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ON LOCALIST AND DISTRIBUTED
REPRESENTATIONS
In this article, I present the theory that
localist representation is used widely in
the brain starting from its earliest lev-
els of processing. Page (2000) argued for
localist representation and Bowers (2009)
claimed that the brain uses grandmother
cells to code for objects and concepts.
However, neither Page (2000) nor Bowers
(2009) claimed widespread use of local-
ist representation in the brain. So this
is a stronger position than that taken by
either. To support the proposed theory, I
present neurophysiological evidence, both
old and new, and an analysis of localist and
distributed representation definitions and
models.

“Meaning and interpretation” on a
stand-alone basis is the fundamental char-
acter of a localist unit. In arguing for the
proposed theory, I bring to the forefront
the “meaning and interpretation” aspect
of localist cells and the evidence for it in
the brain. I also show that localist and
distributed models are not different struc-
turally. In fact, any kind of model can be
built with localist units. However, localist
representation has no claim on the result-
ing properties of such models or what they
can do.

DEFINITIONS AND WHAT THEY MEAN
In cognitive science, distributed represen-
tation has the following property (Hinton
et al., 1986; Plate, 2002):

• A concept is represented by a pattern
of activity over a collection of neurons
(i.e., more than one neuron is required
to represent a concept.)

• Each neuron participates in the repre-
sentation of more than one concept.

By contrast, in localist representa-
tion, each neuron represents a single
concept on a stand-alone basis. The crit-
ical distinction is that localist units have
“meaning and interpretation” whereas
units in distributed representation don’t.
Many authors make a note of this
distinction.

• Plate (2002): “Another equivalent prop-
erty is that in a distributed representa-
tion one cannot interpret the meaning of
activity on a single neuron in isolation:
the meaning of activity on any particu-
lar neuron is dependent on the activity in
other neurons (Thorpe, 1995).”

• Thorpe (1995, p. 550): “With a local rep-
resentation, activity in individual units
can be interpreted directly . . . with dis-
tributed coding individual units cannot
be interpreted without knowing the state
of other units in the network.”

• Elman (1995, p. 210): “These represen-
tations are distributed, which typically
has the consequence that interpretable
information cannot be obtained by
examining activity of single hidden
units.”

Thus, the fundamental difference
between localist and distributed repre-
sentation is only in the interpretation
and meaning of the units, nothing else.
Therefore, any kind of model can be built
with either type of representation.

A CLASSIC LOCALIST MODEL—IS IT
STRUCTURALLY DIFFERENT FROM A
DISTRIBUTED ONE?
The interactive activation (IA) model of
McClelland and Rumelhart (1981), shown
in Figure 1, is a classic localist model.
The bottom layer has letter-feature units,
the middle layer has letter units, and

the top layer has word units. In the
middle layer, the model has the same
structure as a distributed model. That
is, each word is represented by many
letter units and each letter unit repre-
sents many different words. The same
is true for the letter-feature layer. That
is, each letter is represented by many
letter-feature units and each letter-feature
unit represents many different letters.
So, regarding that defining property of
distributed representation—where each
entity is represented by many units,
and each unit represents many different
entities—a localist model is no differ-
ent than a distributed one. That prop-
erty is actually a property of the model,
not of the units. The only difference
between localist and distributed represen-
tation is whether individual units have
“meaning and interpretation” or not. Here
the IA model is a localist model sim-
ply because the letter-feature, letter, and
word units have labels on them, which
implies that they have “meaning and
interpretation.”

CAN LOCALIST UNITS RESPOND TO MULTIPLE
CONCEPTS AND STILL BE LOCALIST?
A standard argument against localist rep-
resentation (Plaut and McClelland, 2010;
Quian Quiroga and Kreiman, 2010) is
that for a cell to be localist, one has to
show that it responds to one and only
one stimulus class (e.g., one particular per-
son or object). However, as the IA model
shows, localist units can indeed respond
to many different higher-level concepts.
Thus, a letter unit will respond to many
different words and a letter-feature unit
will respond to many different letters and
words. Thus, responding to many differ-
ent concepts is not a property unique to
distributed representation.
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FIGURE 1 | Adapted from Figure 2 in “An Interactive Activation Model of Context Effects in

Letter Perception: 1. An Account of Basic Findings,” by J. McClelland and D. Rumelhart, 1981,

Psychol. Rev. 88, 380. Copyright 1981 by American Psychological Association. Schematic
diagram of a small subcomponent of the interactive activation model. Bottom layer codes are for
letter features, second layer codes are for letters, and top layer codes are for complete words, all in a
localist manner. Arrows depict excitatory connections between units; circles depict inhibitory
connections.

CAN THERE BE REDUNDANT LOCALIST
UNITS?
An issue often raised in the context of
grandmother cells is whether one and only
one cell represents a concept or object
(Gross, 1998). Note that grandmother cells
are a special case of localist representa-
tion (Bowers, 2009). Localist representa-
tion has no claim that redundancy does
not exist in the brain and Bowers (2009)
also has no such claim regarding grand-
mother cells. The only test for a cell to be
localist is that it has “meaning and inter-
pretation” on a stand-alone basis.

THE EVIDENCE FOR LOCALIST CELLS IN
THE BRAIN—CELLS THAT HAVE
“MEANING AND INTERPRETATION”
CELLS IN EARLY PROCESSING STAGES HAVE
“MEANING AND INTERPRETATION” ON A
STAND-ALONE BASIS
Research on a hierarchy of receptive fields
is over four decades old and has produced
Nobel Prize winners in medicine and phys-
iology (Hubel and Wiesel, 1968). Receptive
field neurons are found in all sensory
systems—auditory, somatosensory, and
visual. For example, they are found in
all levels of the visual system—retinal
ganglion, lateral geniculate nucleus, visual
cortex, and extrastriate cortical cells. The
major finding of this research is that recep-
tive field functionality in all stages of pro-
cessing can be interpreted. For example, in

the primary visual cortex, there are simple
and complex cells that are tuned to visual
characteristics such as orientation, color,
motion, and shape (Ringach, 2004). Here’s
a sampling of some recent findings on
receptive fields.

Ganglion cells
Levick (1967) identified three types of gan-
glion cells in the rabbit retina: orienta-
tion selection, local-edge detection, and
uniformity detection. Bloomfield (1994)
also found orientation-selective amacrine
and ganglion cells in the rabbit retina.
Venkataramani and Taylor (2010) found
more OFF-center orientation selective
ganglion cells than ON-center ones in the
visual streak of the retina.

Primary visual cortex
Usrey et al. (2003) found that 84% of
the neurons in layer 4 of primary visual
cortex in adult ferrets were orientation-
selective simple cells with elongated recep-
tive fields. Ringach et al. (2002) found
contrast invariant edge kernels in both
simple and complex cells in monkey pri-
mary visual cortex. Johnson et al. (2001,
2004, 2008) found that about 40% of
all macaque V1 cells and 60% in layer
2/3 were color-selective. Martinez et al.
(2005) found simple receptive fields exclu-
sively in the thalamorecipient layers (4 and
upper 6) in the cat’s primary visual cortex

and complex cells throughout the cortical
depth. Gur et al. (2005) found a nar-
row band of direction- and orientation-
selective cells located in the middle of
layer 4C in V1 of alert monkeys showing
use of very selective cells in early cortical
processing.

Thus “meaning and interpretation” of
cell activity exist starting at the lowest
levels of sensory signal processing.

CELLS IN LATER PROCESSING STAGES ALSO
HAVE “MEANING AND INTERPRETATION” ON
A STAND-ALONE BASIS
Hippocampal place cells
It’s a tradition in neurophysiology to inter-
pret the activity of cells in different brain
regions. For example, there’s four decades
of research on hippocampal place cells that
fire when an animal is in a specific location
(O’Keefe and Dostrovsky, 1971; Moser
et al., 2008). Recently Ekstrom et al. (2003)
had epilepsy patients play a taxi driver
computer game. They found cells in the
hippocampus that responded to specific
spatial locations, in the parahippocampal
region that responded to views of spe-
cific landmarks (e.g., shops) and in the
frontal and temporal lobes that responded
to navigational goals.

Medial temporal lobe cells
Neuroscientists have discovered cells in the
medial temporal lobe (MTL) region of
the human brain that have highly selective
response to complex stimuli. For example,
some MTL neurons responded selectively
to gender and facial expression (Fried
et al., 1997) and to pictures of particu-
lar categories of objects, such as animals,
faces, and houses (Kreiman et al., 2000).
Thomas et al. (2000) found similar cat-
egory encoding in the inferior temporal
cortex. Quian Quiroga et al. (2008) found
a neuron in the parahippocampal cortex
that fired to pictures of Tower of Pisa and
Eiffel Tower, but not to other landmarks.
Quian Quiroga and Kreiman (2010) found
a neuron firing to a spider and a snake,
but not to other animals. Quian Quiroga
et al. (2009) found a neuron in the entorhi-
nal cortex that responded (p. 1308) “selec-
tively to pictures of Saddam Hussein as
well as to the text ‘Saddam Hussein’ and
his name pronounced by the computer . . . .
There were no responses to other pictures,
texts, or sounds.” Koch (2011, p. 18, 19)
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reports finding similar MTL cells: “One
hippocampal neuron responded only to pho-
tos of actress Jennifer Aniston but not to
pictures of other blonde women or actresses;
moreover, the cell fired in response to seven
very different pictures of Jennifer Aniston.
We found cells that responded to images of
Mother Teresa, to cute little animals and
to the Pythagorean theorem, a2 + b2 = c2.”
Note that the “interpretation and mean-
ing” of these cells did not depend on the
activity of other cells. Quian Quiroga et al.
(2008) estimate that 40% of MTL cells are
tuned to such explicit representation.

The Cerf experiment
The experiment by Cerf et al. (2010) is
quite revealing because it involves contin-
uous interpretation of single cell activities.
Here, epilepsy patients played a game to
control the display of two superimposed
images through four MTL neurons. Before
the experiment, the researchers identi-
fied four MTL neurons in each patient
that responded selectively to four dif-
ferent images. One of the four images
was randomly selected to become the
target image. Each trial started with a
short display of the target image (say of
Jennifer Aniston) followed by an over-
laid hybrid image of the target and one
of the other three images (a distractor
image, say of James Brolin). The patient
was then told to enhance the target image
by focusing his/her thoughts on it. The
initial visibility of both images was at
50% and the visibility of an image was
increased or decreased every 100 ms based
on the firing rates of the four MTL
neurons. In general, if the firing rate
of one neuron was higher compared to
the other, the image associated with that
neuron became more visible. The trial
was terminated when either one of the
two images was fully visible or after a
fixed time limit. The subjects successfully
reached the target, which means the tar-
get image was fully visible, in 596 out
of 864 trials (69.0%; 202 failures and 66
timeouts).

Here’s an interpretation of the experi-
ment. Suppose A is the target image and
B the distractor. Enhanced firing of the A
cell is equivalent to the patient saying: “I
am thinking about image A.” However, not
a single word is spoken and the computer
adjusting the images could still determine

what the patient meant to say simply from
the firing of the A cell. In other words,
the firing of that A cell had “meaning and
interpretation.”

Note also that if the target image
was of Jennifer Aniston, the correspond-
ing cell did not have any dependency
of interpretation on any of the other
three cells and those cells were not part
of a distributed representation for the
Jennifer Aniston concept. The other three
monitored cells could have been for any
of the other objects shown to the patient,
such as a building or a snake, and that
would not have changed the interpretation
of the Jennifer Aniston cell. These cells,
therefore, had “meaning and interpreta-
tion” on a stand-alone basis.

CONCLUSION
The only requirement for a cell to be
localist is that it have “meaning and
interpretation” on a stand-alone basis and
that its meaning does not depend on
the activations of other cells. From the
evidence so far from neurophysiology, it
would be fair to conclude that use of local-
ist representation is fairly widespread in
the brain, starting from the lowest levels
of processing. And the evidence for such a
theory of the brain is substantial and con-
vincing at this point and spans decades of
work in neurophysiology.
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