Protocol: the saccadic choice task. A fixation cross is
displayed for a pseudo-random time (between 800 and 1600 ms), then,
after a 200 ms gap, two images (a target and a distractor) are displayed on
the left and right. After a 1000 ms period, a new trial can start.

EXPERIMENT 1
In order to test the influence of AS for the ultra-rapid detection of
faces, we made this cue non-informative by averaging it between
images. This corresponds to the normalized condition. In this
case, the only information still available to discriminate between
faces and vehicles is thus phase information. The performance of
participants in this normalized condition was compared to their
performance with original images.

METHODS
Participants
Eight participants (six males, mean age = 29.5, two left-handed)
including the two authors gave written informed consent before
participating in the experiment.

Amplitude spectrum normalization
In order to normalize it, we computed the mean AS over all images
of the two categories. This mean AS was then re-combined with
the original phase of each image, resulting in a second equiva-
lent set of images which differed only by their phase information
(Figure 3). This method averages the spatial-frequency contents
of all stimuli at each scale and orientation.

Design
Using a within-subject design, two tasks (saccading toward faces
or toward vehicles) and two types of images (original, normal-
ized) were tested here. The whole experiment was divided for each
subject in two blocks (one for each task). In each block, runs were
alternating between the two types of images. For example, a subject
would start with eight runs of 50 trials with faces as the target –
these runs alternating between original images and normalized
images – and then the same with vehicles as target, blocks, and
runs orders being counterbalanced between subjects. Indeed, each
image was displayed two times in each condition (once on the left
and once on the right hemifield), resulting in 200 trials per condi-
tion and per subject. Each block was preceded by a training session
of 50 trials (25 with original images and then 25 with normalized
images which were not used in the experiment).

RESULTS
The results with original images (168 ms and 88.8% correct in the
face task; 197 ms and 72.8% in the vehicle task) are very compa-
rable to the values observed in a previous experiment by Crouzet
et al., 2010; Figure 4). In the normalized condition, when partic-
ipants can only rely on phase information, they were still able to
do the task very quickly and accurately (180 ms and 75% correct
in the face task; 201 ms and 63.8% in the vehicle task). Using a
2-way ANOVA with factors Task (face, vehicle) and Type (original,
normalized), the results showed that even though participants are
able to do the task above chance in the normalized condition, their
performance is globally lower (Type global effect: F (1,7) = 52.8,
p < 0.001 for mean RT; F (1,7) = 120.3, p < 0.001 for accuracy), a
result which is consistent with previous studies using this type of
normalization (Wichmann et al., 2006, 2010; Loschky et al., 2007;
Loschky and Larson, 2008; Gaspar and Rousselet, 2009; Joubert
et al., 2009). More specifically, and after correction for multiple
comparisons, the normalization has no effect on mean RTs, and
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FIGURE 4 | Results of Experiment 1. On the top, results when participants
had to saccade toward faces, on the bottom, results when participants had to
saccade toward vehicles. (A) Mean RT and accuracy across subjects in the
original (Orig) and normalized (Norm) conditions. Error bars represent
bootstrapped 95% C. I. of the mean. (B) Distributions of RT in each condition

and each task. Thick lines are for correct responses, thin lines for errors.
Orange lines for saccades toward faces, blue lines for saccades toward
vehicles. The transparent gray bar is placed according to the minimum RT (the
first 10 ms bin of time where correct responses significantly outnumber
incorrect ones using a χ2 test) when considering all subjects as one.

the decrease in accuracy following normalization is only significant
in the face task (Tukey HSD post hoc test: p < 0.01 in the face task,
p = 0.1 in the vehicle task). In other word, the AS information
seemed to be used particularly when subjects had to target faces.

Furthermore, despite the normalization, the advantage for faces
is still present although reduced in size, with an advantage for
faces over vehicles of 21 ms and 11% accuracy in the normal-
ized condition (accuracy: p < 0.05), 29 ms and 16% in the original
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one (accuracy: p < 0.01; Task global effect: F (1,7) = 18.4, p < 0.01
for mean RT; F (1,7) = 27.5, p < 0.01 for accuracy). A second
conclusion is thus that the AS can explain a part of the bias toward
faces, but is not sufficient.

As a summary of Experiment 1, and as expected from previous
studies, the AS normalization significantly decreased subjects per-
formance. However, this effect was larger in the face task than in
the vehicle one. Even if phase information is largely sufficient to
induce a bias toward faces, amplitude information could then play
a significant role in driving fast saccades.

EXPERIMENT 2
A recent study demonstrated that a performance decrease caused
by AS normalization is not sufficient to claim that it is effectively
used by the visual system to perform the task. Indeed, Gaspar and
Rousselet (2009) showed that the performance decrease in an ani-
mal detection task caused by AS normalization could be entirely
explained by the edge noise added incidentally by the manipu-
lation, rather than by the absence of amplitude information. To
show that, they used an additional condition where every animal
image phase spectrum was combined with the AS of another ani-
mal image (they did the same for non-animal images), resulting in
images with phase and amplitude from the same category but from
different individual images. The performance of their participants
in this “identity swapped” condition was similar to the one in the
“normalized” condition. This means that in a manual response
animal detection task, what matters is not phase or amplitude
information by themselves, but the interaction between the two.

However, it has been shown that the AS of faces alone could
attract fast saccades in a saccadic choice task (Honey et al., 2008)
since even when the phase information was completely scrambled,
there was still a bias with saccades toward faces. In Experiment 2,
we thus used two new image manipulations: (i) a category swapped
condition (SWAcat), where the amplitude spectra of the face and
vehicle images were exchanged and (ii) an identity swapped condi-
tion (SWAid) where the amplitude spectra applied to each image
were taken from another image of the same category. Thus, in
all conditions, amplitude differences were still informative, but in
the case of SWAcat, they were inverted between categories. The
only difference between SWAid and ORI being that amplitude and
phase of each image was not consistent. This results in three dif-
ferent conditions: original (ORI), category swapped (SWAcat), and
identity swapped (SWAid) that will be used to investigate further
the role of AS in guiding fast saccades toward faces.

The logic here is as follows. If the amplitude is not used by
subjects to perform the task, the performance in the SWAcat and
SWAid conditions should be equal, and certainly lower than in ORI
because of higher edge noise (Gaspar and Rousselet, 2009). On the
contrary, if the AS is used, performance in the identity swapped
condition should be significantly higher than in the category
swapped. Our results clearly support the second alternative, argu-
ing for the use of amplitude information for fast saccade guidance.

METHODS
Participants
Twelve participants (seven males, mean age = 25.9, one
left-handed) including the first author gave written informed
consent before participating in the experiment.

Design
The design was essentially the same as in Experiment 1. The
difference was the use of three experimental conditions: orig-
inal (ORI), category swapped (SWAcat), and identity swapped
(SWAid). Every image was seen two times for each of the three
conditions by each participant, as a target and as distractor when
the task is reversed (resulting in 100 images × 2 repetitions × 3
conditions × 2 tasks = 1200 trials per participant).

Image manipulation
In the original condition, there was no manipulation of the images
in the Fourier domain. In the category swapped condition, the
amplitude spectra were switched between the two images pre-
sented on every trial. Thus, face images had the amplitude from
vehicles, and vehicles from faces. In the identity swapped condi-
tion, on every trial, the amplitude of each image was replaced by an
amplitude randomly selected among the 99 other exemplars of the
category (each individual amplitude was used only once per run).
For example, a face had the amplitude of another face, resulting
in images with amplitude, and phase from the same category but
not from the same image. Examples can be seen in Figure 5. A
possible confound for this experiment would be different level of
edge noise between the category and identity swapped conditions.
To control this aspect, a measure of local phase congruency (LPC)
based on the MATLAB function phasecong3.m written by Peter
Kovesi was made on every image. The results of these measure-
ments can be seen on Figure 6, and show that the level of edge
noise between category and identity swapped conditions are effec-
tively equal, and were both significantly higher than in the original
condition.

RESULTS
A global look at the results reveals that the performance in Exper-
iment 2 for the original condition was somewhat better than in

Phase
information
from

Amplitude
information

from

ORIGINAL
CATEGORY
SWAPPED

ORIGINAL

IDENTITY
SWAPPED

CATEGORY SWAPPED IDENTITY SWAPPED

A

B

FIGURE 5 | Images used in Experiment 2. (A) Principles of the different
possible combinations between amplitude and phase spectrums with
examples for an image. (B) Examples of images used in the three
conditions, faces on top and vehicles on bottom.
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Experiment 1 despite the fact that the images used were exactly
the same (see Figure 7). A large part of this difference is cer-
tainly caused by the change in background color (from black to
gray), although inter-subject variability may also be involved. A
first analysis of the global effects, using a two-way ANOVA with
factors Task (face or vehicle) and Type (original, category, and
identity swapped), showed an effect of both on mean RT (Type:
F (2,22) = 13.56, p < 0.001; Task F (1,11) = 44.80, p < 0.001) and
accuracy (Type: F (2,22) = 84.06, p < 0.001; Task: F (1,11) = 43.56,
p < 0.001).

However, the principal aim of this experiment was to test the
difference between the original condition and the two conditions
involving image manipulations: category and identity swapped. A
post hoc analysis using correction for multiple comparisons (Tukey
HSD) was used, and revealed no effect on mean RT, thus only
analysis of accuracy will be developed. In the face task, the original
(accuracy = 93.8%) and identity swapped (89.8%) conditions led
to comparable levels of performance and were significantly better
performed than the category swapped (78.1%). A closer look at
RT distributions reveals that even though accuracy was lower in
the category swapped condition, the first selective responses still
occur very early. In the vehicle task, the effect is less clear, orig-
inal (73.6%) and identity swapped (64.3%) conditions are again
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FIGURE 6 | Averaged local phase congruency (LPC) over all images as a

function of the three image modifications. The function phasecong3.m
(Kovesi, 2000) was applied on every image of each set (ORI, SWAcat, and
SWAid) to obtain an LPC value for each image. On an individual image, this
value corresponds to the averaged value of the 10 most salient locations (as
defined by the output map of the LPC on the original image, see Gaspar
and Rousselet, 2009). The results show that the edge strengths are
different between the three conditions (F (2,597) = 1392.6, p < 0.001) and
significantly higher in the original than in the category and identity swapped
sets (test post hoc Tukey HSD). The important result here is that there is no
significant difference between the category and identity swapped sets.

comparable, the only difference being between with the category
swapped one (58.5%).

Each image category can be divided into two different object
sizes: close-up and middle view. It could have been hypothesized
that size would have an effect here, caused by the specific image
manipulations. However, remarkably, a post hoc analysis showed
absolutely no effect: there is no speed or accuracy differences
between all the different conditions of size mixing. For example, we
found no evidence that mixing the phase information from a close-
up face with the amplitude information from a mid-distance view
(or the inverse) specifically impaired performance in comparison
to other conditions.

As a global conclusion of Experiment 2, the results argue in
favor of a significant use of amplitude information by the visual
system to guide saccades. Surprisingly, it seems that there is a
tendency for amplitude information to also be used by subjects
when the task was to target vehicles, even if it is less clear than for
faces. Another surprise was that this effect is not limited to just
the fastest saccades. So even if, again, phase information seems to
be the most important information, AS definitely plays a role in
saccade generation.

GENERAL DISCUSSION
Our first goal was to investigate the role of amplitude information
in the Fourier spectrum in the generation of fast saccades toward
faces. The question raised by this study follows from two recent
results which showed that (i) saccades can be selectively oriented
toward a target extremely fast (100–110 ms) in the specific case of
this target being a face (Crouzet et al., 2010), (ii) in the absence of
phase information, amplitude alone can attract fast saccades by its
own if it comes from a face image (Honey et al., 2008). Our first
aim was thus to test the influence of AS information in the effect
observed in Crouzet et al. (2010) study. Experiment 1 showed
that the absence of amplitude information tends to slow down
saccadic responses and decrease accuracy. However, Gaspar and
Rousselet recently demonstrated that this performance decrease
could be explained, not by the lack of amplitude information, but
rather by the edge noise incidentally added. This lead to Experi-
ment 2 which, using two new image manipulations, showed that
subjects had remarkably good performance even if images were
composed with phase and amplitude from the same object cate-
gory but different images (and thus had a very high-level of edge
noise).

To sum up all the results. First, it seems that the bias toward faces
over vehicles cannot be eliminated by the different manipulations
made on AS. In other words, subjects were always better at saccad-
ing toward faces than toward vehicles, even when the amplitude
spectra were normalized or swapped. Thus, even though a face-like
AS alone can attract fast saccades (Honey et al., 2008), a large part
of the bias toward faces is caused by phase related information.
Second, information from the AS is effectively used by the visual
saccadic system to drive fast saccades. This result echoes a recent
finding showing that the early face-selective component of the ERP
(observed around 100 ms after image presentation) was closely
linked to the amplitude content of images, while the later compo-
nent (usually observed around 170 ms after image presentation)
was related to the phase content (Rossion and Caharel, 2011).
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FIGURE 7 | Results of Experiment 2. Top: when participants had to saccade
toward faces. Bottom: when participants had to saccade toward vehicles. (A)

Mean RT and accuracy across subjects in the original (ORI), category
swapped and identity swapped conditions. Error bars represent bootstrapped
95% C.I. of the mean (B) Distributions of RT in each condition and each task.

Thick lines are for correct responses, thin lines for errors. Orange lines for
saccades toward faces, blue lines for saccades toward vehicles. The
transparent gray bar is placed according to the minimum RT (the first 10 ms
bin of time where correct responses become significantly higher than
incorrect ones).

WHY AMPLITUDE SPECTRUM WAS USED HERE AND NOT IN MOST OF
PREVIOUS STUDIES?
Several previous studies have argued that pure AS information is
of limited use for natural scene recognition by human subjects.
Nevertheless, most of these studies have used manual responses
(Wichmann et al., 2006; Loschky et al., 2007; Loschky and Lar-
son, 2008; Gaspar and Rousselet, 2009) that have relatively long
latencies. This raises the possibility that the effects observed here
might be specific to very rapid saccadic responses. However, a
recent study had the same conclusion for an animal detection
using a saccadic choice task similar to the one used here (Wich-
mann et al., 2010). In the experiment 2 of this study, the authors
first showed that animal detection was slightly impaired by AS
normalization. Then, they used amplitude information alone to
classify their images as animals or non-animals, and divided their
set between images for which the classifier was the more confi-
dent (easy images) and those for which the classifier was the less
confident (difficult images). Finally, with a post hoc analysis, they
showed that subjects accuracy differences between easy and diffi-
cult images was not only clear in the original condition, but also in
the normalized one. The straightforward interpretation was that
amplitude information had no causal role on their results for ani-
mal detection by human subjects. However, as can be seen in their
table of results, SRT were very slow compare to ours (most of their
mean RT were above 270 ms, whereas most of our mean RTs were
below 200 ms). A contrasted analysis of their results between fast
and slow reaction time would thus be of great interest (Honey

et al., 2008), and we would predict that the interpretation could
be different according to this criterion. Thereby, the difference in
reaction time could potentially explain the difference between the
two studies, and suggest that amplitude information would play a
role especially in an early time of processing.

ECCENTRICITY AND SUMMARY STATISTICS
Time is not the only factor that has to be considered to explain the
difference between manual and saccadic studies. Presentation of
images is typically foveal in studies with manual responses (Wich-
mann et al., 2006; Gaspar and Rousselet, 2009), whereas by design
the presentation is peripheral in tasks that involve a saccadic choice
paradigm (Honey et al., 2008, as well as the present study). Could
this difference accounts for the use of AS information in saccadic
studies? It is well-known that contour processing as well as posi-
tional accuracy (Levi, 2008; Greenwood et al., 2009) is less and
less precise with eccentricity. Indeed, peripheral vision is char-
acterized by a high degree of spatial uncertainty (Pelli, 1985). A
result of this could be that patterns in a constrained region of
the periphery would be processed as textures, so that individual
patterns are not available for discrimination (Orbach and Wilson,
1999). This“jumbled”effect on contours would thus disrupt phase
more than unlocalized amplitude information. In this case, infor-
mation contained in the “summary statistics” of the AS could be
used to detect objects in the visual field taking account of the low
capacity of the visual system in the periphery. According to this
hypothesis, the more eccentric the presentation, the more subjects
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would tend to rely on information in the AS. The relatively modest
eccentricity used in the saccadic choice task (8˚ from fixation to
stimuli centers, images covering 14˚ × 14˚ each of visual angle)
could explain why phase information still plays a significant role,
but it could well be that at even more extreme eccentricities, only
the information in the AS would be available. To conclude, the two
factors (slow vs. fast response, central vs. peripheral presentations)
had not been completely dissociated here, although the results of
Wichmann et al. (2010) would argue in favor of the timing hypoth-
esis. Further investigations will definitely be needed to disentangle
the contribution of time and eccentricity in the observed effect.

Our conclusion is thus that, contrary to most studies that have
used longer RT responses, AS is also used by the visual system
to detect objects in the visual field and produce extremely fast
behavioral responses. More than a global Fourier analysis of the
entire visual scene (Torralba and Oliva, 2003), a process which is
rather unlikely in the real world, because it would be absolutely
non-informative about the localization of objects, a more plausi-
ble mechanism would be the fast extraction of AS information in
a localized fashion. This could take a patch-wise and multi-scale
form, as in a wavelet analysis or in the Spatial Envelope model
(Oliva and Torralba, 2006). This amplitude-based but localized
information seems well-suited to be the basis for ultra-rapid visual
processing such as the one observed with a saccadic choice task.
Further investigations will be needed to determine how exactly
this type of information, present in the early visual system, is used
to guide eye movement.

QUICK AND DIRTY PROCESSING FOR FACES
A final point concerns the possibility that the very fast processing
based on relatively crude low-level information in the AS may be
a specific feature of face processing. Faces are clearly extremely
important stimuli for humans, and it is probably vital for survival
that we detect and localize any faces in the environment as quickly
as possible. As a consequence, it would make good evolutionary
sense to devote neural circuits early in visual processing to face
detection (Johnson, 2005). In a sense, the feasibility of devising
relatively simple algorithms for face detection is demonstrated by
the availability of relatively efficient face-detection algorithms in
many currently available cameras, often based on popular com-
puter vision algorithms (Viola and Jones, 2004). Could equivalent
strategies be implemented in neural circuits? Cortical areas such
as V1 and V2 have direct connections to superficial areas of the
superior colliculus from a relatively small number of specialized

cortico-tectal projection neurons in layer V (Lock et al., 2003;
Collins et al., 2005). These cells are known to be able to generate
very strong short latency responses in the colliculus (Bereshpolova
et al., 2006), and could provide a way to initiate very rapid eye
movements. Could these cells have the sort of selectivity that would
be needed to allow very rapid responses to faces? They certainly
have some of the features that would be needed for this: they
have extensive dendritic arborizations that extend through many
cortical layers including superficial layers and could therefore sam-
ple much of the information that is available. If we suppose that
some particular combination of orientations and spatial frequen-
cies was in some way diagnostic for the presence of a face, it
could be that this might be detected by a suitably configured
cortico-tectal cell that could then directly trigger activity in the col-
liculus. Modeling studies have shown that relatively simple neural
architectures can allow both face detection and face identifica-
tion to be implemented with little more than a set of orientation
tuned filters as an input, although it has generally been assumed
that it be impractical to implement such strategies because of
the excessively large number of neurons that would be required
(VanRullen et al., 1998; Delorme and Thorpe, 2001). However, by
using the unlocalized information that could be obtained from
cortical complex cells, it may be possible to implement simi-
lar architectures with far fewer neurons. Other modeling studies
have demonstrated that face-selective responses can be produced
simply as the result of a repeated experience with face-like stim-
uli (Masquelier and Thorpe, 2007), something that may occur
early during life because of the high probability of exposure to
faces.

In conclusion, we would argue that the results presented here
imply that the brain may well use some very specific strate-
gies for detecting and localizing faces that could potentially
be implemented remarkably early on in the visual processing
sequence. Such strategies may not be sufficient for performing
more demanding tasks such as determining facial expression or
identity, but they could allow useful behavior to be generated at
very short latencies.
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