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Typical disjunctive artificial classification tasks require participants to sort stimuli according
to rules such as “x likes cars only when black and coupe OR white and SUV.” For cate-
gories like this, increasing the salience of the diagnostic dimensions has two simultaneous
effects: increasing the distance between members of the same category and increas-
ing the distance between members of opposite categories. Potentially, these two effects
respectively hinder and facilitate classification learning, leading to competing predictions
for learning. Increasing saliency may lead to members of the same category to be consid-
ered less similar, while the members of separate categories might be considered more
dissimilar. This implies a similarity-dissimilarity competition between two basic classifica-
tion processes. When focusing on sub-category similarity, one would expect more difficult
classification when members of the same category become less similar (disregarding
the increase of between-category dissimilarity); however, the between-category dissimi-
larity increase predicts a less difficult classification. Our categorization study suggests that
participants rely more on using dissimilarities between opposite categories than finding
similarities between sub-categories. We connect our results to rule- and exemplar-based
classification models.The pattern of influences of within- and between-category similarities
are challenging for simple single-process categorization systems based on rules or exem-
plars. Instead, our results suggest that either these processes should be integrated in a
hybrid model, or that category learning operates by forming clusters within each category.

Keywords: learning, categorization, disjunctive rules, dimension saliency, similarity effects, rule-based,
exemplar-based, hybrid

INTRODUCTION
The idea that perception influences categorization has consid-
erable intuitive appeal (Goldstone and Barsalou, 1998). It has
long been shown that categorization performance can be ade-
quately described as a function of the cohesion between stimuli
(or statistical density), which can be measured by a simple within-
and between-category distance ratio (Homa et al., 1979; Slout-
sky, 2010). Little is known, however, about the effect of category
cohesion in disjunctive classification tasks for which objects do
not perceptually or conceptually resemble one another. A dis-
junction is a logical term that expresses a close connection to the
or word in natural languages. For instance, one can express the
idea of preferring “a large house in the suburbs or a small apart-
ment downtown”, as opposed to “large houses downtown (that
you could not afford) or small apartments in the suburbs (that
would be of no interest because you can afford a better place)1.”
Ultimately, the positive examples of a disjunctive category share
no characteristics that are common to all its members. Studies in
the 1950s showed that learning strategies are most often based on

1See Goodwin and Johnson-Laird (2011) for a shorter description using the or else
connector.

positive information, that is, they avoid using cues in the stim-
uli that tell them “what the object is not” (to rephrase Bruner
et al., 1956, chap. 6, p. 181). The absence of a shared characteristic
in disjunctive classification tasks impedes learning strategies and
also undermines the role of similarity in subserving disjunctive
categorizations (Goldstone, 1994b).

Generally, there are two ways of organizing the category learn-
ing process. The first is to find differences between categories,
a process that has recently been emphasized by researchers who
argue that a category learner needs to find features that discrim-
inate between categories (Kornell and Bjork, 2008). For example,
people traditionally try to define male and female by observing
differences in behavior and personality between genders. An alter-
nate method is to find similarities between sub-categories and
develop a positive, stand-alone representation of each category.
For example, in educational settings, students acquire formal con-
cepts from instruction that defines a set of properties applying to
a class of objects, such as “a square has four equal sides and at
least one 90˚.” Occasionally, case-based reasoning is sufficient to
provide adequate knowledge (e.g., you do not need to hear many
gun shots to grasp the relationship between fire and noise). Rea-
soning by analogy is another example in which similarity applies
predominantly.
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If this broad organization is correct, then there are two situa-
tions that could make learning a category difficult. Two separate
categories might both have items that are very similar. For exam-
ple, this is the problem facing the friend of two identical twins,
Karen and Sharon. There is the Karen category of all of the varia-
tions in appearance that Karen can assume (e.g., on different days
with different lighting). Here, the basic category learning diffi-
culty is that this set of appearance possibilities is very similar to
the set of appearances that instances of the Sharon category can
assume. Another situation that can make categorization difficult
is when it is hard to find anything that the members of a category
share because within-category similarity is so low. This is one of
the reasons why the mammal category is harder to learn than the
dog category – things that are at first glance quite dissimilar, like
whales, bats, and rabbits, all share some subtle commonalities that
place them in the mammal category.

Most research in the spirit of the present study has focused on
one-dimensional rules, which would imply, for instance, consid-
ering only the price of a property regardless of its location (e.g.,
Goldstone and Steyvers, 2001; Goldstone et al., 2001). However,
disjunctive categories present the peculiar effect of simultane-
ously increasing the psychological distance between members of
the same category and increasing the distance between members
of separate categories when the salience of the categorization-
relevant dimensions increase. Such an effect is related to the more
general phenomenon that category intuitiveness, which is influ-
enced by the tightness of clusters and the separation between
clusters (Pothos et al., 2011), influences categorization processes.
In other words, increasing the salience of a relevant feature dimen-
sion will increase the perceived dissimilarity between two mem-
bers of the same category as well as members of two different
categories. Potentially, these two effects can respectively hinder
and facilitate classification learning, thus implying a similarity-
dissimilarity competition between two classification processes,
that is, finding similarities between sub-categories and highlight-
ing differences between categories (see Stewart and Morin, 2007).
More precisely, the similarity-dissimilarity competition terminol-
ogy that we employ specifically refers to a Less-similarity-within-
categories versus a More-dissimilarity-between-categories com-
petition process. For example, imagine someone has a preference
for either perfectly white cats or perfectly black dogs, rather than
white dogs or black cats. The large differences between the cate-
gories (white and black are highly dissimilar, and cats and dogs
are quite dissimilar) might help one learn to distinguish the cate-
gories (favorite pets versus non-favorite pets), relative to learning
categories that are closer (in which all of the objects are less dis-
tinguishable). Conversely, these exact same differences interfere
with determining commonalities between the white cats and the
black dogs that belong to the same category of “favorite pets.”
Given that individuals generally look for underlying common
features or causes (e.g., Rehder and Kim, 2009) in category learn-
ing (such as cleaning the white fur is a burden, or cats are more
independent), the within-category dissimilarities imposed by the
disjunctive categories hinder their acquisition. To limit the termi-
nology throughout the paper, only three entities will be opposed in
the present study: distance between categories, distance between
sub-categories, and distance within sub-categories. The reason

is that within categories, individuals can either seek similarities
between objects of different sub-categories (also called clusters),
or between objects within sub-categories. Our terminology sim-
ply avoids, for instance, formulations such as “ within-category
between cluster” or “ between-category between cluster.”

One purpose of our study was to further test the exemplar
model (Nosofsky, 1986), in which categorization accuracy is deter-
mined by the ratio of evidence in favor of one category to the sum
of the evidence in favor of all possible categorizations. In exemplar
models, both within-category and between-category similarities
affect categorization accuracy. Thus, a manipulation that draws all
stimuli closer to one another might be expected to impair cate-
gorization according to some exemplar models. This prediction
will be formalized in a later section. A second prediction was that
seeking similarities between members of a category is more typi-
cal of a rule-based process (considering that a rule is usually based
on positive information; e.g., Feldman, 2000), so a manipulation
that draws all stimuli closer to one another might be expected to
improve rule-based categorization.

Foreshadowing our main result, this study shows that the
similarity-dissimilarity competition results in participants rely-
ing more on the dissimilarities between opposite categories rather
than finding similarities between sub-categories. This learning
strategy makes disjunctive classification learning less difficult as
the distance between sub-categories increases. These results give
us an opportunity to discuss rule-versus exemplar-based accounts
and to propose an interpretation based on the more flexible
SUSTAIN model.

Figure 1 shows the possible variations of feature distances
that we manipulated in our study and the corresponding pre-
dictions for two distinct category learning processes: finding
differences between categories and finding similarities between
sub-categories, as well as a combination of both. In Figure 1,
we chose a three-dimensional (3D) “Size-irrelevant/Color-and-
Shape-relevant” Type II concept to serve as an example (the
positive category is formed by the two simple dark objects or the
two complex light objects, regardless of their size). Type II clas-
sification tasks were originally studied by Shepard et al. (1961)
along with five other types that we do not describe here. In Type
II classifications, two out of the three dimensions are diagnostic
to solving the problem, while information about the third dimen-
sion is irrelevant. The structure of Type II is thus derived from
the simpler 2D exclusive OR (i.e., XOR), although the presence
of the irrelevant dimension can complicate learning. We chose to
experiment on Type II classifications because they are the simplest
disjunctive problems over three dimensions in the Shepard et al.’s
classification (see also Nosofsky et al., 1994a). Another advantage
in Type II concepts is the parity between positive and negative
examples (four of each kind), which makes the disjunction sym-
metrical for positive and negative examples, so it does not matter
whether participants focus on positive or negative examples.

In our example, the Type II concept applies to three Boolean-
valued dimensions of shape, size, and color, which produce eight
possible stimuli when combined (from the large dark complex
shape to the small light simple shape). Each of the eight stimuli
can be reported on one vertex of a cube, following a city-block dis-
tance between the stimuli. For instance, two stimuli differing only
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FIGURE 1 | Studied variations of distances between the positive
examples of aType II concept. The reference cube exemplifies a Type II
concept with the Size dimension irrelevant. The three dimensions of the
cube respectively represent Size (front face versus back face), Shape (left
face versus right face), and Color (top face versus bottom face). One edge in
the cube represents one difference in features. For instance, between the
top left vertex on the front face (a large and simple dark object) and the
bottom right vertex on the back face (a small and complex light object), there
is a (city-block) distance of three edges, expressing the fact that the two
objects differ in three dimensions. The dark circles placed on certain vertices

denote the positive examples of the Type II concept. Here, the correct rule is
(simple and dark ) or (complex and light ). The two study cases (one study
case per line) correspond to two variations of the distances between the
positive examples that we studied. In the first case, the two relevant
dimensions become more salient, so the perceived distance between the
clusters becomes greater. In the second case, the irrelevant dimension
becomes more salient, making the distances between the objects within
clusters greater. The predictions are indicated for two different processes:
finding differences between categories and finding similarities between
clusters (as well as both combined).
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in one feature are separated by one edge, two stimuli differing in
two features are separated by two edges, etc. In Figure 1, the cube
contrasts the large and small stimuli using respectively the front
face and the back face, the dark and the light stimuli using the top
and bottom faces, and the simple and complex shapes using the
left and right faces. Generally, a set of dark circles is apposed to
the cube in order to indicate which of the stimuli belong to the
positive category; the other stimuli, represented by white circles,
belong to the negative category. For the Type II concept that we
arbitrarily chose in this example, the positive category gathers the
simple dark shapes and the complex light shapes. The simplest
rule for distinguishing the categories is thus: “The object is posi-
tive IF (simple and dark) or (complex and light).”Such a rule has a
disjunctive normal form because it is a disjunction of conjunctive
clauses. This Type II concept therefore comprises four clusters or
sub-categories: simple and dark objects, complex and light objects,
complex and dark objects, and the simple and light objects.

The bottom table in Figure 1 reports two study cases (one per
line) that lead to different predictions. In the first case, the distance
between the values of the two relevant dimensions increases and is
expressed by the expansion of the cube for both relevant dimen-
sions. This makes the positive examples more separable from the
negative ones, but at the same time increases the dissimilarity
between the two positive sub-categories of the positive category.
In the second case, the values for the irrelevant dimension become
more distant, so the incentive for grouping the positive examples
within sub-categories is lower.

We now describe a simplified version of the generalized con-
text model (GCM) called the raw similarity model (RSM) because
both make the same predictions for our study cases. RSM pre-
dicts that the difficulty of category learning will be based on
finding differences between categories. Effectively, RSM computes
the probability of putting each example in each category, assum-
ing that the classification of an example is determined by its
similarity to the stored category exemplars (Medin and Schaffer,
1978; Nosofsky, 1984). Every seen exemplar of the categories is
compared to an instance that must be categorized. These exem-
plars are the psychological representatives of the corresponding
concrete stimuli. A simple distance function was used with a city-
block metric (counting the number of different features between
two stimuli), n the number of dimensions composing the stim-
uli (here, n= 3), and xia the value of stimulus i on dimension a:

dij =

n∑
a=1

∣∣xia − xja
∣∣ (1)

The following exponential decay function was used to relate
stimulus similarity to psychological distance (Nosofsky, 1986;
Shepard, 1987):

ηij = e−dij (2)

where ηij represents the global similarity of a stimulus i to a stim-
ulus j. The similarity value of a stimulus i to one exemplar of
the category X is written ηix. The probability of responding with
category X when faced with a forced choice between Categories X
and Y was computed using the choice rule devised by Luce (1963):

FIGURE 2 | Distances between objects in aType II. In generating the
predictions of a simple exemplar model, we posit an XOR categorization in
which the filled circles belong to one category, and the empty circles
belong to a different category. Categorization accuracy is a function of the
sum of the city-block distances of an object to the objects in its own
category, divided by the sum of its distances to all objects. For the object in
the front-upper-left of the cube, the within-category distances are shown by
solid lines and the between-category distances shown by dashed lines. Not
included in the figure is the distance of 0 that the object has to itself.

P (X/i) =

∑
x∈X

ηix∑
x∈X

ηix +
∑

y∈Y
ηiy

(3)

To obtain a measure of each concept’s complexity given the
input distances, a single probability term was computed by taking
the average of all P(CorrectCategory/i) over all stimuli i. Again, the
predictions made by the full version of GCM (which includes a
sensitivity parameter and attention weight parameters) give dif-
ferent quantitative predictions, but the ordinal predictions of our
different study cases were identical to those made by RSM. The
complexity of each categorization task resembles the notion of
category intuitiveness defended by Pothos and Bailey (2009): a
lower average probability corresponds to a less intuitive classifica-
tion. For any of the objects that belong in the positive category, we
can assume that every segment on which two objects differ adds a
distance of 1 (see Figure 2), such that the predicted categorization
accuracy for a sample close-similarity case is:

p (X)

=
exp (−0)+ exp (−1)+ exp (−2)+ exp (−3)

[exp (−0)+ exp (−1)+ exp (−2)+ exp (−3)]
+ [exp (−1)+ exp (−2)+ exp (−1)+ exp (−2)]

= 0.61

Note that an object is compared to the four objects in the
same category (including itself, hence the distance of 0), as well
as the four objects in the other category. If we multiply the two
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RELEVANT dimensions’ distances by 2 (i.e., every edge has a dis-
tance of 2; this corresponds to our first study case in Figure 1), but
keep the irrelevant dimension’s distances as they were in the first
example, the categorization accuracy becomes:

p (X)

=
exp (−0)+ exp (−1)+ exp (−4)+ exp (−5)

[exp (−0)+ exp (−1)+ exp (−4)+ exp (−5)]
+ [exp (−2)+ exp (−3)+ exp (−2)+ exp (−3)]

= 0.79

If we multiply the IRRELEVANT dimension’s distance by 2 (this
corresponds to our second study case in Figure 1), but keep the
relevant dimensions’ distances as they were in the first example,
the categorization accuracy becomes:

p (X)

=
exp (−0)+ exp (−2)+ exp (−2)+ exp (−4)

[exp (−0)+ exp (−2)+ exp (−2)+ exp (−4)]
+ [exp (−1)+ exp (−1)+ exp (−3)+ exp (−3)]

= 0.61

Finally, if we multiply ALL of the distances by 2 to represent
a case in which we uniformly increase the dissimilarity between
objects, we get:

p (X)

=
exp (−0)+ exp (−2)+ exp (−4)+ exp (−6)

[exp (−0)+ exp (−2)+ exp (−4)+ exp (−6)]
+ [exp (−2)+ exp (−4)+ exp (−2)+ exp (−4)]

= 0.79

As such, for the Type II categorization, this simplified exemplar
model predicts that categorization accuracy is affected by distances
on the relevant dimensions, but not the distances on the irrel-
evant dimension. Again, this pattern of results does not change
by considering a more complex exemplar model such as one that
includes a sensitivity parameter, with similarity modulated by e−cd

instead of e−d. For instance, applying c = 1.5 to the model, the
respective values are 0.70 and 0.91 instead of 0.61 and 0.79; the
respective values for c = 2 are 0.79 and 0.96. However, it must be
noted that for more extreme values such as c = 5 the values are
0.99 and 1. In general, the model is less affected by the manipula-
tion of distance as c increases and overall categorization accuracy
reaches a ceiling level of performance. The reason is that altering
c values does not modulate the 0 distance, hence the similarity of
one object to itself becomes progressively dominant in the equa-
tion and the probability of responding with the right category
increases.

The results of our simulations of RSM are indicated in the
predictions summarized in Figure 1 (under the column “Find
diff. btw,” i.e., finding differences between categories, a process
that seems to describe in simple terms the behavior of RSM).
Contrary to a learning process that focuses on finding simi-
larities between sub-categories (under the column “Find sim.
within”), which would predict more difficult categorization when
increasing the distance between objects on the relevant dimen-
sions, RSM predicts that learning is made easier by that same
increase. Note that this is not necessarily an intuitive prediction

even for those knowing well the principles governing the exemplar
model.

In Figure 1, increased distances are represented by the blue
arrows that simulate the stretching of the original cube on the
left. A second prediction relates to increasing the distance between
the features of the irrelevant dimension (this is represented by the
second line in the table, where the single blue arrow stretches
the cube to make it deeper). As shown by the above calcula-
tions, increasing the distance between the features of the irrel-
evant dimension has no effect on the RSM output. However,
if a learning process predominantly uses similarities to form a
category representation, this increase would clearly affect cat-
egorization by hindering the formation of the sub-categories.
Our method is therefore based on manipulating the distances
between categories and sub-categories to test these two sets of
predictions.

MATERIALS AND METHODS
We seek to understand the effects of increasing the salience of the
diagnostic dimensions in a single disjunctive artificial classification
task. This manipulation has two simultaneous effects: increasing
the distance between members of the same category and increas-
ing the distance between members of opposite categories. Like
the 5–4 category structure (Medin and Schaffer, 1978; Smith and
Minda, 2000), we hypothesize that this manipulation can operate
as a critical benchmark test for categorization models.

PARTICIPANTS
The participants were 54 undergraduate students at the Univer-
sity of Franche-Comté who received course credit in exchange for
their participation. The participants were randomly assigned to the
experimental conditions. Informed consent was obtained from all
participants, the experiments conformed the relevant regulatory
standards, and the experiment was approved by the Université de
Franche-Comté.

APPARATUS
The stimuli were geometric objects that could vary along three
dimensions with each dimension presenting four different values,
from which two values were picked for building a set of objects
to be categorized: color (any two of the following: 20, 40, 60, and
80% gray, on the RGB 0-255 range), shape (extra simple, sim-
ple, complex, and extra complex fractals; the fractals and their
shape are detailed later), and size (11 cm× 8.5 cm, 8 cm× 6.4 cm,
6 cm× 4.7 cm, 4.5 cm× 3.5 cm, which is a respective diminution
of 33% from one size to the next one).

In order to limit the dependence between shapes and sizes (two
dimensions that have been shown to interact and govern perfor-
mance, see Love and Markman, 2003; Mathy and Bradmetz, 2011),
a new kind of stimuli was devised for this study. The intention
was to create shapes with equivalent areas and equivalent con-
vex envelopes for a given size. We thought that psychologically
speaking, areas and convex envelopes can be more important than
perimeter to judge the size of an object. Effectively, the tentative Set
2 in Figure 3 did not seem appropriate for our study, because when
the stimuli vary in shape from left to right, and the area remains
constant, the convex envelope increases from left to right. As a
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FIGURE 3 |Three different sets of stimuli differing on the possible
interaction between their constituent size and shape dimensions. Only
Set 1 was used in the experiment. In Set 1 (Left), the four stimuli differ in
color, size, and shape. Note that for a given size, the different shapes
necessarily possess constant areas and constant convex envelopes (note that
this cannot be directly observed in the figure because no stimuli in Set 1 have
the same size, but for different shapes, it is easy to figure out that the rubber
band would wrap around the shapes with the same length). The red and
green arrows that show the displacement of some parts were not part of the
stimuli that were shown to participants. In Set 2 (Top), the stimuli vary in

shape from left to right by keeping the area constant, but in that case, the
convex envelope surrounding the object increases from left to right so that
the perceived size might vary according to changes in shapes. As a result, the
top left square might seem more similar to the bottom right triangle than the
top right triangle in comparison to the bottom left square (whereas the ratios
of the areas for the two respective pairs are equal). In Set 3 (Bottom), the
shapes vary from left to right while keeping the height and the base constant.
As a result, the top left square might seem further from the bottom right
triangle than the top right triangle in comparison to the bottom left square
(because the ratios of the areas for the two respective pairs are unequal).

result, the perceived size might vary according to changes in shape:
for instance, the top left square might seem closer to the bottom
right triangle than the bottom left square in comparison to the top
right triangle (whereas the ratios of the areas for the two respective
pairs are equal). Such an effect might facilitate the formation of

a Type II concept based on the top left and bottom right objects.
In Set 3, the shapes vary from left to right by keeping the height
and the base constant. As a result, the top left square might seem
further apart from the bottom right triangle than the bottom left
square is from the top right triangle (because the ratios of the areas
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for the two respective are unequal). This effect can also be particu-
larly detrimental to studying similarity effects in the formation of
a disjunctive concept. Accordingly, both Sets 2 and 3 were rejected
in favor of Set 1. The four stimuli in Set 1 differ in color, size,
and shape independently (the four respective values are shown in
the four objects of Figure 3, a subset of the 4× 4× 4= 64 possible
objects; from bottom to top, the four objects become darker, larger,
and more complex). Starting from the simplest object (bottom),
the more complicated objects were built recursively by cropping a
triangle in the middle of the shape and by displacing the cropped
triangle on an opposite segment (the four displacements are indi-
cated by the red and green arrows in Figure 3; note that these
arrows were not seen by the participants). For a given size, this
resulted in the different shapes having constant areas and constant
convex envelopes. Effectively, by imagining a rubber band analogy
wrapping around the objects to compute the convex envelope, the
length, and shape of the elastic band is identical from one shape
(i.e., complexity) to another for a given size. The four different
values for each dimension were respectively coded from 1 to 4 to
express the decrease in size, the increase of complexity in shape,
and the decrease in darkness. Although the stimuli do not equate
for perimeter as shapes vary, the potential for psychological inter-
actions between area and brightness, and between area and size,
were deemed to be more problematic than between perimeter and
either size or brightness.

DESIGN
The Type II categorization requires two diagnostic/relevant
dimensions, one irrelevant dimension, two values per dimension,
and eight stimuli (four positive, four negative). A logical rule such
as“ab or a′b′” is the signature for a Type II structure, with the third
dimension being irrelevant. For that reason, a first factor deter-
mined whether the concept was Shape-irrelevant, Size-irrelevant,
or Color-irrelevant. Once the irrelevant dimension was chosen
(e.g., a Shape-irrelevant condition for the Irrelevant factor), we
balanced the two remaining choices for associating the chosen
set of objects to the positive and negative categories: four of the
eight objects were either assigned to the positive category [e.g.,
for one participant, the concept was “(large and dark) or (small
and light )”] or the four other objects were assigned to the positive
category [e.g., for another participant: “(small and dark) or (large
and light )”]. This manipulation was the Balance of categories fac-
tor. The four dimension values were recoded by their rank (1, 2, 3,
and 4).

The second main manipulation concerned the opportunities
for stimulus discrimination: for each dimension, the differences
in size, color, and shape values were one of the three following: (a)
2 - 1= 1 (i.e., a difference of 1 resulting from using the second and
first value of one dimension), (b) 3 - 1= 2, or (c) 4 - 1= 3. This
manipulation was called the Distance between dimensions factor.
This choice means that not all pairs of values were studied, to lower
the number of experimental conditions (for instance, there were
no 3 - 2= 1 or 4 - 3= 1 conditions, etc.; note that the first value
for each dimension was always picked as a base, so only the second
value freely varied). Another constraint was that the two relevant
dimensions always had the same distance between their features.
Overall, the between-subject design involved:

Overall, the between-subject design involved 3 (Irrelevant fac-
tor)× 2 (Balance of categories)× 3 (Distance between relevant
dimensions)× 3 (Distance between irrelevant dimensions)= 54
different conditions.

PROCEDURE
The 54 participants were assigned to one of the 54 different
conditions just described for the category learning task. They
all completed a pre-categorization similarity rating task, a cate-
gory learning (classification) task, and a post-categorization rating
task2. During the pre- and post-categorization similarity rat-
ing tasks, the participants were required to judge the similarity
between each pair of the eight objects they were assigned for the
classification task. This part was completed by rating the simi-
larity of pairs of objects on a 1–9 scale with 1 indicating “not
very similar at all” and 9 indicating “highly similar.” Assuming
that the participants would give symmetric similarity ratings, they
were given (8× 7)/2= 28 judgments for pairs of objects that were
presented side-by-side simultaneously until a response was made.
During the post-categorization phase, the procedure was iden-
tical to the pre-categorization task except that the participants
were instructed to try to provide similarity judgments that were
independent from both the pre-categorization phase and the clas-
sification task. That is, they were asked to judge the similarity
between the objects without considering the preceding experience
they had with the stimuli, so that their judgments could freely
vary from their previous ones. Each of the similarity rating tasks
required approximately 5 min.

For the category learning task, each participant was assigned
a single Type II concept that could be described by one of the
54 conditions described above. The concept was learned by trial
and error in a single session that lasted about 15 min. Testing was
preceded by a brief explanation about how to sort the stimuli
(by pressing 1 or 0 for the respective positive and negative cate-
gories). Feedback was displayed at the bottom of the screen (for
2 s) to indicate whether a response was correct or incorrect. To
keep track of the participant’s “score,” one point was added to
a progress bar for each correct response. The number of incre-
ments in the progress bar was equal to four times the length of
the training sample, that is, 4× 8= 32. The criterion of 4× 8
was identical to the one used in the pioneering study of Shepard
et al. (1961). Participants had to correctly categorize the stim-
uli on four blocks of eight stimuli – that is, they had to fill up
the progress bar to terminate the experiment. Participants were
told that the classification task would end once the entire progress
bar filled up. A learning criterion (unknown to the participant)
was set to 2× 8= 16 consecutive correct responses. The response
times (RTs) were measured during the last 16 correct responses to
determine whether differences in learning times persisted with the
learned concept compared to the practice items. When an incorrect
response was made, all points scored thus far were lost (although
the progress bar only went back to 16 points for cases in which the
participant succeeded in getting more than 16 correct responses

2Post-categorization testing was carried out to test the idea that categorization
can influence perception (Whorf, 1956; Goldstone, 1994a; Gureckis and Goldstone,
2008).
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in a row). This means that participants had to correctly categorize
the stimuli on two consecutive blocks to reach the learning crite-
rion, and then again on two other consecutive blocks to terminate
the experiment. Using consecutive blocks insured that the partic-
ipants were learning all the stimuli rather than a subset of them.
We noticed in several pretests that resetting the progress bar to
zero when more than half of the progress bar was completed was
frustrating for participants. Resetting the bar to the halfway point
when they made an error after 16 correct responses encouraged the
participants to continue with the experiment. The learning crite-
rion was established so that RTs would be interpretable, but it did
not mean that the participants had perfectly memorized the cate-
gory members or that they could perfectly classify the rest of the
stimuli. A few errors could still occur after the so-called learning
criterion.

Stimulus objects were presented one at a time in the upper
half of the computer screen, and the lower part of the screen was
reserved for the feedback. The stimuli were randomly permuted
within all blocks, with the constraint that the first stimulus in each
block was different from the last one in the previous block. The
categorization of one stimulus object was considered a trial.

The dependent variables were the number of blocks required
to reach the learning criterion, the proportion of errors measured
before the progress bar reached eight correct responses in a row
(which reflected performance before the concept was acquired),
and the RTs measured when the progress bar was above 16 (the
rationale being that the analysis of RTs is most readily interpretable
when a correct response is given, otherwise, without more refined
models, short RTs can either represent fast processing or guessing
responses). In order to avoid inappropriate inferential statistics
given the positively skewed distribution of the RTs, RTs were
transformed by the natural logarithm (LN).

Our hypothesis was that harder conditions should provoke an
increase in the number of blocks required to reach the learn-
ing criterion, an increase in the number of incorrect responses,
and longer RTs (reflecting more difficult processing of the stimuli
because of a more complicated retrieval of exemplars, or because
of the use of a less effective rule that a participant would find more
difficult to encode during the learning process).

RESULTS
SALIENCY EFFECTS
We first investigated whether differences in performance were
due to dimension salience. Regarding the number of blocks
required by the participants to reach the learning criterion, we
observed no differences between the three main Size-, Shape-, and
Color-irrelevant conditions, with an average of about 26 blocks
(SD= 15). The irrelevant dimension also did not result in a sig-
nificant difference in the proportion of errors per block, with an
average of about 0.40 errors per block (SD= 0.19) across these
three conditions. A difference, however, was observed in the last
two blocks for RTs, with an average of about 1.5 s (SD= 0.87) to
classify the objects in the Color-irrelevant condition compared to
1.7 s (SD= 1.01) for the two Color-relevant conditions. To gain
sufficient statistical power and to describe the whole distribution,
a preliminary analysis included the RTs from 1008 correct tri-
als across the 54 participants whenever they had accumulated 16

previous correct responses (most of the time, this corresponded
to the last two blocks, unless the participant made a mistake that
reset the progress bar). A one-way ANOVA showed that there
were significant differences across the three Size-, Shape-, and
Color-irrelevant conditions on RT, F(2,1005)= 4.5, p= 0.011,
η2
= 0.009, although the effect size was low. The same analysis

on LN(RT) was slightly more powerful, F(2,1005)= 5, p= 0.007,
η2
= 0.01. The post hoc comparisons (Newman–Keuls) confirmed

the significant difference of the Color-irrelevant condition com-
pared to the two other conditions. Overall, the choice of the
relevant dimensions seemed to have little effect on performance
when the whole RT data (after learning criterion) was taken into
consideration. We then run a more accurate mixed model analy-
sis (appropriate in the presence of the correlated errors that can
arise from a data hierarchy), using subject number as a random
factor, stimulus type as a repeated variable, and irrelevant condi-
tion as the main factor, using a maximum likelihood estimation
method, and again, using LN(RT) as the dependent variable in the
last two blocks. The RT were previously averaged in order to gen-
erate 432 data points from the 54 subjects× 8 stimulus types table.
The subjects were embedded in the three Size-, Shape-, and Color-
irrelevant conditions. The analysis showed a significant fixed effect
of the irrelevant condition, F(2,422), 5.34, p= 0.005, with pair-
wise comparisons showing that the Color-irrelevant condition was
significantly lower than the two Color-relevant conditions.

From the exemplar model perspective, the slightly faster pro-
cessing of Color-irrelevant concepts suggests that Size and Shape
were the most salient dimensions for subjects, especially when
combined together as relevant conditions. Remember that the
exemplar model falls in the “Find diff. btw” column in Figure 1,
so when the relevant dimensions are spread out, categorization is
predicted to be easier. In this perspective, the faster processing that
we observed may be due to increased dimension salience increas-
ing the perceived distance between exemplars, which facilitates an
exemplar-based classification strategy. This exemplar-based expla-
nation tends to be confirmed by the analysis conducted on the
pre-categorization similarity rating task using multi-dimensional
scaling (MDS): Shape was found to be the most salient dimension
for 50 participants, followed by Size as the second most salient
dimension for 32 participants.

In addition to the MDS-based analysis conducted on the pre-
categorization similarity rating task, a simpler non-MDS measure
of dimension salience was assessed by computing the difference in
similarity ratings when the objects shared versus did not share one
feature, which was conducted for each dimension across all trials,
that is 54 subjects× 28 pairs. The pairs were then averaged for each
dimension and when the objects shared versus did not share one
feature, which generated 324 conditions from the 54 subjects× 3
dimensions× 2 shared-feature combination. We found a similar
ranking of the dimensions, with the greatest difference between the
mean dissimilarities (1.9 versus 5.2) for the Shape dimension, 3.9
versus 3.7 for the Size dimension, and 3.4 versus 4.1 for the Color
dimension. The two-way repeated measures ANOVA on the dis-
similarity ratings showed a significant effect of the shared- versus
not shared-feature factor, F(1,53), 371, p < 0.001,η2

p = 0.88, a sig-
nificant effect of the Dimension factor, F(1.7,88.1), 130, p < 0.001,
η2

p = 0.71 (the degrees of freedom were corrected using the
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Greenhouse–Geisser estimates, because the Mauchly’s test indi-
cated that the assumption of sphericity had been violated), and a
significant interaction between the two factors, F(1.7,88.1), 130,
p < 0.001, η2

p = 0.71.

DISTANCE EFFECTS
We then computed the distance between the values of the relevant
dimensions (Between-Clusters Distance) and the distance between
the values of the irrelevant dimension (Within-Cluster Distance).
Following Pothos et al. (2011), who targeted a basic arithmetic
description of the similarity structure in their geometric approach,
distance measures were averaged across all stimulus pairs belong-
ing to a given type of relationship (between clusters, within clus-
ters). Our objective was to focus on the independent contribution
of both types of distances on each of the dependent variables.
The multiple regression on the proportion of errors (computed
by block across participants) against both distances did not lead to
any significant fit [F(2,1235)= 0.4, NS] when the trials taken into
account were restricted to those that preceded the learning crite-
rion. However, when the same analysis was run for the trials that
passed the learning criterion (remember that committing an error
was still possible after the so-called learning criterion), the multiple
regression on the proportion of errors against both distances indi-
cated a significant relation [F(2,165)= 4.2, p= 0.016, R2

= 0.05],
and led to a significant standardized coefficient for the Within-
Cluster Distance (β= 0.218, p= 0.005). The mean proportions of
errors for Within-Cluster Distances equal to 1, 2, or 3 were respec-
tively 0.002, 0.008, and 0.020, indicating that the greatest distance
caused more errors after the learning criterion. Figure 4 (top)
shows this significant increase of classification errors with increas-
ing distance within sub-categories, after participants reached the
learning criterion.

Another multiple regression on the total number of blocks
to reach the learning criterion against both distances led to a
nearly significant standardized coefficient for the Within-Cluster
Distance (β= 0.269, p= 0.051), ending up with a global non-
significant fit [F(2,51)= 2.28, NS]. Figure 4 (middle) shows
the slowing down of concept induction with increasing distance
within sub-categories, although the effect was short of significance
(p= 0.051), likely because of the high standard errors within each
condition and fewer degrees of freedom. In order to increase statis-
tical power for our analysis on the number of blocks, we restricted
the analysis to the two extreme conditions (Within-Cluster Dis-
tance= 1 and Within-Cluster Distance= 3), which correspond to
about 22 and 32 blocks, respectively (we note that a difference
of 10 blocks indicates that a substantial number, 80, more stim-
uli were needed to reach the learning criterion when the distance
within sub-categories was set to 3 relative to 1). By removing the
Within-Cluster Distance= 2 condition, the analysis still fell short
of significance, t (35)= 1.99, p= 0.054.

To summarize, the positive signs of the coefficients (0.218 and
0.269) indicated respectively more errors and more difficult learn-
ing for an increased distance within sub-categories; this confirms
that categorization is hindered when similarities are difficult to
find. The simplified exemplar model that we presented does not
predict these influences of the salience of the irrelevant dimension
on categorization.

FIGURE 4 | Classification performance. Top, shows an increase in the
mean proportion of errors per block, computed for the blocks that passed
the learning criterion, given the distance on the irrelevant dimension (i.e.,
greater dissimilarity within clusters). Middle, shows an increase in the
mean number of blocks to learning criterion, given the distance on the
irrelevant dimension. Bottom, shows a decrease in mean RTs (transformed
by a log function) after the learning criterion was reached, as the distance
increased on the relevant dimensions (i.e., greater dissimilarity between
cluster). Error bars are ±1 SEM.
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Table 1 | Crosstab showing how many times each of the dimensions (Size, Shape, or Color) could be mapped to the MDS results, during the

pre- and post-categorization phases.

Pre-cat task Post-cat (first dim)

? Size Shape Color Total

? 0 1 1 0 2

Size 0 1 1 0 2

First dim Shape 2 1 46 1 50

Color 0 0 0 0 0

Total 2 3 48 1 54

Post-cat (second dim)

? Size Shape Color Total

? 4 5 1 2 12

Size 3 21 2 6 32

Second dim Shape 0 1 0 1 2

Color 4 0 0 4 8

Total 11 27 3 13 54

Metric MDS with interval data was run using SPSS, with three dimensions requested. The ? symbol means that the dimension did not matched any of the Size,

Shape, or Color dimensions.

A last regression carried out on LN(RT) was significant
[F(2,1005)= 7.84, p < 0.001, R2

= 0.02]. Although the effect size
was again small, this result allowed us to address the similarity-
dissimilarity competition issue. This analysis revealed a signif-
icant coefficient for the Between-Cluster Distance (β=−0.112,
p= 0.001), with the negative sign of the coefficient indicating
lower RT as distance on the relevant dimensions increased. This
pattern is predicted by the exemplar model and indicates that
increasing the distance between clusters favors performance and,
therefore, a dissimilarity-based categorization process seems to
override a similarity-based process. The respective means (see
Figure 4, bottom) for the Between-Cluster Distances were equal
to 2 (M = 0.45, SD= 0.49), equal to 4 (M = 0.38, SD= 0.46), or
equal to 6 (M = 0.32, SD= 0.50).

PRE- AND POST-CATEGORIZATION SIMILARITY RATING TASKS
We already mentioned that our MDS analysis showed that 50
participants judged Shape as the most salient dimension in the pre-
categorization similarity rating task. For this pre-categorization
rating task, the mean proportion of the scaled data (RSQ) across
participants was 0.637 (SD= 0.177), with a minimum of 0.059
and a maximum of 0.916. Shape was identified as the first dimen-
sion in the MDS analysis, indicating that it was a more salient
feature and suggests that the distance between two values on that
dimension was perceived as being greater than the distances on the
other dimensions. In the post-categorization task, the same trend
was observed for 48 participants (see Table 1). Here, the mean
RSQ across participants was 0.650 (SD= 0.148), with a minimum
of 0.054 and a maximum of 0.890. One participant switched to
Size, one switched to Color, and the judgment of two others pro-
duced a dimension that did not match any of the three Size, Shape,
or Color dimensions. Conversely, two participants switched to
Shape in the post-categorization task (cf. first crosstab in Table 1,

where those numbers are found in the Shape row and the Shape
column).

Regarding the second most salient dimension, in the pre-
categorization similarity rating task, 12 participants produced
patterns of similarities that could not be mapped to any of the
Size, Shape, or Color dimensions, 32 patterns corresponded to
Size, 2 to Shape, and 8 to Color. During the post-categorization
task, regarding the second most salient dimension, 11 patterns
could not be determined, 27 corresponded to Size, 3 to Shape, and
13 to Color (cf. the crosstab in Table 1).

The categorization phase did not strongly influence the per-
ceived distances during the post-categorization phase, especially
for Shape. Moreover, among those for which there was a change
in the ranking of the dimensions from the pre- to the post-
categorization task, only nine participants judged the dimensions
that were relevant during the categorization task as the most salient
ones in the post-phase on occasions when they were not their spon-
taneous choice during the pre-categorization task (note that this
information cannot be taken out from the crosstabs). This suggests
that the classification task had little effect on what dimension was
judged as salient.

Again, we included a simpler non-MDS measure of dimen-
sion salience based on the difference in similarity ratings when
the objects shared versus did not share a feature, conducted
for each dimension across all trials. Our objective was to see
whether this difference changed from the pre-categorization task
to the post-categorization task, and in particular, if this differ-
ence could be modulated by a Relevant variable (for which we
coded Relevant=“yes” if the dimension was one of the two rel-
evant dimensions, and Relevant=“no” otherwise), first across
all trials. The ANOVA across all trials that included Phase (pre-
versus-post), Relevant, and same Dimension Value (yes versus no,
meaning that a feature was shared versus not shared) as three fixed
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FIGURE 5 | Mean dissimilarity ratings across all trials. Error bars are ±1 SEM.

factors. The analysis showed a significant effect of same Dimen-
sion Value [F(1,9064)= 637, p < 0.001] and a Relevant× same
Dimension Value interaction [F(1,9064)= 4.1, p < 0.05]. We also
averaged the data and run a more appropriate three-way repeated
ANOVA, which showed a significant effect of same Dimension
Value [F(1,53)= 308, p < 0.001, η2

p = 0.85] and, in this condi-
tion, a Phase× same Dimension Value interaction [F(1,53)= 7.5,
p= 0.009, η2

p = 0.12]. Figure 5 shows, for example, that the
dissimilarity rating when two stimuli did not have the same
value on one dimension was the highest when the dimension

was relevant during the categorization phase (first plot, top right
value), whereas the dissimilarity rating was lower when two
stimuli had the same value on a relevant, compared to irrele-
vant, dimension (second plot, bottom right value). This indicates
that the greatest divergence in similarity ratings occurred for
the relevant dimensions, in line with previous research (Kurtz,
1996; Livingston et al., 1998; Goldstone et al., 2001). Dissimi-
larity was increased the most when objects differed on dimen-
sions that were categorization-relevant rather than categorization-
irrelevant. Likewise, similarity was increased the most when
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objects shared category-relevant compared to category-irrelevant
dimension values.

DISCUSSION
Our results suggest that category learning is made slightly eas-
ier when both categories and sub-categories are perceptually
teased apart. This finding presents a challenge for any model
that does not allow for the possibility that the dissimilarity side
(members of separate categories are more dissimilar when teased
apart) sometimes predominates over the similarity side of a cat-
egorization process (members within the same category are less
similar when teased apart). Independently, category learning was
also found slightly more difficult with increased distances within
sub-categories.

Our experiment also included two similarity rating tasks
that led to similarity judgments quite disconnected from cate-
gorization performance. The reason for this disconnect might
be that the similarity rating tasks are not the best method
to assess how stimuli affect concept formation or how stim-
uli are affected by concept formation. For example, our pre-
categorization similarity rating task showed that judgments about
dimensional saliency only slightly affected the difficulty of concept
discovery. Under the hypothesis that participants use hypoth-
esis confirmation strategies (Hovland and Weiss, 1953; Bruner
et al., 1956), Color-irrelevant concepts were perhaps found eas-
ier to use by our participants because Color was judged to be
the least salient dimension. However, Shape (the most salient
dimension) did not modulate the speed with which partici-
pants discovered the Shape-relevant concepts, whereas its saliency
would have been expected to facilitate the discrimination of
the categories. Nevertheless, the post-categorization similarity
judgments showed greater perceived dimension salience that
could have been favored by the discrimination process of the
opposite categories. For example, by computing the mean dis-
similarity ratings separated by relevant and irrelevant dimen-
sions, our last analysis (Figure 5) showed that dissimilarity rat-
ings considerably increased in the post-categorization task when
the stimuli did not share the same dimension values on the
relevant dimensions, a result that was suggested by previous
research (Kurtz, 1996; Livingston et al., 1998; Goldstone et al.,
2001).

We now further discuss the category learning task. Many cate-
gorization models do not share the same assumptions. Tradition-
ally, they are contrasted as active/explicit hypothesis testing versus
passive/implicit stimulus-association, akin to a rule-based versus
exemplar-based category learning process contrast (Estes, 1994;
Ashby et al., 1998; Medin et al., 1993; Hahn and Chater, 1998;
Smith et al., 1998; Ashby and Ell, 2001, p. 5; Hampton, 2001).
As a result, opposite predictions can be made for learning a dis-
junctive concept such as Shepard et al.’s (1961) Type II (which
was administered to participants of the present study), especially
when the sub-categories are teased apart. We made several pre-
dictions based on which category learning process is favored by
individuals (i.e., finding differences between categories or finding
similarities between sub-categories). Our experiment stretched the
two relevant dimensions in a Type II concept, a manipulation that
resulted in more dissimilarity both within and between categories,

thus introducing a similarity-dissimilarity competition. A second
manipulation increased dissimilarities within sub-categories in the
Type II concept by stretching the irrelevant dimension.

To clarify, we consider that seeking similarities between mem-
bers of a category is more typical of a rule-based process. This
process recalls a strategy based on positive information in the clas-
sical view of categorization (Bruner et al., 1956). Effectively, it has
long been thought that the formulation of a rule is mostly based on
describing the category members – not necessarily by opposition
to other categories (one can define a cat without necessarily oppos-
ing cats to dogs or even less to crocodiles). Increasing similarity
might affect the emergence of rules because with greater density,
shorter rules are possible, which reduces the space of hypotheses
(conversely, a greater number of possible rules arises as the num-
ber of features increases). For instance, the concept of cyclops is
quite easy to acquire because the decision boundaries are con-
fined to one-eyed creatures. This is not incompatible with the idea
that categorization rules develop as a result of corrective feedback,
given that both positive and negative feedback can be provided
for someone attempting to define what a cyclops is (for instance,
a yes response for the judicious question “Does a cyclops have
one eye?”). Similarity also simplifies relational concepts: it seems
reasonable to find some similarities between the sub-categories
“white cats” and “black dogs” as you can easily imagine some-
one being sensitive to this limited association of pets and colors.
However, it seems less intuitive to guess that someone has an
exclusive preference for “white pieces in chess” and “black keys
on a piano,” because chess and piano parts are completely unre-
lated domains. On the contrary, an exemplar model simulating the
learning of the Type II model predicts poorer performance when
there are more similarities among between-category clusters, pri-
marily because of the corollary decrease in dissimilarities between
opposing categories. This opposition between the models is con-
sistent with previous observations that a rule-based model (e.g.,
General Recognition Theory) better describes categorization with
closer stimuli, whereas an exemplar model (e.g., General Con-
text Model) better describes categorization with distinct stimuli
(Rouder and Ratcliff, 2004, p. 78).

Our main result is that increased distances on the relevant
dimensions (1) facilitate the use of a Type II concept (Figure 4,
bottom panel), suggesting that participants relied more on using
dissimilarities between opposite categories than using similarities
between sub-categories. This result corroborates the prediction
made by the exemplar model. However, we also found that increas-
ing the distance within sub-categories tends to: (2) slow concept
discovery (Figure 4, middle panel) – although the effect fell short
of significance; and (3) lead to more classification errors after
participants reached our learning criterion (Figure 4, top panel).
Although we supposed that the concept was solidly acquired after
two consecutive blocks, this was not the case when the distance
within sub-categories was the highest. This last result rather points
to a rule-based account for which diminished similarities within
sub-categories hinders learning. A basic exemplar model is not
able to fit this particular result.

A possible conclusion is that the contrasting of categories
is not the only favored process by which separable categories
are acquired, but that comparing and abstracting the features
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within-category also matters. Such a conclusion follows other
research on the influence of item juxtapositions on learning (Ham-
mer et al., 2009; Andrews et al., 2011). This would support the
idea that there is a tendency for humans and animals to read-
ily group together things that look alike (Urcuioli, 2001). This
conclusion also supports the observation that presenting succes-
sive exemplars by category (i.e., blocking) can sometimes result
in better learning, in opposition to interleaving exemplars of dif-
ferent categories, although it is more correct to say that category
structure modulate interleaving and blocking advantages (Gagné,
1950; Clapper and Bower, 1994; Goldstone, 1996; Kornell and
Bjork, 2008; Mathy and Feldman, 2009; Carvalho and Goldstone,
2012). However, although there were different theoretical justifi-
cations for predicting that increasing distances between clusters
in a Type II categorization would either make the categoriza-
tion harder or easier, our experimental design still has limitations.
In particular, our results are likely not entirely independent of
the set of stimuli that were used. There might well be situations
when similarity and dissimilarity are not simply linearly related
to the physical dimensions, and it might be difficult to predict
which of two opposing effects wins out. Future studies could
directly target the same experimental design with different stim-
uli using finer parametric control over dimensional similarity.
It is possible that future such experiments would reveal non-
monotonic influences of dimensional similarity on categorization
accuracy.

One promising model that would account for influences of both
within- and between-cluster similarity on categorization accuracy
is SUSTAIN (Love et al., 2004). The results do not necessarily
require a hybrid model that includes distinctly separable processes
for rule-based and exemplar categorization (e.g., Nosofsky et al.,
1994b; Smith and Sloman, 1994; Erickson and Kruschke, 1998;
Anderson and Betz, 2001; Rosseel, 2002). SUSTAIN occupies a
position between exemplar models that encode every observed
example from all presented categories and prototype models
that summarize a category by a single central tendency. SUS-
TAIN assumes that categories are represented by a set of clusters
which capture regularities both within and between categories. For
example, when learning a rule-plus-exception category, SUSTAIN

creates one cluster to capture the rule-following items and a sep-
arate cluster to capture the exception. New clusters are recruited
based on the ability of existing clusters to accommodate presented
items. In the case of a XOR categorization, two clusters would be
created per category. Within each of the clusters, increasing the
psychological distance between items hurts categorization effi-
ciency because the recruited cluster centroid will fit the items
within the cluster less closely. At the same time, increasing the psy-
chological distance between clusters helps categorization efficiency
because SUSTAIN will more easily establish separate cluster encod-
ings for the separate clusters of the XOR problem. For models
like SUSTAIN that create separate representations for the different
sub-clusters that comprise the XOR category (see also the Rational
Model of categorization of Anderson, 1991), the easiest categories
to learn will be those that have the highest similarity within the
clusters and the greatest separation between clusters – exactly the
trends identified by our results.

Generalizing beyond specific models of categorization, our
results emphasize the importance of going beyond a simple
characterization of categorization difficulty in terms of within-
and between-category similarity. Researchers have previously
described categorization as being made increasingly difficult as
a function of between-category similarity and increasingly easy as
a function of within-category similarity (e.g., Rosch and Mervis,
1975; Goldstone, 1996). Our results suggest that this generaliza-
tion should be made more nuanced. Within-category similarities
can both hinder and help categorization. In particular, within-
category similarities that allow tighter sub-categories to form can
benefit categorization, but within-category similarities also can
hinder categorization if they lead to confusing separate clusters
that must remain identifiably different if the category is to be
successfully acquired.
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