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Perception of a temporal pattern in a sub-second time scale is fundamental to conversa-
tion, music perception, and other kinds of sound communication. However, its mechanism
is not fully understood. A simple example is hearing three successive sounds with short
time intervals.The following misperception of the latter interval is known: underestimation
of the latter interval when the former is a little shorter or much longer than the latter, and
overestimation of the latter when the former is a little longer or much shorter than the
latter. Although this misperception of auditory time intervals for simple stimuli might be
a cue to understanding the mechanism of time-interval perception, there exists no model
that comprehensively explains it. Considering a previous experiment demonstrating that
illusory perception does not occur for stimulus sounds with different frequencies, it might
be plausible to think that the underlying mechanism of time-interval perception involves
a causal inference on sound sources: herein, different frequencies provide cues for dif-
ferent causes. We construct a Bayesian observer model of this time-interval perception.
We introduce a probabilistic variable representing the causality of sounds in the model.
As prior knowledge, the observer assumes that a single sound source produces periodic
and short time intervals, which is consistent with several previous works. We conducted
numerical simulations and confirmed that our model can reproduce the misperception of
auditory time intervals. A similar phenomenon has also been reported in visual and tactile
modalities, though the time ranges for these are wider. This suggests the existence of
a common mechanism for temporal pattern perception over modalities. This is because
these different properties can be interpreted as a difference in time resolutions, given that
the time resolutions for vision and touch are lower than those for audition.
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1. INTRODUCTION
Temporal pattern processing is necessary for all sensory modal-
ities and these patterns contain much essential information for
our brain to learn what happens in the external world. There-
fore, revealing the temporal perception system is fundamental to
understanding the sensory processing system, but it is not fully
understood yet.

Hearing three rapid successive sounds is a good situation for
investigating the time-perception system. One reason for this is
that the temporal accuracy of our auditory system is higher than
those for other modalities (Burr et al., 2009; Vroomen and Keetels,
2010; Occelli et al., 2011); that is, auditory experimental results
reflect the actual time-perception mechanism better. In addition,
a combination of two time intervals is the simplest situation of
temporal pattern perception. With regard to hearing three rapid
sounds on a hundred-millisecond scale, it is known that our brain
sometimes misestimates the second interval depending on the rel-
ative length of the two intervals. Concretely speaking, the second
interval, T 2, is perceived as shorter than the actual length in the
case where T 2 is equal to or a little longer than the first interval, T 1.
This perceptual underestimation phenomenon was named “time-
shrinking” (Nakajima et al., 1991). This illusion vanishes as the

total length T 1+T 2 increases. In addition, though the degrees of
misestimation are not so large as those for the case of the time-
shrinking illusion, the following phenomena on the perception
of T 2 have also been observed (Miyauchi and Nakajima, 2005;
Figure 1A): overestimation of T 2 when T 2 is a little shorter than
T 1; underestimation of T 2 when T 2 is much shorter than T 1;
and overestimation of T 2 when T 2 is much longer than T 1. The
time-shrinking illusion has been examined in other articles as
well (Nakajima et al., 1992; ten Hoopen et al., 1993, 2006; Sue-
tomi and Nakajima, 1998; Miyauchi and Nakajima, 2007; Mitsudo
et al., 2009). Furthermore, it was reported that this phenomenon
occurs in other sensory modalities such as visual (Arao et al., 2000)
and tactile (van Erp and Spapé, 2008) senses. This fact suggests
that there is a common time-perception system among sensory
modalities.

A time-perception model has been proposed to explain the
time-shrinking illusion (Nakajima et al., 2004). In this model, it is
assumed that the subjective duration of a time-interval is propor-
tional to the sum of the actual length and a constant length. It is
also assumed that if the neural system judges the two neighboring
intervals as similar, the estimating process for the latter interval
is shortened and the latter interval is thus underestimated. By
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A B

FIGURE 1 | Perceptual and simulated overestimation ofT 2 as a
function ofT 1 −T 2. Each marker represents a different total duration
T 1 +T 2. (A) Perceptual overestimation of T 2. Perceptual overestimation is
measured by using the method of adjustment. (From Figure 3B, Miyauchi
and Nakajima, 2005, with changes in notations. ©University of California

Press Journals. Adapted with permission.) (B) Simulated overestimation
of T 2, calculated by subtracting T 2 from the expectation value of
P(T 2 |s1,s2,s3). The area under the horizontal dashed line indicates the
underestimation of T 2, and the area on the left side of the vertical dashed
line indicates T 1 <T 2.

these assumptions, this model can quantitatively mimic the time-
shrinking illusion, namely, the underestimation of T 2 caused by a
shorter preceding interval T 1. However, the other misestimation
phenomena when hearing three successive sounds are out of the
scope of this model and cannot be reproduced by the model.

In the present study, we consider that the perceptual phe-
nomena as mentioned above are results of effective information
processing in our neural system. Sensory information, which our
brain uses to infer what happens in the world, inevitably has uncer-
tainty caused by both internal noise in our nervous system (Faisal
et al., 2008) and ubiquitous fluctuation in the external world.
Therefore, our brain must manage with those kinds of uncertainty,
otherwise we may misunderstand the situation or regard the same
experiences as different. One reasonable way for the brain to cope
with the uncertainty is exploiting prior knowledge, or the expe-
rience and statistics pertaining to the situation. This strategy can
be formulated by using Bayesian inference. Bayesian modeling is
a powerful method for describing the human perception mecha-
nism and has been applied to visual temporal perception (Miyazaki
et al., 2005; Jazayeri and Shadlen, 2010), and more widely to human
perception (Vilares and Körding, 2011, for a recent review).

2. MATERIALS AND METHODS
To consider the perceptual phenomena of hearing three rapid
sounds, we assume a Bayesian observer who tries to solve a com-
mon source identification problem for each pair of two neighbor-
ing sounds. Further, prior to hearing, the observer assumes that
sounds from the same source have short and equal intervals. The
assumption of prior knowledge of short time intervals for stim-
uli from the same source is based on some previous works. These
studies showed that the closer the two sources, the shorter are the
perceived time intervals (Akerboom et al., 1983, for audition; and
Goldreich, 2007; Kuroki et al., 2010, for tactile sensation). Fur-
ther, with respect to the assumption of equal intervals, we can
find many examples of signals aligned at almost equal intervals:

heart beats, swinging pendulum, etc. This can be because simple
dynamical systems tend to generate periodical orbits, which are
often observed as periodic signals generated by a limit cycle.

Here,we propose that the perception of sound intervals involves
inference of causal relationship among sounds. Although there is
little direct evidence for this notion, some auditory perceptual
phenomenon could be associated with some form of causal judg-
ments. For example, the time-shrinking illusion vanishes in the
case wherein the temporal pattern is marked by sounds with quite
different frequencies (Remijn et al., 1999). For this case, we con-
sider that sounds with different frequencies have been judged as
from independent sources. Therefore, the perceptual estimation of
the latter time-interval is different from that for the case of a sound
sequence composed of the same frequency. This view that sound
frequency indicates source identity is also supported by an audi-
tory psychological phenomenon (Deutsch, 1975). The perception
of a common source is a kind of causal inference and should be
important for making an effective inference (Körding et al., 2007;
Sato et al., 2007; Shams and Beierholm, 2010). We will discuss this
point further in Discussion.

Our Bayesian model assumes that our neural system can-
not observe true time instants t 1, t 2, and t 3 of the sounds,
but only observed times including noise s1, s2, and s3, respec-
tively (Figure 2A). Each index of the variables indicates the
order of emergence in the sound sequence. Then, our brain
infers true interval durations T 1= t 2− t 1 and T 2= t 3− t 2 from
the observation. To estimate them, our Bayesian observer com-
poses a conditional probability, called a posterior probability,
P(T 1,T 2|s1,s2,s3). Bayesian theorem enables us to represent the
posterior probability as

P (T1, T2 |s1, s2, s3 ) =
P (s1, s2, s3 |T1, T2 ) P (T1, T2)

P (s1, s2, s3)
. (1)

Since the denominator on the right side can be obtained by inte-
grating the numerator over T 1 and T 2, we need to consider only
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FIGURE 2 | (A) A temporal pattern and its observation. The horizontal
axis is time. Each solid vertical line indicates an actual sound timing ti,
and each dashed vertical line indicates its observed timing si. Each
observation is made on the basis of an independent identical distribution.
(B) Likelihood function of (T 1,T 2) given observed values of S1 =100 ms
and S2 = 140 ms (indicated as “+”). Intensity indicates the degree of
likelihood. (C) Prior distribution of (T 1,T 2) with intensity on a logarithmic
scale of the probability, illustrating that the prior takes a high value near

both axes as well as along the 45˚ line from the T 1-axis. (D) Posterior
distribution of (T 1,T 2) given observed values of S1 =100 ms and
S2 =140 ms (indicated as “+”). Intensity indicates probability. The cross
sign (×) corresponds to the peak of the distribution. (E–G) Prior
distributions of (T 1,T 2) given that (E) the first and second sounds come
from the same source, (F) the second and third sounds come from the
same source, and (G) all three sounds come from the same source.
Intensity indicates probability.

terms P(s1,s2,s3|T 1,T 2) and P(T 1,T 2) in the numerator. The first
term of the numerator represents how the observational values are
obtained, and is formulated as

P (s1, s2, s3 |T1, T2 ) =

∫
P (s1, s2, s3 |T1, T2, t2 ) P (t2) dt2

∝

∫
P (s1, s2, s3 |t1, t2, t3 ) dt2

=

∫
P (s1 |t1 ) P (s2 |t2 ) P (s3 |t3 ) dt2, (2)

where we assume that distribution P(t 2) is constant; knowing T 1,
T 2, and t 2 is equivalent to knowing t 1, t 2, and t 3 in the second line,
and the noise distributions for the timings of the three sounds are
assumed to be independent from each other in the third line. We set

the distribution of the observation noise as a Gaussian distribution
with the width σo and the center at a true value given as

P (si |ti ) =
1

√
2πσo

exp

(
−

(si − ti)
2

2σ2
o

)
, for i = 1, 2, 3. (3)

Here, we consider standard deviation σo to be constant with
time. By substituting equation (3) into equation (2) and integrat-
ing over t 2, we obtain the following formula (see Appendix for the
details of this derivation):

P (s1, s2, s3 |T1, T2 )

∝ exp

(
−

(T1 − S1)
2
+ (T2 − S2)

2
+ (T1 − S1) (T2 − S2)

3σ2
o

)
,

(4)
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where we introduce variables S1= s2− s1 and S2= s3− s2,
which represent the observed interval durations. Note that,
given T 1 and T 2, t 1 and t 3 are not independent from t 2 but
change with t 2. Therefore, the integral range of t 2 in equa-
tion (2) is (−∞, ∞). This term stands for the likelihood of
the true intervals. Due to (T 1− S1)(T 2− S2), this function
has a negative correlation between T 1 and T 2, as shown in
Figure 2B.

Then, we formulate term P(T 1,T 2) in equation (1). This term
does not relate to s i(i= 1, 2, 3); that is, what our neural system
has observed. Thus, this probability function represents knowl-
edge acquired prior to the event. We model the prior knowl-
edge of two neighboring time intervals as follows, assuming
that the observer solves a source identification problem. First,
our brain infers from the three successive sounds whether each
pair of two neighboring sounds comes from the same source.
To consider the source identification inference, we introduce
variable C that represents which of the three sounds are from
the same source. Here, our brain is not considered to make
a judgment that the first and third sounds come from the
same source while at the same time the second sound comes
from another source. Thus, C represents the following four
cases:

1. each sound is from an independent source,
2. the first and second sounds come from the same source and the

third from another source,
3. the second and third sounds come from the same source and

the first from another source,
4. all three sounds are from the same source.

Then, we assign 1, 2, 3, and 4 as the value of C to the above
cases, respectively. Using the variable C, we formulate the prior
distribution as

P (T1, T2) =

4∑
C=1

P (T1, T2, C)

=

4∑
C=1

P (C) P (T1, T2 |C ) . (5)

We treat the probabilities of C appearing in equation (5) as model
parameters, and denote P(C = j)(j = 1, 2, 3, 4) by pj.

Next, we formulate prior distributions P(T 1,T 2|C) for C = 1,
2, 3, and 4, by using the assumption of equal and short intervals
for sounds from the same source. The assumption is formulated
as follows:

• For C = 1, there is no bias for the sound intervals. Thus, the
prior distribution is a two-dimensional uniform distribution:

P (T1, T2 |C = 1 ) =
1

L2
, (6)

where L is a parameter defining the integration range.

• For C = 2 and C = 3, the two sounds that come from the same
source are expected to have a short interval (Figures 2E,F). Each
prior distribution is as follows:

P (T1, T2 |C = 2 ) = P (T1 |C = 2 ) P (T2 |C = 2 )

=
1

√
2πσp

exp

(
−

T 2
1

2σ2
p

)
·

1

L
, (7)

P (T1, T2 |C = 3 ) =
1

L
·

1
√

2πσp
exp

(
−

T 2
2

2σ2
p

)
, (8)

where standard deviation σp is a parameter that controls the
bias toward short intervals. P(T 1|C = 2) gives the distribution
of an interval wherein the two marker sounds are from the same
source, and P(T 2|C = 2) gives the distribution of an interval
wherein the two sounds come from different sources.
• For C = 4, the three markers are expected to have short

and equal intervals. This distribution is expressed as a two-
dimensional Gaussian distribution, with the center at the origin
and a positive correlation between the two variables T 1 and T 2

(Figure 2G). Thus, this distribution can be expressed as

P (T1, T2 |C = 4 ) =
1

Z
exp

[
−

(
(T1 + T2)

2

2σ2
q

+
(T1 − T2)

2

2σ2
r

)]
,

(9)

where Z is the normalization term, and σq and σr are constant
parameters. It is necessary for the prior distribution to satisfy
the following condition:∫

P (T1, T2 |C = 4 ) dT2 = P (T1 |C = 2 ). (10)

Given this condition, the constants Z, σq, and σr in equation (9)
are represented as follows:

σ2
q + σ2

r = 4σ2
p , (11)

Z = πσqσr . (12)

New parameters σq and σr control the shape of the distribution.
Since we intend the distribution to have a positive correlation
between T 1 and T 2, σq should be greater than σr.

By substituting equations (6)–(9) into equation (5), we have
prior distribution P(T 1,T 2). The obtained prior distribution has
a large peak at the origin of the T 1−T 2 plane, and also has high
values along the T 1 and T 2 axes, and along the 45˚ line from the
T 1-axis (Figure 2C).

Then, we obtain the posterior distribution P(T 1,T 2|s1,s2,s3) by
multiplying the likelihood function of equation (4) and the prior
distribution (Figure 2D).

3. RESULT
We conducted a numerical simulation to show the validity of our
model. The parameter values used in the simulation are shown

Frontiers in Psychology | Perception Science November 2012 | Volume 3 | Article 524 | 4

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Sawai et al. Temporal perception as causal inference

in Table 1. There are too many parameters in our model to learn
the correct values from appropriate experiments. Thus, the para-
meter values are chosen and adjusted so that the time scales are
not strange in terms of their physical implications. For example,
because the time resolution of the auditory system changes with
measurement methods, a specific time resolution parameter σo

cannot be decided. Therefore, we set it so that the time scale is
similar to existing psychological results (Grondin and Plourde,
2007, for example). The parameter value of L is decided so as to
cover the time range in which the stimuli are presented.

In this simulation, we calculated the expectation value of the
marginal distribution of T 2 and regarded the value as a result
of the Bayesian observer’s inference. Although there are some
other decision-making strategies, such as maximizing the posterior
probability, we chose calculating the expectation value because of
its low computational cost. However, the simulation result of the
maximum a posteriori strategy was not qualitatively different from
that of the expectation value. In addition, it is yet to be ascertained
which rule should be applied to a Bayesian inference (see Jazayeri
and Shadlen, 2010, for this issue).

Using this simulation, our model reproduced the time-
shrinking illusion; that is, the large underestimation of T 2 when
T 2 is a little longer than T 1, due to the assumption of equal inter-
vals. However, the amount of overestimation when T 2 is a little
shorter than T 1 was smaller than the above underestimation. We
also observed overestimation and underestimation of T 2 when T 2

is much longer and shorter than T 1, respectively. Moreover, our
model simulation showed that the underestimation and overes-
timation decrease as the total length increases and that there is
underestimation of T 2 when T 2=T 1 (Figure 1B). These proper-
ties of our model were also observed in psychological experiments
(Figure 1A).

3.1. EXPLANATION OF THE PERCEPTION OF THREE RAPID SOUNDS
Here, we explain how our model reproduces the behavior of the
human auditory system. First, when the two time intervals are
similar, the observed time-interval pair stands near the diagonal
line on the T 1-T 2 plane. Thus, the perception of three sounds
shifts from noisy observation toward prior knowledge when all
three sounds originate from the same source. As a result, the two
intervals are perceived as more similar to each other than their
observation. That is, T 2 is underestimated if T 2 is a little longer

than T 1 (Point A1 in Figure 3), and T 2 is overestimated if T 2 is a
little shorter than T 1 (Point A2 in Figure 3). In addition, the degree
of underestimation is larger than that of overestimation because
the peak of the prior distribution is at the origin due to the expec-
tation of short intervals. The expectation of short intervals also
causes the underestimation of T 2 when T 2=T 1.

Next, when the intervals are dissimilar, the time-interval pair
is located either near the T 1-axis or the T 2-axis on the T 1-T 2

plane. Therefore, perception is biased toward the T 1-axis or the
T 2-axis by prior knowledge when the first two or the latter two
sounds come from the same source, respectively. In addition, since
the likelihood function has a negative correlation between T 1 and
T 2, perception shifts along the negative correlation. Thus, T 2 is
perceived as longer than the actual duration if T 2 is longer than
T 1, and vice versa (Points B1 and B2 in Figure 3, respectively).

In addition, the shape of the prior distribution becomes more
flat as distance from the origin and the axes on the T 1-T 2 plane

FIGURE 3 | Schematic figure of the model mechanism. Dashed lines
indicate the shape of the prior distribution. Each solid-lined ellipse
represents the likelihood function given an observed interval pair marked as
a plus sign on the center of the ellipse. Each arrow describes the direction
of the perceptual shift.

Table 1 | Parameter values in the simulation.

Parameter Value Description

σo 25 ms Time resolution of auditory system. The smaller this value is, the smaller is the perceptual shift

σp 50 ms Strength of the bias toward short intervals. The smaller this value is, the stronger is the bias and the larger

is the perceptual shift

(σq, σr) (97.5, 22.2 ms) Strength of the bias toward equal intervals. The larger the value of σq is, the stronger is the bias and the

larger is the perceptual shift for the case that the two intervals are similar

(p1, p2, p3, p4) (0.01, 0.01, 0.01, 0.97) Probability distribution of C. The larger the value of p1 is, the smaller is the perceptual shift. Increasing p2

and p3 results in a larger perceptual shift for the case that the two intervals are dissimilar. Increasing p4

results in a larger perceptual shift for the case that the two intervals are similar

L 500 ms Integration range. The shorter this value is, the smaller is the perceptual shift especially for the case that

the two intervals are similar
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increases. Therefore, the prior effect is weak in such areas (Point
C in Figure 3).

DISCUSSION
Our model succeeds in replicating the human perception of a
simple temporal pattern. This result suggests that our brain judges
the causality of sounds and expects short and equal intervals for
temporal patterns in the unconscious process.

In our model, we assumed that the observer inferred the causal
relationship among sounds. Although there is little evidence for
this assumption, we can propose some experiments that could ver-
ify it. For example, we propose an experiment in which subjects
hear three rapid sounds and report which of the three sounds come
from the same source. The rate of each judgment on source identi-
fication can be predicted by calculating P(estimated C|T 1,T 2) from
the present model. In addition, this experiment would also pro-
vide feedback on the parameter values of (p1, p2, p3, p4), which are
rather arbitrary in this study. By extending our model, we can also
predict that the temporal pattern of sounds alters the perception
of their spatial locations. Although we modeled the perception of
time intervals marked by sounds in this article, we can also model
the spatial perception of the sounds in almost the same form of
causal inference and easily combine it with the current model.
From this combined model, we predict that the same spatial pat-
terns of sounds are perceived as spatially different if the patterns
are temporally different. This is because the inference on the causal
relationship among sounds is made from their temporal and spa-
tial pattern in this model, and thus varies with temporal difference
even if the actual spatial patterns are the same.

Our model has several parameters, and there exists some arbi-
trariness in their setting. For instance, even if we change the value
of L from that in Table 1 to another value, we can reproduce a
result similar to Figure 1B by adjusting parameters (p1, . . ., p4).
In this article, we choose quite a high value for p4 relative to the
other three parameters. Although we assumed that inference was
made based on observed time of sounds, in reality, we observe
other features of sounds such as direction, pitch, color, volume,
and so on, and all of these provide cues for the causal relationship
among sounds. In the experiment we reproduced, all of these other
features were kept the same for the series of three sounds, which
strongly suggests that the sounds had come from the same source.
We interpret (p1, . . ., p4) as including the cues from those other
features. Thus, it might be natural to assume that p4, which is the
probability of all of the sounds coming from the same source, is
considerably higher than the other possibilities. This suggests that
time-interval perception depends on other sound features and, if
presented with visual stimuli, also depends on visual features such
as color, size, or location. In fact, it was confirmed that the result
of time-interval perception differs according to the combination
of stimulus pitches (Remijn et al., 1999).

Our model could be improved by trying to replicate the exper-
imental facts about the perception of T 1. It was reported that the
direction of the perceptual shift of T 1 follows the same pattern as
that of T 2; that is, T 1 is underestimated when T 1 is a little longer
or much shorter than T 2, and T 1 is overestimated when T 1 is a
little shorter or much longer than T 2 (Miyauchi and Nakajima,
2005). This qualitative property of T 1 perception can be predicted
by our model. However, in that experiment, the magnitude of each
perceptual shift of T 1 was found to be less than that of T 2. Since
the present model has symmetry between T 1 and T 2, it is impossi-
ble for our model to mimic the difference between the perceptions
of T 1 and that of T 2. In the future, we seek to consider how we
refine the present model to reproduce experimental results on the
perception of T 1.

In auditory science, the issue is discerning a single sound stream
in a complex of multiple sounds. This ability of the auditory system
is called “auditory scene analysis” or “auditory scene segregation”
(Bregman, 1990), and regarded as an important key to reveal the
auditory system. Because this sound separating mechanism should
involve perceptual source identification,our model may contribute
to considering a sound segregation mechanism from the temporal
aspect.

Finally, let us consider the time-perception mechanisms for
other sensory modalities. From the psychological experiments on
the visual (Arao et al., 2000) and tactile (van Erp and Spapé, 2008)
time-shrinking illusions, it is known that time ranges for these
modalities are broader than those for audition. The underlying
reason can be understood by using the present model as follows,
given that the visual and tactile time resolutions are lower than the
auditory one. The perceptual bias of our model becomes weaker
in a longer time scale. However, for a low-temporal-resolution
modality, the perceptual bias is still relatively strong, because the
observation has much uncertainty. Thus, the illusion occurs in a
wider range. Though we can give a possible explanation for the dif-
ference among the modalities, the time-perception mechanisms in
the sub-second scale for the other sensory modalities have not been
well studied. Therefore, more research is needed before concluding
that a time-perception system is shared by all sensory modalities.
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APPENDIX
In this Appendix, we derive equation (4) from equations (2) and (3). First, by substituting equation (3) into equation (2), the likelihood
function is written as

P (s1, s2, s3 |T1, T2 ) ∝

∞∫
−∞

P (s1 |t1 ) P (s2 |t2 ) P (s3 |t3 ) dt2

=

∞∫
−∞

(
1

√
2πσo

)3

exp

{
−

1

2σ2
o

[
(s1 − t1)

2
+ (s2 − t2)

2
+ (s3 − t3)

2]} dt2

∝

∞∫
−∞

exp

{
−

1

2σ2
o

[
(s1 − t2 + T1)

2
+ (s2 − t2)

2
+ (s3 − t2 − T2)

2]} dt2. (A1)

Then, by introducing variables S1= s2− s1 and S2= s3− s2, and substituting u for t 2− s2, we obtain equation (4) as follows:

P (s1, s2, s3 |T1, T2 ) ∝

∞∫
−∞

exp

(
−

1

2σ2
o

{
[(s2 − S1)− t2 + T1]2

+ (s2 − t2)
2
+ [(s2 + S2)− t2 − T2]2}) dt2

=

∞∫
−∞

exp

{
−

1

2σ2
o

[
(u − T1 + S1)

2
+u2
+ (u + T2 − S2)

2]} du

=

∞∫
−∞

exp

{
−

1

2σ2
o

[
3u2
− 2 (T1 − T2 − S1 + S2) u + (T1 − S1)

2
+ (T2 − S2)

2]} du

=

∞∫
−∞

exp

{
−

1

2σ2
o

[
3

(
u −

T1 − T2 − S1 + S2

3

)2
]}

du

× exp

{
−

1

2σ2
o

[
−

(T1 − T2 − S1 + S2)
2

3
+ (T1 − S1)

2
+ (T2 − S2)

2
]}

∝ exp

[
−

(T1 − S1)
2
+ (T2 − S2)

2
+ (T1 − S1) (T2 − S2)

3σ2
o

]
. (A2)
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