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Network science describes how entities in complex systems interact, and argues that the
structure of the network influences processing. Clustering coefficient, C – one measure of
network structure – refers to the extent to which neighbors of a node are also neighbors of
each other. Previous simulations suggest that networks with low C dissipate information
(or disease) to a large portion of the network, whereas in networks with high C informa-
tion (or disease) tends to be constrained to a smaller portion of the network (Newman,
2003). In the present simulation we examined how C influenced the spread of activation
to a specific node, simulating retrieval of a specific lexical item in a phonological network.
The results of the network simulation showed that words with lower C had higher activa-
tion values (indicating faster or more accurate retrieval from the lexicon) than words with
higher C. These results suggest that a simple mechanism for lexical retrieval can account
for the observations made in Chan and Vitevitch (2009), and have implications for diffusion
dynamics in other fields.
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INTRODUCTION
Collections of interconnected units, or networks, have long been
used in various domains in Cognitive Science (e.g., artificial neural
networks, Rosenblatt, 1958; McClelland et al., 1986; networks
of semantic memory, Quillian, 1967; Collins and Loftus, 1975;
linguistic nections, Lamb, 1970). Recent developments in other
fields including mathematics, physics, and computer science have
sparked interest in a new type of network analysis known as
network science (Watts, 2004; see also Jasny et al., 2009). In the
network science approach, nodes represent entities, and links rep-
resent simple relationships between entities in a complex system. A
fundamental assumption of network science is that the large-scale
structure of the system has consequences for the dynamics of that
system (Watts and Strogatz, 1998).

To give a concrete example, consider a social system com-
prised of people who are friends with each other. In a network
science analysis of this system, nodes would represent individ-
ual people, and links would represent friendships between par-
ticular people (alternatively, links could be defined by financial
exchanges between people, sexual relationships, etc.). How widely
and quickly disease (e.g., Balcan et al., 2009) or innovations
(Valente, 1995) spread through that social network depends on
who is connected to whom. Another example of how network
structure influences network dynamics can be seen in studies of
the efficiency of search algorithms in various types of networks
(e.g., Kleinberg, 2000).

Network science is often used to model complex social, bio-
logical, and technological systems (for reviews see Albert and
Barabási, 2002; Boccaletti et al., 2006; Newman, 2010). However,
this approach has also been used to model complex cognitive

systems (for an application to neural systems see Sporns et al.,
2004), and has provided novel insights into several domains of
cognition including semantic memory (Steyvers and Tenenbaum,
2005; for a review see Borge-Holthoefer and Arenas, 2010a), lan-
guage development (Hills et al., 2009a,b), and lexical retrieval
(Vitevitch, 2008). Previous psychological research in each of these
cognitive domains has identified and thoroughly examined a
myriad of characteristics about individual words – such as the
frequency, length, and concreteness of a word – that influence
processing. What is relatively less studied and understood in the
psychological perspective is – for lack of a better term – the collec-
tive behavior of words. That is, how does a group of words facilitate
or interfere with the processing of a given word. (For psycholin-
guistic work that begins to examine this issue at the phonological
level see Luce and Pisoni, 1998 and at the semantic level see Nelson
et al., 1993.) Network science offers researchers a novel set of tools
to explore such interactions among entities in large systems, and
motivated the present work.

Using the network science approach, Vitevitch (2008) con-
structed a network from approximately 20,000 English words
in which nodes in the network represented phonological word-
forms, and (unweighted, undirected) links between nodes indi-
cated phonological similarity between words. Two words were
phonologically similar if a single phoneme could be substituted,
added, or deleted from one word to form the other word. This
psychologically valid metric (see Experiment 2 of Luce and Large,
2001) is widely used in psycholinguistic research to assess sim-
ilarity between two words (e.g., Luce and Pisoni, 1998; see also
Greenberg and Jenkins, 1967), and is more generally referred to
as Levenshtein distance. Analysis of the phonological network in
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English revealed several structural features that were also found
in phonological networks of Spanish, Mandarin, Hawaiian, and
Basque (Arbesman et al., 2010; see Arbesman et al., 2010 for addi-
tional discussion of how phonological networks differ from other
systems). Given the presence of these structural features in the
phonological networks of several languages, Chan and Vitevitch
(2009, 2010) wondered how certain network structures might
influence language processing.

Of the variety of measurements that are often used to describe
the structure of a network, two are most relevant to the present
investigation: degree and clustering coefficient. Degree refers to the
number of connections that a node has. In the context of the
phonological network of Vitevitch (2008), degree corresponds to
the number of word-forms that sound similar to a given word
(based on the one-phoneme metric described above). In the psy-
cholinguistic literature, this measure is referred to as phonological
neighborhood density (Luce and Pisoni, 1998), but we will use the
term degree to maintain consistency with the network perspective
that motivated the present study. (This does not mean we are rein-
venting, or redefining the term“neighborhood density”in any way;
we simply wish to use the term degree to maintain consistency with
the network science literature that motivated the present study.)
Much psycholinguistic research has demonstrated that degree
influences a variety of language-related processes including spo-
ken word production (e.g., Vitevitch, 2002b; Vitevitch and Stamer,
2006, 2009), spoken word recognition (e.g., Luce and Pisoni, 1998;
Vitevitch, 2002a), word learning (e.g., Storkel et al., 2006), reading
(Yates et al., 2004), and serial recall (e.g., Roodenrys et al., 2002).
In Figure 1, degree corresponds to the lines that connect the words
badge and log to their respective neighbors (note that both words
have 13 neighbors).

In contrast to degree, the clustering coefficient, C (Watts and
Strogatz, 1998), measures the extent to which neighbors of a given
node are also neighbors of each other. This characteristic is rep-
resented in Figure 1 by the lines that connect a neighbor of badge
and log to another neighbor of badge and log. C ranges from 0

(none of the immediate neighbors of a node are connected to each
other) to 1 (all of the immediate neighbors of a node are fully
interconnected). In the present study, C (i.e., the local clustering
coefficient for an undirected graph) was computed for each word
as in Eq. 1:

Ci = 2
∣∣{ejk

}∣∣

ki (ki − 1)
(1)

ejk refers to the presence of a connection (or edge) between two
neighbors (j and k) of node i, |. . .| is used to indicate cardinality,
or the number of elements in the set (not absolute value), and ki

refers to the degree (i.e., neighborhood density) of node i. Thus,
the (local) clustering coefficient is the number of connections that
actually exist among the neighbors of a given node divided by
the number of connections that could possibly exist among the
neighbors of a given node.

Just as degree has demonstrable influences on various language-
related processes, C has been shown to influence the processes of
spoken word recognition and production (Chan and Vitevitch,
2009, 2010). In all current models of spoken word recognition,
auditory input partially activates a number of words in long-
term memory that resemble the input (McClelland and Elman,
1986; Norris, 1994; Luce and Pisoni, 1998). From those similar
sounding candidates, one word is recognized as the word that
was heard, and its meaning is retrieved from long-term mem-
ory resulting in comprehension. Chan and Vitevitch (2009) found
in two word recognition tasks – perceptual identification, where
listeners indicate the word that they heard in the presence of
white noise, and lexical decision, where listeners indicate whether
the stimulus was a real word in English or a made-up word,
like “foosh” – that words with high C (badge in Figure 1) were
responded to more slowly and less accurately than words with
low C (log in Figure 1), even though the words were equivalent
on a number of other characteristics (e.g., degree, frequency of
occurrence, etc.).

FIGURE 1 |The word badge has high C and the word log has low C, but

both words have the same number of neighbors (a.k.a. degree). In these
networks, connections are placed between words that are phonologically

similar using the one-phoneme metric described in the text. For the sake of
visual clarity, connections from the neighbors to other words in the lexical
network are not shown.
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To account for these observations, Chan and Vitevitch (2009)
offered a verbal description of the spoken word recognition process
inspired by the network science approach. Note that current
models of spoken word recognition view the mental lexicon as
a collection of arbitrarily ordered phonological representations,
and the process of lexical retrieval as a special instance of pattern
matching. Lexical retrieval occurs in these models because a given
word-form best matches the acoustic–phonetic input (or other
sources of evidence). Chan and Vitevitch (2009) instead suggested
that the mental lexicon could be viewed as a (small-world) net-
work, and lexical retrieval could be viewed as a search through that
network, much like the PageRank algorithm (Page et al., 1998)
searches through the structured network of information that is
the World-Wide Web. Interestingly, Griffiths et al. (2007) demon-
strated that the PageRank algorithm could be used in a semantic
network constructed from word association data to predict per-
formance of participants who were shown a letter of the alphabet
and asked to name the first word beginning with that letter that
came to mind.

In the present report we used a network simulation to exam-
ine the verbal description that Chan and Vitevitch (2009) gave
for the process of spoken word recognition. In the description of
their findings, Chan and Vitevitch (2009) started with the net-
work structure for the phonological lexicon observed by Vitevitch
(2008). Overlaying that structure was the additional assumption
that“activation” would“spread” from an initially activated node to
the nodes that it was connected to, and then on to the nodes that
they in turn were connected to (which included the node from
which activation was initially received). Although other models
of cognitive processing often include additional parameters such
as inhibition, decay of activation, threshold levels, etc., no such
assumptions were made in the description offered by Chan and
Vitevitch (2009).

In the case of a word with low C in the mental lexicon (log
in Figure 1), Chan and Vitevitch (2009) suggested that the small
number of interconnections among the neighbors would result in
some of the activation from the neighbors spreading back to the
target word, and the remaining activation dispersing to the rest of
the network (i.e., words related to the neighbors of log, but not
shown in Figure 1). The strongly activated target word, log, would
“stand out” from the less activated neighbors (and less activated
neighbors of neighbors), resulting in rapid and accurate retrieval
from the lexicon of target words with low C.

In the case of a word with high C in the mental lexicon (badge
in Figure 1), where the neighbors are highly interconnected with
each other, most of the activation will remain amongst the inter-
connected neighbors rather than spread back to the target word or
to the rest of the network as happens for words with low C. With a
highly activated target word as well as highly activated neighbors,
discrimination of the target word becomes more difficult, result-
ing in slower and less accurate retrieval of target words with high
C from the lexicon. Note that for words with high C, activation
will spread to the target word and to the rest of the lexicon, but
to a lesser extent than for words with low C. Furthermore, given
the different way in which activation disperses in the two types
of networks, the amount of activation that a word with high C
ends up with is likely to be less than the amount of activation that

a word with low C ends up with. This additional difference in
the amount of activation for words with high versus low C might
also contribute to the processing differences observed in Chan and
Vitevitch (2009).

To more precisely examine the description of spoken word
recognition offered by Chan and Vitevitch (2009), we simulated
the spread of activation across small networks that had the same
degree (i.e., phonological neighborhood density), but varied in
C. (See Lewandowsky (1993) for the benefits of computation-
ally examining even simple verbal descriptions.) The concept
of spreading activation is commonly used to model the search
process in various domains of cognition. More broadly speaking,
the concept of spreading activation resembles diffusion dynamics
in network science; that is, how a disease or a fad spreads across
a system. Previous network simulations of diffusion dynamics by
Newman (2003; see also Naug, 2008) demonstrated that infor-
mation (or disease) will spread widely across a network with low
clustering coefficient, but in a network with high clustering coeffi-
cient information/disease will be constrained to a more restricted
region of the network. (For examples of studies exploring diffusion
dynamics in cognitively relevant domains see Borge-Holthoefer
and Arenas, 2010b, and Borge-Holthoefer et al., 2011.)

Although the account offered by Chan and Vitevitch (2009) is
consistent with the results of the simulation by Newman (2003),
it is important to note that Newman (2003) assessed how widely
“activation” would be dispersed in the network (or how many
nodes would be “infected”), not how the dispersion of activa-
tion affected a specific item. In the present simulation we directly
examined how the spreading of activation in networks that varied
in clustering coefficient influenced the final activation value of a
specific node, simulating the retrieval of that item from the mental
lexicon.

MATERIALS AND METHODS
Although there is much value in using mathematically abstract
networks to examine network dynamics (as in Newman, 2003), we
instead selected nodes from the phonological network analyzed in
Vitevitch (2008) in order to more directly and more realistically
examine how lexical structure might influence lexical processing.
Each node in this network represented a phonological word-form
(not a semantic concept), and (unweighted, bidirectional) links
connected nodes that were phonologically related to each other
(based on the substitution, addition, or deletion of one phoneme
in a word, a Levenstein distance of 1; Luce and Pisoni, 1998). The
full network analyzed in Vitevitch (2008) contained 19,340 nodes,
had a mean degree (<k>) equal to 9.105, an average path length
(�) equal to 6.05, an average clustering coefficient of 0.126, a net-
work density of 0.001, a degree distribution that deviated from a
power-law, and exhibited assortative mixing by degree.

Recall that the nodes in the network examined in Vitevitch
(2008) corresponded to phonological word-forms. Degree refers to
the number of connections per node. In the context of the phono-
logical network examined inVitevitch (2008) degree referred to the
number of “phonological neighbors” that a word had. The average
path length referred to the number of connections that had to be
traversed to connect any two nodes in the (largest component of
the) network. For example, to get from the word cat to the word
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dog, one can traverse the links between the nodes corresponding
to the words bat, bag, and bog.

The clustering coefficient, C, characterizes the extent to which
neighbors of a node are also neighbors of each other. A clustering
coefficient of 0 indicates that none of the neighbors of a node are
neighbors of each other, whereas a value of 1 indicates that all of
the neighbors of a node are neighbors of each other (Watts and
Strogatz, 1998). It is important to note that degree and clustering
coefficient are independent measures. As reported in Chan and
Vitevitch (2010), the correlation between degree, k, and C for the
6,281 words with two or more neighbors (the minimum number
of neighbors required to compute C) from the network exam-
ined in Vitevitch (2008) is r = 0.005, p = 0.68. That is, a word with
many neighbors, k, could have high or low C. Similarly, a word
with few neighbors, k, could have high or low C. Furthermore, we
did a correlation analysis between C and k for the items used in
the present simulation and found that r (22) = −0.24 (p = 0.25),
indicating that there is no correlation between C and k for the
items used in the present simulation.

Conceptually similar to the clustering coefficient is the mea-
surement known as network density, which measures the number
of connections that exist in an entire network in relation to the
maximal number of connections that could exist in that net-
work. A network density value near 0 indicates that there are
actually few connections in the network compared to the num-
ber of connections that could exist in the network. A network
density value near 1 indicates that the number of connections in
the network is approaching the maximal number of connections
that could exist in the network. (The term “network density” is
from the field of network science, and should not be confused
with the term “phonological neighborhood density” from the field
of psycholinguistics.)

The degree distribution refers to the proportion of nodes that
have a given number of links. Networks with degree distribu-
tions that follow a power-law are called scale-free networks, and
have attracted attention because of certain structural and dynamic
properties (Albert and Barabási, 2002). See Vitevitch (2008) and
Arbesman et al. (2010) for a discussion of why the degree dis-
tribution of phonological networks is likely to deviate from a
power-law.

Assortative mixing by degree refers to the way in which nodes
connect to each other; specifically a highly connected node tends
to connect to other nodes that are also highly connected (Newman,
2002). In other words, there is a positive correlation between the
degree of a node and the degree of its neighbors. See Arbesman
et al. (2010) for a discussion of the processing implications of this
network characteristic.

In the present simulation, we wished to examine the influence
of C on processing in nodes with a wide range of degree. Twelve
pairs of nodes ranging in degree from 3 to 40 were selected from
the lexical network in Vitevitch (2008). Even though the nodes in
each pair had the same degree, one node in each pair had low C,
and the other node in the pair had high C. The nodes in each pair
were chosen such that C for each node 0 < C < 1, and the dif-
ference in clustering coefficient between the nodes was maximal
(with the node having the minimal value of C being classified as
having low C, and the node having the maximal value of C being

classified as having high C). For nodes with low degree, the differ-
ence in clustering coefficient tended to be in the range of 0.2–0.3.
However, for nodes with higher degree, there were fewer nodes
to select from and the difference in clustering coefficient was less;
these items were, nevertheless, included in the simulation. Over-
all the difference in C between the low C nodes (mean = 0.21;
SD = 0.06) and the high C nodes (mean = 0.46; SD = 0.12) was
statistically significant [t (22) = 6.38, p < 0.0001].

In addition to extracting the 24 target nodes from the larger
network analyzed in Vitevitch (2008), we also extracted the neigh-
bors of each target, as well as the neighbors of the neighbors (i.e.,
the two-hop neighborhood) from the larger network to create 24
“mini” networks. The two-hop neighborhood allowed us to simu-
late the spread of activation to (admittedly a smaller-scale version
of) the rest of the network. Figure 2 shows an illustration of the
one-hop and the two-hop neighborhood of a node.

For the 24 mini-networks – each consisting of a target word,
its neighbors, and the neighbors of the neighbors – we computed
network density to verify that the High and Low C networks were
comparable in number of nodes and number of connections in the
networks. There was no statistically significant difference in net-
work density for the words with low C (mean = 0.075 neighbors;
SD = 0.06) and the words with high C [mean = 0.084 neighbors;
SD = 0.06; t (22) = 0.35, p = 0.72]. Values of degree, clustering
coefficient, and network density for the selected nodes can be
found in Table A1 in the Appendix.

Note that the present simulation uses an abstraction of or
simply the structural relationships among nodes found in the
phonological network examined in Vitevitch (2008). The identity
of the nodes (i.e., the word corresponding to that node), as well

FIGURE 2 | An illustration of a one-hop and two-hop neighborhood.The
target node is shown in black, the neighbors of the target node are shown
in gray (i.e., one-hop neighbors of the target node), and the neighbors of
the neighbors are shown in white (i.e., two-hop neighbors of the target
node). For visual clarity, only a few connections among nodes are drawn.
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as other variables that are typically examined in psycholinguistic
experiments – word frequency, word length, concreteness, etc. –
are not directly represented in the structure of the network. Using
this abstract network structure essentially results in those charac-
teristics being held constant or controlled between the nodes with
low and high C, therefore these variables will not affect the out-
come of the present simulations. The use of an abstract network
also facilitates generalizing the present results to other domains
that examine diffusion dynamics.

The term “spreading activation” has been used to mean many
different things in many different and diverse models of cogni-
tive processing (cf., Collins and Loftus, 1975; Anderson, 1983;
MacKay, 1987). In the present simulation, activation is defined as
a limited cognitive resource, which spreads unimpeded between
connected nodes, and does not decay over time. Furthermore, in
the present simulation the length of a link between two nodes does
not correspond to any psychological construct, such as relatedness.
The links between nodes in the present simulation indicate that
two nodes simply are phonologically related (based on the one
phoneme metric), not that some word pairs are more related than
others. Because the length of the links is meaningless (and the links
are not weighted, which is an alternative way of representing vary-
ing amounts of “relatedness”) activation in the present simulation
does not diminish as it spreads between two connected nodes.

We recognize that the assumptions we employ regarding acti-
vation and its spread in the current simulation are simple and may
differ from other cognitive models that employ “spreading acti-
vation.” We favor this simpler approach for a couple of reasons.
First, these simple assumptions facilitate our ability to generalize
more broadly the present results to other domains that examine
diffusion dynamics. Second, we see no reason to include addi-
tional assumptions simply because other models include those
assumptions. In the present simulation we invoke the principle
of parsimony, so that we may examine how many psychologi-
cal phenomena can be accounted for with as simple a model as
possible.

In the present simulation, the target node received an initial
burst of activation of 100 arbitrary units. A portion of the initial
activation was retained by the target word. We varied this propor-
tion in increments of 0.10, ranging from 0.10 to 0.90 to explore
the possibility that different outcomes might emerge at different
amounts of retained activation. The amount of activation that was
not retained in the target node was equally divided (i.e., spread)
amongst the one-hop neighbors of the target word. Similar to
the target node, each one-hop neighbor retained a portion of the
activation it received from the target node. The portion of acti-
vation that was not retained in a one-hop neighbor node was
spread equally to the nodes to which it was connected (including
the target, other one-hop neighbors, and the two-hop neighbors).
Activation that reached the two-hop neighbors (i.e., the white
nodes in Figure 2) was sent back to the one-hop neighbors (i.e.,
the gray nodes in Figure 2) and to other two-hop neighbors to
which that node was connected (N.B., these connections were
omitted from Figure 2 for the sake of visual clarity), resulting in
activation spreading back and forth between the target, the one-
hop neighbors, and the two-hop neighbors over 10 discrete time
steps.

Retrieval of the target items occurred after activation spread
from node to node for 10 discrete time steps. At this point the acti-
vation values of the target words were compared. We recognize that
current models of word recognition and memory might imple-
ment the retrieval process differently than the simplified criterion
employed in the present simulation, but it is important to keep in
mind that the different mechanisms commonly employed in those
models (e.g., an activation threshold that must be crossed, differ-
ent resting levels of activation, etc.) produce isomorphic results.
The present simulation is not intended to discriminate among
models of word recognition or memory, or among the different
mechanisms employed in such models. Rather, we simply wished
to computationally examine the retrieval mechanism described by
Chan and Vitevitch (2009).

The activation value in the target node can be mapped to the
dependent variables examined in Chan and Vitevitch (2009) –
response latency and accuracy – in the following ways: (1) acti-
vation values are inversely related to response latency, such that
higher activation values indicate that lexical retrieval occurred
rapidly, and lower activation values indicate that lexical retrieval
required more time to be completed, and (2) activation values
are directly related to accuracy, such that higher activation val-
ues indicate more accurate retrieval from the lexicon, and lower
activation values indicate less accurate retrieval from the lexicon.
The assumptions we make regarding the mapping of the activation
values in the target nodes to the dependent variables of response
latency and accuracy enable us to qualitatively compare the results
of our simulations to the results of the two psycholinguistic
experiments reported by Chan and Vitevitch (2009).

It is also important to note that it is only the activation value of
the target nodes – not the activation value of neighboring nodes,
or a comparison between the activation value of the target and
its neighboring nodes – that is relevant for comparison to the
experiments reported in Chan and Vitevitch (2009). Although the
mechanism described in Chan and Vitevitch (2009) referenced the
activation of a target word to the activation of its neighbors, all
that was assessed in the two experiments reported in Chan and
Vitevitch (2009) was – via the dependent variables of response
latency and accuracy – the “activation” of the target words.

Furthermore, in the present network simulation, target nodes
receive activation from the initial burst of activation to the target
node and, in subsequent time steps, from their neighboring nodes.
In contrast, non-target nodes (i.e., one-hop and two-hop neigh-
bors) receive activation only in subsequent time steps from their
connections to the target and to other nodes. The difference in the
timing and source of activation that target and non-target nodes
receive makes it impossible for a non-target node to have a higher
activation value than a target node. This leads to the idealized
situation in which the model always correctly retrieves the target
word, which contrasts with the perceptual errors that are observed
in natural human performance (i.e., slips of the ear; Vitevitch,
2002a) and that occur in laboratory based tasks. Although “per-
fect” performance in a model may lack ecological validity, it is not
uncommon for models of cognitive processing to perform in this
way (e.g., Levelt et al., 1999). Such performance does not diminish
the novel insights into a cognitive process that these models may
provide.
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To describe the simulation algorithmically, at time step 1 the
target node, n, was given an activation of 100 units. A proportion
of that activation stayed in the target node, according to Eq. 2, and
the remaining amount of activation was spread equally to all the
neighbors of node n, according to Eq. 3.

reservoir(t , n) = r × inflow(t , n) (2)

outflow(t , n) = (1 − r) × inflow(t , n)

degree(n)
(3)

where reservoir (t, n) is the activation retained at node n at time
step t, r is the proportion of the activation (ranging from 0.1 to 0.9
in increments of 0.1) retained at node n, inflow (t, n) is the amount
of activation that node n received at time-step t, outflow (t, n) is
the amount of activation that spreads to each of the neighbors of
node n at time t, and degree (n) is the number of neighbors of
node n. The total amount of activation at a given node was com-
puted by adding reservoir (t, n) to reservoir (t−1, n). At the end
of 10 time steps the total amount of activation in the target nodes
with low and high C was examined.

If the spreading activation mechanism implemented in the
networks varying in C adequately captures the lexical retrieval
process described by Chan and Vitevitch (2009), then – based on
the mapping assumptions described above – target nodes with
low C will have higher activation values than target nodes with
high C after 10 time steps. If the predicted results are indeed
observed, this will demonstrate that the simple description offered
by Chan and Vitevitch (2009) is minimally sufficient to account for
the results obtained in two psycholinguistic experiments. In addi-
tion, obtaining the predicted results will further demonstrate that
the large-scale structure of the lexicon influences processing – a
point that has been overlooked in current models of spoken word
recognition.

More broadly, the results of the present simulation have impli-
cations for network science as well. Recall that previous simula-
tions (e.g., Newman, 2003) looked at the extent to which infor-
mation or diseases dispersed across networks varying in C. The
present simulation instead examined how the spread of activa-
tion in such networks might influence a specific node. Therefore
the results of the present simulation offer a different perspective
and new insight into studies of dispersion dynamics in complex
systems.

RESULTS
Linear multiple regression was used to examine the influence that
network structure – as measured by the clustering coefficient (using
the continuous values of C listed in Table A1 in the Appendix) –
as well as degree, proportion of activation retained, and network
density had on the final activation value in the target nodes after
10 time steps had elapsed in the simulation. The final activa-
tion value in the 24 target nodes was examined across 9 different
levels of retained activation (24 networks * 9 levels of retained
activation = 216 simulations).

The results of the analysis indicated that all four of the indepen-
dent variables contributed significantly, though not equally, to final
activation value [R2 = 0.999, F(4, 211) = 43108.25, p < 0.0001].
In the following descriptions of the analysis we report the beta

coefficients (β; also known as standardized coefficients) for each
variable. The magnitude of β allows one to compare the relative
contribution of each independent variable in the prediction of the
dependent variable. The sign (±) associated with the β coefficient
indicates the direction of the relationship between the indepen-
dent and dependent variables. We also report for each β coefficient
the results of a t -test, which indicates that the independent vari-
able made a statistically significant contribution to the prediction
of the dependent variable (even though the value of β might be
numerically small).

Not surprisingly, target nodes that retained a larger proportion
of incoming activation had higher activation values at the end of
10 time steps than target nodes that retained a smaller proportion
of incoming activation [β = +0.999, t (211) = 414.96, p < 0.0001].
The proportion of activation retained in a node was manipulated
to verify that any influence of C that we might observe in the
present simulation was not due to a unique setting of a particular
parameter (see Pitt et al., 2006).

More germane to the question of how clustering coefficient
influences the retrieval of a specific node, target nodes with lower C
had higher activation values than target nodes with higher C after
10 time steps [β = −0.026, t (211) = −10.12, p < 0.0001]. As per
the mapping assumptions between activation values and response
latency and accuracy, the results suggest that target words with
lower C are retrieved more quickly and more accurately than target
words with higher C.

Activation values as a function of degree and C when the pro-
portion of activation retained at a node (r in Eqs 2 and 3) equaled
0.3 and 0.7 are shown in Figure 3. These values of r were selected
for illustrative purposes only; we wished to avoid extreme values of
r (e.g., 0.1 and 0.9) as well as the middle value of r (0.5). In none
of the simulations was there ever a case in which a target node
with higher clustering coefficient had more activation than the
target node with the same degree but lower clustering coefficient.
The influence of C on activation values in Figure 3 is seen by the
consistently higher activation values for target nodes with lower C
(the diamonds) compared to the activation values for target nodes
with higher C (the squares).

Interestingly, degree also influenced the final activation val-
ues in the target nodes. Target nodes with lower degree (i.e.,
few phonological neighbors) had a higher activation value at
the end of 10 time steps than target nodes with higher degree
[i.e., many phonological neighbors; β = −0.025, t (211) = −5.91,
p < 0.0001]. As per the mapping assumptions between activation
values and response latency and accuracy, the results suggest that
target words with few phonological neighbors are retrieved more
quickly and accurately than target words with many phonologi-
cal neighbors. The influence of degree on activation values can be
seen in Figure 3 by the relatively higher activation values for tar-
get nodes with lower degree compared to the activation values for
target nodes with higher degree for both high and low C nodes;
degree is plotted on the x-axis.

This finding replicates numerous studies examining the influ-
ence of degree (known in the psycholinguistic literature as phono-
logical neighborhood density) in spoken word recognition (e.g.,
Luce and Pisoni, 1998). We included in the present simulation
nodes with a wide range of degree simply to be able to generalize
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FIGURE 3 | Final activation values in the target nodes after 10 time

steps as a function of C and degree. The top panel shows the results of
the simulation when (the proportion of activation retained at a node)
r = 0.3, and the bottom panel shows the results when r = 0.7. These results
are illustrative of other values of r. For instances in which the markers
appear on top of one another the difference in activation value between
high and low C was observed in the tenth, or hundredth position.

more broadly our findings of the influence of the clustering coef-
ficient on processing. We did not design the present simulation to
nor set out to replicate the previously observed results regarding
the influence of degree on spoken word recognition. Observing the
influence of degree on activation levels in the present simulation
was, therefore, unexpected.

Although network density in the high and low C networks
was not statistically different, network density did have a small,
but statistically significant, influence on the final activation values
in the target nodes. Recall that the network science term net-
work density measures the number of connections that exist in
an entire network in relation to the maximal number of connec-
tions that could exist in that network (with a range from 0 to 1),
and should not be confused with the psycholinguistic term phono-
logical neighborhood density (which corresponds to the term degree

in the present context). Target nodes with higher network density
had higher activation values at the end of 10 time steps than tar-
get nodes with lower network density [β = +0.012, t (211) = 2.79,
p < 0.01]. As per the mapping assumptions between activation
values and response latency and accuracy, this result suggests that
target words embedded in denser networks will be retrieved more
quickly and accurately than target words embedded in sparser net-
works. The influence of network density on diffusion dynamics
has been examined in other domains studied with network sci-
ence (e.g., Buskens and Yamaguchi, 1999). However, the influence
of network density observed in the present simulation is (to the
best of our knowledge) a novel finding in the domain of psycholin-
guistics. Future psycholinguistic experiments could examine how
network density influences spoken word recognition (see also Geer
and Luce, 2011).

DISCUSSION
In the present simulation we created 24 mini-networks (extracted
from the larger network of phonological word-forms examined
in Vitevitch, 2008) that varied in degree and clustering coeffi-
cient (as well as the proportion of activation retained in a node)
to examine the influence of network structure on the cognitive
process of spoken word recognition. A simple form of spread-
ing activation was used to model the search and retrieval process
during spoken word recognition. This simplified form of spread-
ing activation can be viewed as a special instance of diffusion
dynamics (e.g., the spread of disease through a social network),
a topic commonly examined in network science (e.g., Newman,
2003; Naug, 2008; Borge-Holthoefer and Arenas, 2010b; Borge-
Holthoefer et al., 2011). Four factors were shown to influence the
final activation value of the target nodes: (1) the proportion of acti-
vation retained in each node, (2) degree, (3) clustering coefficient,
and (4) network density.

Not unexpectedly the results of our simulations showed that
the proportion of activation retained in each node influenced the
final activation value of the target nodes. Nodes that retained more
activation had higher activation values at the end of 10 time steps
than nodes that retained less activation. The proportion of acti-
vation retained in each node was manipulated in order to explore
the possibility that different outcomes might emerge at different
amounts of retained activation. However, qualitatively similar out-
comes were observed across the different proportions of retained
activation.

Somewhat unexpectedly – because we did not set out to directly
replicate this effect – we observed an influence of degree on the
final activation values. Degree was manipulated in the present
simulation in order to generalize the results across a wide range
of values for degree. We observed, however, that target nodes with
higher degree had less activation than target nodes with lower
degree. This result suggests that words with higher degree are
retrieved more slowly and less accurately than words with lower
degree, which replicates many psycholinguistic experiments exam-
ining the influence of phonological neighborhood density during
spoken word recognition (e.g., Luce and Pisoni, 1998; Vitevitch,
2003).

Although the effect of degree observed in the present simulation
replicated the results commonly found in studies of spoken word

www.frontiersin.org December 2011 | Volume 2 | Article 369 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Vitevitch et al. Simulation of lexical retrieval

recognition, different influences of neighborhood density (degree)
have been observed in other language-related processes. In the
case of speech production, words with many neighbors are pro-
duced more quickly and accurately than words with few neighbors
(e.g., Vitevitch, 2002b; Vitevitch and Sommers, 2003; cf., Vitevitch
and Stamer, 2006, 2009). It is important to note, however, that
different mechanisms are believed to underlie the effects of neigh-
borhood density observed in other language-related processes
[see Vitevitch and Storkel (submitted) for a description of the
mechanism used in word learning]. Vitevitch (2002b) and others
suggested that during speech production the effects of neigh-
borhood density emerge from the interaction of word-forms via
representations of phonological segments. In those accounts of
speech production, word-forms do not interact directly with each
other in the lexicon (as they do in the present simulation and in
current models of spoken word recognition). Words that sound
similar to the target word become activated only by activation
spreading through shared phonological segments (or semantic
information). Indeed, Gordon and Dell (2001) showed how a
two-step interactive-activation model consisting of separate lay-
ers for semantic features, words, and phonological segments with
excitatory and bidirectional connections between layers (but no
connections between nodes within a layer) could produce the
effects of neighborhood density typically observed in speech
production.

The present simulation differs from the connectionist network
used by Gordon and Dell (2001) in a couple ways. First, there are no
connections among words in the Gordon and Dell (2001) model;
the present simulation does contain connections among words.
Second, the Gordon and Dell (2001) model contained represen-
tations of individual phonological segments, words, and semantic
information; the present simulation contained only phonological
word-forms. We appreciate the value of representing other types
of information in a model (e.g., phonological segments, or seman-
tic information), but a complex network that includes two types
of nodes with links connecting one type to another is beyond
the scope of the present investigation. Such networks – known as
bipartite networks – are very complicated mathematical entities,
and still pose significant challenges to network scientists.

Admittedly, the complexity of bipartite networks might be
viewed by some as a limitation of the network science approach
in the study of cognition. We believe, however, that the network
science approach has other advantages for the study of cognition
that outweigh such shortcomings. For example, the network sci-
ence approach provided the tools that enabled Chan and Vitevitch
(2009) to examine the influence of a new, previously unexplored
characteristic of words on spoken word recognition, namely clus-
tering coefficient, C. Interestingly, the results of the present simula-
tion showed that target nodes with lower C had higher activation

levels after 10 time steps than target nodes with higher C. This
result suggests that words with lower clustering coefficients are
retrieved more quickly and accurately than words with higher
clustering coefficients, replicating the results of psycholinguistic
experiments reported by Chan and Vitevitch (2009).

This result also suggests that a simple diffusion mechanism –
commonly examined in many other domains explored by network
science – could be used to account for the cognitive process of spo-
ken word recognition (see Borge-Holthoefer and Arenas, 2010b;
Borge-Holthoefer et al., 2011 for a similar account in other cog-
nitive domains). Furthermore, the present simulation contributes
more broadly to network science by demonstrating that diffusion
dynamics can affect processing of an individual node. Studies of
diffusion dynamics typically examine how many nodes in a system
are affected during diffusion (e.g., Newman, 2003; Naug, 2008).

Finally, the results of the present simulation showed that tar-
get nodes embedded in denser networks had higher activation
values after 10 time steps than target nodes embedded in sparser
networks. Although previous psycholinguistic research has shown
that immediate neighbors of a word influence processing (e.g.,
Luce and Pisoni, 1998), the present result suggests that more
distant neighbors, and the connectivity among those distant neigh-
bors might also influence spoken word recognition. To the best of
our knowledge the influence of network density on language pro-
cessing has not been reported previously in the psycholinguistic lit-
erature, thus indicating a new direction for future psycholinguistic
research.

We acknowledge that the present simulation is a simplified ver-
sion of the structure and processes we envision occurring in the
larger phonological network. However, it is important to keep in
mind that“[m]odels are not intended to capture fully the processes
they attempt to elucidate. Rather, they are explorations of ideas
about the nature of cognitive processes. In these explorations,
simplification is essential – through simplification, the implica-
tions of the central ideas become more transparent” (McClelland,
2009, p. 11). We believe the present simulation has greatly elu-
cidated the manner in which network structure might influence
lexical retrieval during spoken word recognition.
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APPENDIX

Table A1 |The degree and clustering coefficient values of the target nodes, and the density values of the two-hop networks used in the present

simulation.

Degree

3 6 8 12 16 20 24 28 32 36 38 40

C 0.67 0.33 0.47 0.13 0.46 0.14 0.47 0.14 0.49 0.16 0.61 0.27 0.59 0.26 0.46 0.24 0.39 0.21 0.32 0.21 0.28 0.20 0.31 0.23

Network

density

0.24 0.23 0.18 0.14 0.12 0.14 0.07 0.08 0.06 0.06 0.06 0.05 0.06 0.05 0.05 0.04 0.05 0.03 0.04 0.03 0.04 0.03 0.04 0.03
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