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We propose that free viewing of natural images in human infants can be understood
and analyzed as the product of intrinsically-motivated visual exploration. We examined
this idea by first generating five sets of center-of-gaze (COG) image samples, which
were derived by presenting a series of natural images to groups of both real observers
(i.e., 9-month-olds and adults) and artificial observers (i.e., an image-saliency model,
an image-entropy model, and a random-gaze model). In order to assess the sequential
learnability of the COG samples, we paired each group of samples with a simple recurrent
network, which was trained to reproduce the corresponding sequence of COG samples.
We then asked whether an intrinsically-motivated artificial agent would learn to identify
the most successful network. In Simulation 1, the agent was rewarded for selecting
the observer group and network with the lowest prediction errors, while in Simulation
2 the agent was rewarded for selecting the observer group and network with the
largest rate of improvement. Our prediction was that if visual exploration in infants is
intrinsically-motivated—and more specifically, the goal of exploration is to learn to produce
sequentially-predictable gaze patterns—then the agent would show a preference for
the COG samples produced by the infants over the other four observer groups. The
results from both simulations supported our prediction. We conclude by highlighting
the implications of our approach for understanding visual development in infants, and
discussing how the model can be elaborated and improved.
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INTRODUCTION
Within minutes of birth, human infants open their eyes and begin
to explore the visual world (Slater, 2002). Although neonates
lack visuomotor experience—and their visual acuity is poor—
their eye movements are not random (Fantz, 1956; Haith, 1980).
Instead, infants’ gaze patterns are organized in a manner that
facilitates the discovery and learning of relevant visual features
and objects, such as the caretaker’s face (e.g., Maurer and Barrera,
1981; Bushnell et al., 1989; Morton and Johnson, 1991).

With additional experience, infants not only gain further con-
trol over their eye movements, but their gaze patterns also con-
tinue to develop. For example, during the first month after birth,
infants tend to limit their scanning to a small portion of an image
(Bronson, 1982, 1991). By age 3 months, however, infants pro-
duce gaze patterns that are more systematically distributed over
visual scenes. During the same age period, comparable changes
also occur in a number of other related visual skills, such as
maintaining fixation of a target object in the presence of distract-
ing stimuli, as well as selecting informative regions of the visual
scene to fixate and encode (e.g., Johnson et al., 2004; Amso and
Johnson, 2005).

There have been several important advances in the study of
infants’ gaze patterns. One approach leverages the tendency for

infants to orient toward salient, predictable events, and in particu-
lar, events that are contingent on infants’ own actions (e.g., Haith
et al., 1988; Kenward, 2010). For example, Wang et al. (2012)
recently developed a gaze-contingent paradigm in which infants
quickly learned to anticipate the appearance of a picture that was
“triggered” by first fixating an object at another location. This
work highlights the fact that infants’ visual-activity is prospective
and future-oriented.

A second advance is the use of image free-viewing methods,
which record and analyze infants’ eye movements as they view a
series of images or video clips, often including naturalistic scenes
(e.g., Aslin, 2009; Frank et al., 2009, 2012). In contrast to methods
that present an implicit task to the infant, such as comparing two
images or locating a target object, image free-viewing is compar-
atively less-constrained, and may more accurately reflect not only
infants’ spontaneous gaze patterns, but also the process of infor-
mation pickup and learning that occurs in real time during visual
exploration. While early work using image-free viewing tended
to rely on somewhat coarse analytical methods, such as compar-
ing time spent viewing specific regions of interest (ROIs; e.g.,
Bronson, 1982, 1991), more recent work in this area has employed
relatively sophisticated quantitative methods. For example, Frank
et al. (2009) computed the frame-by-frame image saliency of a
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short animation clip (i.e., “A Charlie Brown Christmas”), and
then compared infants’ attention to faces in the clip vs. their atten-
tion to high-salience non-face regions. A key finding from their
analysis was that at age 3-months, infants’ gaze patterns were
more strongly influenced by salience than by social stimuli such as
faces; however, by age 9 months, this pattern reversed, and infants
oriented reliably to faces.

Finally, the approach we propose here represents a third
advance. In particular, there are several recent models that suc-
cessfully capture the kinematic properties of infants’ gaze pat-
terns during conventional tasks, such as preferential looking,
gaze following, and visual search (e.g., Schlesinger et al., 2007;
Triesch et al., 2007; Perone and Spencer, 2013). However, to our
knowledge, our model is the first attempt to apply incremen-
tal, adaptive-learning methods (i.e., artificial neural networks and
reinforcement learning) as a computational tool for analyzing
infants’ gaze patterns during image free-viewing.

Specifically, we propose that in addition to analyzing the spa-
tial distribution and timing of infants’ gaze patterns, the sequen-
tial content of their fixations during image free-viewing may also
provide an important source of information. In particular, the
sequence of fixations produced by an observer can be interpreted
as a series of high-resolution visual samples, each centered at the
corresponding gaze point (i.e., center-of-gaze or COG samples;
Dragoi and Sur, 2006; Mohammed et al., 2012). As a form of
exploration in the visual modality, these COG samples are sim-
ilar to the tactile data generated by structured hand and finger
movements during haptic object exploration (i.e., exploratory
procedures or EPs; Klatzky and Lederman, 1990), insofar as dif-
ferent sampling patterns are the result of different exploration
strategies.

In this paper, we propose that infants’ gaze patterns during
image free-viewing are a form of visual exploration, and that the
sequential structure embedded within these patterns can be ana-
lyzed with the theoretical framework of intrinsic motivation. More
specifically, we suggest that:

Learning objective 1: over the short term (i.e., real time), the
goal of visual exploration is to accurately predict the content of
the next fixation (i.e., the subsequent COG sample), given the
current fixation together with the history of recent fixations.
Learning objective 2: superimposed on the timescale of learn-
ing objective 1, a longer-term goal of visual exploration is to
learn how to generate sequentially learnable gaze patterns, that
is, to learn how to scan images or scenes such that the resulting
set of COG samples is sequentially predictable.

Learning objective 1 is predicated on the idea that prediction-
learning and future-oriented actions are pervasive characteristics
of infant development (e.g., Haith, 1994; Johnson et al., 2003; von
Hofsten, 2010). In addition, a related mechanism that may under-
lie prediction-learning is the detection of statistical patterns or
regularities in the environment, such as those in linguistic input
or natural scenes (e.g., Field, 1994; Saffran et al., 1996). However,
a unique aspect of our proposal is that, rather than passively
observing sensory patterns in the external world, infants may

also contribute to the process of pattern detection by embedding
structure in their own exploratory behavior.

The rationale for learning objective 2, meanwhile, is that in
addition to acquiring specific skills, such as learning to grasp
or walk, infants also engage in behaviors that seem to have no
explicit purpose, such as babbling or playing with blocks. In other
words, intrinsically-motivated behaviors are done simply for the
sake of learning (Oudeyer and Kaplan, 2007; Baldassarre and
Mirolli, 2013; Schlesinger, 2013). This contrasts with extrinsically-
motivated behaviors, which have a clear and (typically) biological
benefit, such as obtaining food, rest, or sex (Baldassarre, 2011).

By this view, we argue that visual exploration serves two
developmental functions. First, at the moment-to-moment level
(learning objective 1), infants learn to discover and predict the
particular statistical regularities of the images and scenes they
are scanning (e.g., moving objects tend to remain on contin-
uous trajectories, natural scenes are typically illuminated from
above, “angry” eyes tend to co-occur with a frowning mouth,
etc.). Second, and over a longer timescale (learning objective 2),
infants are also “learning to learn,” that is, their scanning strate-
gies are refined, and in particular, infants are improving in their
ability to detect and attend to relevant visual features. In our
model, we conceptualize this second-order learning process as an
intrinsically-motivated artificial agent, which observes the perfor-
mance of five scanning strategies, and is rewarded for selecting
the strategy that produces the lowest (or most rapidly falling)
prediction errors.

In order to pursue the first learning objective, we assigned
five unique sets of COG samples to each of five simple recur-
rent networks (SRNs). We selected the SRN architecture as a
computational tool for two specific reasons. First, it serves as
a proxy for the statistical-learning mechanism noted above. In
particular, it is well-suited to detecting regularities or statisti-
cal dependencies within temporal sequences of input. Second,
we also exploited SRNs as a means to measure the relative pre-
dictability of the sequences produced by the observer groups.
Specifically, the training errors produced by the SRN provide
a straightforward metric for assessing learnability of the COG
samples.

Each set of COG samples was generated by a different group
of real or artificial observers: 9-month-olds, adults, an image-
saliency model, an image-entropy model, and a random-gaze
model. The task of each SRN is to learn to reproduce the sequence
of COG samples produced by its corresponding group. We then
pursued the second learning objective by creating an intrinsically-
motivated artificial agent, which selects among the five SRNs as
they are trained, and is rewarded for either selecting the SRN with
the lowest errors (Simulation 1), or the SRN that learns the fastest
(Simulation 2). We return to this issue below, where we describe
the specific reward functions used to evaluate the choices of the
intrinsically-motivated agent.

We reasoned that each group of real or artificial observers col-
lectively represents a distinct scanning pattern or strategy, and as
a result, the COG samples generated by each group should be dif-
ferentially learnable. In addition, given our proposal that infants’
visual exploration is specifically geared toward the goals of (1)
sequential predictability and (2) optimal prediction-learning, we
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therefore, hypothesized that the COG samples produced by 9-
month-olds would be selected first by an intrinsically-motivated
agent, whether the reward function is based on learning errors
(Simulation 1) or change in the rate of learning (Simulation 2).
We also predicted that as reward diminishes in Simulation 2 (i.e.,
as learning of the infants’ COG samples asymptotes), the agent
should then shift its preference from the infants’ COG samples
to the adults’ samples. This was an exploratory prediction, based
on the assumption that adults’ gaze patterns are not only influ-
enced by sequential learnability (like infants), but that they are
also informed by the observer’s history of goal-directed activity
(e.g., Shinoda et al., 2001; Hayhoe and Ballard, 2005).

The rest of the paper is organized as follows. We first describe
the set of images presented to the five groups of observers, as well
as the procedure used to acquire the gaze data from the human
observers. We also describe the design of the three groups of arti-
ficial observers, and the analogous procedure used to generate the
gaze data from each of these groups. We conclude this section by
explaining how the gaze data were used to generate COG sam-
ples. In the next section, we then describe the architecture and
learning algorithms used in the SRN prediction networks (PNs)
and the intrinsically-motivated agent. Following this, we present
Simulation 1, in which the artificial agent vicariously explores the
COG samples by selecting among the five SRNs, and learns by
trial-and-error to find the SRN with the lowest prediction errors.
Next, in Simulation 2 we present the findings of a closely-related
reward function, in which the agent is rewarded for finding the
SRN with the fastest learning progress (i.e., the largest decline in
the error rate over successive training epochs). In the final section,
we relate our findings to the development of visual exploration in
infants, and describe some ways to address the limitations of our
current modeling approach.

MATERIALS
TEST IMAGES
Sixteen naturalistic, color images were used as stimuli for col-
lecting eye movements, including 8 indoor and 8 outdoor scenes.
One or more people were present in each image; in some images,
the people were in the foreground, while in others they were in
the background. Figure 1 presents 4 of the 16 test images. The
infant and adult observers were presented with the test images
at the original image resolution (1680 × 1050 pixels), while the

FIGURE 1 | Four of the test images.

artificial observers were presented with downscaled versions of
the images (480 × 300 pixels). As we note below, all of the
infant and adult fixations were rescaled to the lower resolution,
so that real and artificial observers’ gaze data could be directly
compared.

OBSERVER GROUPS
Real Observers
Eye-movement data were collected from 10 adults and 10 9-
month-olds infants (mean ages = 19 years and 9.5 months,
respectively). Except where noted, a comparable procedure was
used for testing both adult and infant participants. All partici-
pants provided either signed consent for the study, or in the case
of the infants, assent was provided by the infants’ parents.

Participants sat about 70 cm from a 22′′ (55.9 cm) monitor.
Infants sat in a parent’s lap. Eye movements were recorded using
a remote eye tracker (SMI SensoMotoric Instruments RED sys-
tem). In addition, a standard digital video camera (Canon ZR960)
was placed above the computer screen to record children’s head
movements. All calibration and task stimuli were presented using
the Experiment Center software from SMI. Before beginning the
task, point-of-gaze (POG) was calibrated by presenting an attrac-
tive, looming stimulus in the upper left and lower right corners
of the screen. The same calibration stimulus was then presented
in the four corners of the screen in order to validate the accuracy
of the calibration.

We eye tracked participants as they freely scanned 16 color
photographs depicting both indoor and outdoor scenes (see
Figure 1 for examples; for a comparable procedure, see also Amso
et al., 2013). All images were presented for 5 s and spanned the
entire display. The order of image presentation was randomized.
A central fixation target was used to return participants’ POG to
the center of the screen between images.

Artificial Observers
The purpose of creating the artificial observers was to generate a
set of synthetic gaze patterns, in which the underlying mechanism
driving gaze from one location to the next was known in advance.
In addition, the three groups of artificial observers also provide
a well-defined baseline for comparison with the infant and adult
observers (see Frank et al., 2009, for a similar approach).

Saliency model. The saliency model was designed to simulate an
artificial observer whose gaze pattern is determined by bottom-
up visual features, such as edges or regions with strong light/dark
contrast. In particular, each test image was transformed by first
creating three feature maps (tuned to oriented edges, luminance,
and color contrast, respectively), and then summing the feature
maps into a saliency map. We then used each saliency map to
generate a series of simulated fixations.

1. Feature maps. The original images were first downscaled to
480 × 300. Next, each image was passed through a bank of
image filters, resulting in three sets of feature maps: 4 ori-
ented edge maps (i.e., tuned to 0◦, 45◦, 90◦, and 135◦), 1
luminance map, and 2 color-contrast maps (i.e., red-green and
blue-yellow color-opponency maps). In addition, this process
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was performed over 3 spatial scales (i.e., to capture the pres-
ence of the corresponding features at high, medium, and low
spatial frequencies), by successively blurring the original image
and then repeating the filtering process [for detailed descrip-
tions of the algorithms used for each filter type, refer to Itti
et al. (1998) and Itti and Koch (2000)]. As a result, 21 total
feature maps were computed for each test image.

2. Saliency maps. The saliency map was produced by first nor-
malizing the 21 corresponding feature maps, and then sum-
ming them together. For the next step (simulating gaze data),
each saliency map was downscaled to 48 × 30. These result-
ing maps were then normalized, by dividing each map by
the average of the highest 100 saliency values from that
map. Figure 2 illustrates the saliency map (left image) for
one of the outdoor scenes (compare with the original image
in Figure 1).

3. Simulated gaze data. In order to equate the mean num-
ber and frequency of gaze shifts across the real and artificial
observers, the gaze data of the infants and adults were pooled,
and the corresponding values were computed. This resulted
in a mean of 13 fixations per image, and a mean latency of
300 ms between fixations. For the artificial observers, the sim-
ulated timestep was 33 ms per processing cycle (i.e., 30 updates
per second). These values were then used as fixed parame-
ters for the artificial observers. A single trial was simulated
by iteratively updating a fixation map—which is the difference
between the saliency map and a decaying inhibition map (see
below)—and selecting a location on the fixation map every
300 ms. Note that the inhibition map served as an analog for
an inhibition-of-return (IOR) mechanism, which allowed the
saliency model to release its gaze from the current location and
shift it to other locations on the fixation map.

Each trial began by selecting the initial fixation point at ran-
dom. Next, the inhibition map was initialized to 0, and a 2D
Gaussian surface was added to the map, centered at the current
fixation point, with an activation peak equal to the value at the
corresponding location on the saliency map. Over the subsequent
300 ms, activity on the inhibition map decayed at a rate of 10%
per timestep. At 300 ms, the next fixation point was selected: (a)
the fixation map was updated by subtracting the inhibition map
from the saliency map (negative values were set to zero), (b)
the top 100 values on the saliency map were identified, and (c)

FIGURE 2 | Examples of corresponding saliency and entropy maps (left

and right images, respectively) used to simulate gaze patterns in the

artificial observer groups (compare to original image in Figure 1). The
color legend on the right illustrates the range of possible values for
each map.

the saliency value at each of these locations was converted to a
probability using the softmax function:

Probability of selection = es/τ/

100∑

i = 1

esi/τ (1)

where s is the given saliency value, and τ is the temperature
parameter (fixed at 1). One of these 100 locations on the fix-
ation map was then chosen stochastically, as a function of the
corresponding probability values.

This process of updating the inhibition and fixation maps and
selecting a new fixation point continued until 13 fixations were
performed. The gaze data for 10 artificial observers from the
saliency group were then simulated by sweeping through the set
of 16 images, once per each observer, and then repeating the
process 10 times. It is important to note that repetitions of the
simulation process over the same image resulted in distinct gaze
patterns, due not only to randomization of the initial fixation,
but also to stochasticity in the procedure for selecting subsequent
fixations.

Entropy model. The entropy model simulated an artificial
observer whose gaze pattern is determined by image “informa-
tion,” that is, by the presence of structured or organized visual
patterns within the image (e.g., Raj et al., 2005; Lin et al., 2010).
As a proxy for information, image entropy was estimated for each
image. In particular, image entropy reflects the computational
cost of compressing an image, based on the frequency of repeated
pixel values. The function used for computing image entropy was:

Image entropy = −
256∑

i = 1

pi ∗ log2(pi) (2)

where the original image is converted to grayscale, pixel values are
sorted over 256 bins, and p represents the proportion of pixels in
each bin.

1. Entropy maps. Comparable to the saliency maps, the entropy
maps were produced by first downscaling the original images
to 480 × 300 and then converting them to grayscale. Note that
the image entropy function produces a single scalar value over
the entire image. Thus, the entropy map was produced by
sweeping an 11 × 11-pixel window over the grayscale image,
and replacing the pixel value at the center of the window
with the corresponding entropy value for that 11 × 11 square.
Figure 2 illustrates the entropy map (right image) for one
of the outdoor scenes (compare with the original image in
Figure 1).

2. Simulated gaze data. Once the entropy maps were computed
for the set of 16 test images, they were then downscaled a sec-
ond time and normalized, using the same process as described
above for the saliency maps. Finally, gaze data for 10 simu-
lated observers were generated, also using the same procedure
as described above.
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Random model. The random model was designed as a con-
trol condition, to simulate the gaze pattern of an observer who
explored the test images by following a policy in which all loca-
tions are equally-likely to be selected. Thus, no maps were pro-
duced for this group. Instead, 2080 x- and y-locations were chosen
at random (i.e., 13 fixations × 16 images × 10 observers).

Descriptive statistics. We briefly compare here the gaze data
produced by each of the five observer groups. In all cases, note
that because the random group provides a baseline estimate of
performance at chance level, the results from this group are plot-
ted in Figure 3 as dotted lines (rather than as bars). Figure 3A
presents the results of projecting each observer group’s fixations
onto the saliency and entropy maps, respectively, and then com-
puting the average saliency (blue bars) and entropy values (red
bars) for the corresponding fixation locations. This analysis pro-
vides a measure of the relative influence of saliency vs. entropy
for each group’s scan patterns. In particular, higher mean val-
ues reflect a tendency to orient toward regions in the image with
higher levels of saliency and/or entropy, respectively (recall that
the values on each map were normalized between 0 and 1). Note
that the upper dashed line in Figure 3A represents the mean nor-
malized entropy produced by the random observer group, while
the lower dashed line represents mean normalized saliency for the
same group.

There are three important results. First, as expected, the
saliency and entropy observer groups produce near-maximal val-
ues (i.e., 90%) for their respective maps. Second, for both infants
and adults, the gaze patterns resulted in higher mean levels of
entropy than salience. Third, even for the random group, the same
pattern was also true. As Figure 2 suggests, this may be due to dif-
ferences in how saliency and entropy are distributed over each
image—that is, saliency was sparsely distributed while entropy
was relatively broadly distributed.

In addition, Figures 3B–D present the results of three kine-
matic measures. First, Figure 3B plots the mean dispersion of

FIGURE 3 | Comparison of gaze patterns across the 5 observer groups

(see text for details). (A) Mean map values calculated by projecting each
group’s gaze points on to the saliency (blue) and entropy (red) maps,
respectively; (B) mean dispersion (spread) of fixations; (C) mean gaze shift
distance; and (D) mean proportion of revisits. Dashed lines represent
performance of the random observer group.

fixations for each group. Dispersion was computed by first cal-
culating the centroid of the fixations (i.e., the mean fixation
location) within each trial, and then calculating the mean distance
of the fixations within that trial from the centroid. As Figure 3B
indicates, infants tended to have the least-disperse gaze patterns,
followed by adults. Interestingly, the dispersion of fixations pro-
duced in the saliency observer group was nearly the same as the
random observer group.

Next, Figure 3C presents the mean gaze shift distance for
each group. This distance was calculated by computing how far
the fixation point traveled (in pixels) from each fixation to the
next. Like the previous result, infants produced the shortest gaze
shift distance, again followed by adults. Similarly, the saliency
observer group produced gaze shift distances similar to the ran-
dom observer group, while the entropy observer group had gaze
shift distances that fell midway between the real and artificial
observers.

Finally, Figure 3D presents the mean revisit rate for each
observer group. Revisit rate was estimated by first creating a null
frequency map (a 480 × 300 matrix with all locations initial-
ized to zero). Next, for each fixation, the values within a 41 × 41
square (centered at the fixation location) on the frequency map
were incremented by 1. This process was repeated for all of the fix-
ations within a trial, and the frequency map was then divided by
the number of fixations. For each trial, the maximum value from
this map was recorded, reflecting the location in the image that
was most frequently visited (as estimated by the 41 × 41 fixation
window). The maximum value was then averaged across trials and
observers within each group, providing a metric for the peak pro-
portion of fixations that a particular location in each image was
visited, on average. As Figure 3D illustrates, a key finding from
this analysis is that infants have the highest revisit rate (nearly
50%), while all three of the artificial observer groups have the
lowest rates.

COG IMAGE SAMPLES
To maintain tractability of the training set for the SRNs, we ran-
domly selected 20 trials from each group of observers. Selection
was subject to several constraints, including: (1) within a group,
each observer contributed 2 trials (i.e., gaze data for 2 images),
and (2) selection of the corresponding images was counterbal-
anced both within observer groups and across the 16 images (each
image was selected as equally-often as possible across groups).
Once the specific trials/images were selected for each group, the
gaze data (i.e., sequences of fixation points) were then used to
generate the COG training stimuli.

Specifically, for a given observer and trial, a 41 × 41 grayscale
image—centered at the first fixation point—was sampled from
the corresponding test image. The dimensions of the COG sample
were derived from the display size and viewing distance of the live
observers, and correspond to a visual angle of 1.6◦, which falls
within the estimated range of the angle subtended by the human
fovea (Goldstein, 2010). This sampling process continued for the
second fixation point, and so on, until the number of fixations for
that observer and trial was reached. The process for obtaining the
COG samples for a single trial was then repeated through each of
the five observer groups, resulting in 20 trials of COG samples per
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FIGURE 4 | Illustration of the COG samples produced during a single

trial with test image 4, in the infant (A), adult (B), saliency (C), and

entropy (D) observer groups (non-fixated areas are darkened).

group (with an average of 13 samples per trial, or approximately
260 samples per group).

To help illustrate how a typical set of COG samples appears
in relation to its corresponding test image, Figure 4 presents the
samples produced during a single trial (with test image 4), in
the infant, adult, saliency, and entropy observer groups, superim-
posed on to the respective test image. Consistent with Figure 3B,
note that the infant’s fixations tend to fall into two spatial clusters,
while the adult’s fixations are more disperse.

MODEL ARCHITECTURE AND LEARNING ALGORITHMS
Figure 5 illustrates an overview of the model architecture, which
implements a conventional reinforcement-learning model layered
over a bank of recurrent neural networks. We first provide here a
general description of the six major processing steps in the model,
and present below a more-detailed description of the PNs and the
intrinsically-motivated artificial agent (IM agent).

The IM agent learns over a series of discrete episodes. At
the start of each episode (Figure 5A, step 1), the IM agent first
selects one of the five observer groups. This choice is intended
to represent an analog for presenting an image to an observer,
who then explores the image by choosing from a set of dis-
tinct gaze or scanning “strategies” (alternatively, these strategies
could be described as learning goals, behavior or action pat-
terns, etc.). In particular, the IM agent has no direct knowledge
of how each strategy is designed or how it operates. Rather, the
IM agent bases its decision simply on the current set of Q-values
for the set of five choices, which each estimate the long-term
sum of rewards expected to result from selecting the correspond-
ing choice. Once one of the gaze-pattern strategies (i.e., observer
groups) is selected, the COG samples from the corresponding
group of observers are retrieved. For example, in Figure 5A, the
IM agent selects the adult observer group (step 2).

At the next processing step, the 20 sets of COG samples (from
the selected observer group) are then presented to the corre-
sponding SRN (step 3; note that only 1 of the 20 sets is illustrated
here). In particular, we implement a bank of five SRNs, each of
which is devoted to a single observer group, in order (a) to main-
tain learnability estimates of all five groups in parallel, and (b)
to avoid the risk of catastrophic interference by training a single
network on the COG samples from all five groups. We refer to

FIGURE 5 | (A) Illustration of the processing pathway through the model
during a single episode, and (B) architecture of the prediction networks
(PNs).

the SRNs as PNs, as they are explicitly trained to reproduce the
series of 41 × 41 samples, one at a time. In the case of Figure 5,
one of the 20 COG sample sets is selected at random from the
adult observer group, and the first sample from this set is pre-
sented to PNadult. The output of the network is its “prediction”
of the second sample (properly speaking, since training is offline,
i.e., after the samples were collected, the PN learns to reproduce a
sequence that is iteratively presented). After each output, a train-
ing signal is computed using backpropagation-of-error and used
to adjust the PN’s connection weights. This continues until all of
the COG samples in the observer group have been presented to
the PN (step 4).

At step 5, the average prediction error for the previous train-
ing sweep is computed, and then transformed into a scalar reward
value. As we highlight below, we investigate two reward functions:
reward based on the magnitude of error (i.e., reward is inversely
related to error), and reward based on learning progress (i.e.,
reduction in error over two consecutive sweeps through the COG
samples in an observer group). During the final processing step
(6), the new reward value is used to update the set of Q-values,
and the IM agent makes its next selection.

PREDICTION NETWORKS
Each PN is a standard 3-layer Elman network, with recurrent
connections from the hidden layer back to the input layer (i.e.,
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context units; Elman, 1990). In particular, the PN implements
a forward model, in which the current sensory input (plus a
planned action) is used to generate a prediction of the next
expected input (e.g., Jordan and Rumelhart, 1992). Prior to train-
ing the PN, each of the COG samples is converted to grayscale
values between 0 and 1. As Figure 5B illustrates, the input layer
is composed of 2083 units, including a vector of 1681 units that
encode the grayscale pixel values of the COG sample, 2 units that
encode the (normalized) x- and y-coordinates of the upcoming
COG sample, and 400 context units (which copy back the activity
of the hidden layer from the previous time step). There are 400
units in the hidden layer (i.e., roughly 75% compression of the
input) and 1681 output units.

All connections in the PN are initialized with random val-
ues between 0 and 1, which are then divided by the number of
incoming units (i.e., fan-in). For each simulation run, the same
PN is cloned five times, so that all five PNs begin with the same
set of initial connection weights. As noted above, each PN is
presented with only the COG samples from its corresponding
observer group. Once an observer group is selected by the IM
agent, the 20 COG sample sets are then presented to the appro-
priate PN in random order. Recall that each set of COG samples
represents the gaze data from a single observer and a single trial.
In order to remove the influence of previous trials on the context
layer activation, the units in the context layer of the PN are ini-
tialized to 0.5 at the start of each trial. A single training epoch is
defined as a sweep through all 20 trials.

Prediction error is measured as the root mean-squared error
(RMSE), computed over the difference between each predicted
and observed next COG sample, and then averaged over the entire
trial. Mean trial errors are then averaged together over the 20 tri-
als; this value represents the mean prediction error for the IM
agent’s current episode, and is used to compute the reward signal.

IM AGENT
The IM agent simulates a naïve, active observer that is reinforced
for visually exploring its environment. As Figure 5 illustrates, the
IM agent is provided with the opportunity to select among five
predefined sets of visual samples and a corresponding PN, each
of which represents (ostensibly) a unique scanning experience
and learning episode over the set of 16 test images. After each
selection, the IM agent receives a reward signal as feedback that
is proportional—not to the content or the quality of the cho-
sen gaze samples per se—but rather, to the relative success of the
chosen PN in predicting the resulting sequence of COG samples.
In other words, the IM agent is rewarded for choosing the set of
COG samples (i.e., a pattern of visual exploration) that is learned
optimally.

In principle, defining an exploration reward on the basis of
learnability runs the risk of generating an unintended outcome.
For example, one way to maximize the performance of the PN is
to hold the fixation point constant, that is, to continue looking at
the same location. Such a strategy, however, also provides limited
visual information (i.e., it maximizes prediction but minimizes
exploration). At the other extreme, a completely random gaze
sequence may be highly informative, but difficult, if not impos-
sible to predict. Given the putative goal of visual exploration,
therefore, a reasonable trade-off is to select a gaze sequence that is

both informative and predictable (i.e., varied but also systemati-
cally structured). We therefore, note here that linking the reward
function to prediction learning captures an important dimen-
sion of visual exploration, but that other facets such as novelty
are also likely to play a role (for a comprehensive discussion of
knowledge-based vs. competence-based approaches to intrinsic
motivation, see Oudeyer and Kaplan, 2007, and Baldassarre and
Mirolli, 2013).

Because the actions selected by the IM agent are influenced by
the performance of the PNs, there are effectively two timescales:
an “inner loop,” which is defined as presenting the selected PN
with the COG samples from a single trial, and the “outer loop,”
which is a single episode and is defined as the IM agent’s selec-
tion of an observer group, a training epoch of the corresponding
PN, the generation of an intrinsic reward signal, and the updat-
ing of the IM agent’s Q-values (as illustrated in Figure 5). For
both Simulations 1 and 2, therefore, a single simulation run
included 500 iterations of the outer loop (i.e., episodes). In addi-
tion, recall that during each iteration of the outer loop, there were
20 iterations of the inner loop for the selected PN.

As we highlight below, the objective or reward function that
we implemented was varied across simulations. In Simulation 1,
the reward was defined as:

rt = 1 − Errort (3)

where rt is the reward received for the tth iteration of the outer
loop, and Errort is the mean error produced by the PN selected
during iteration t. This function therefore, rewards the IM agent
for selecting the observer group with the lowest prediction errors
(compare to “predictive novelty,” i.e., Equation 9 in Oudeyer and
Kaplan, 2007). In contrast, during Simulation 2 the reward func-
tion was defined as the percent change in prediction error over
two consecutive iterations of the inner loop:

rt = (Errort − 1 − Errort)/Errort − 1

where Errort is defined as in Equation (3), and Errort − 1 repre-
sents the corresponding mean error from the previous iteration.
Note that in this case, each time a PN was selected, it was trained
for two consecutive epochs before the IM agent received a reward.

Two steps were implemented to ensure that the IM agent suf-
ficiently explored each of the five observer groups. First, at the
start of each simulation run, the IM agent’s Q-values were ini-
tialized optimistically, that is, they were set to initial values higher
than were expected to occur during learning. Second, the Softmax
function [see Equation (1)] was used for action selection, which
provided an additional source of stochasticity and variability into
the IM agent’s choice of observer group.

After selecting an observer group and receiving a reward for
the selection, the IM Agent’s Q-value for that group was updated.
The update rule implemented was:

Qt = Qt − 1 + α(rt − Qt − 1) (4)

where Qt − 1 is the Q-value for the selected observer group before
the most recent iteration of the inner loop, and Qt is the new,
updated value after the iteration. Finally, α represents the learning
rate, which was fixed for each simulation.
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SIMULATION 1
In Simulation 1, the IM agent vicariously explored the 16 test
images by repeatedly selecting from a set of COG samples, each
of which captured the process of scanning the images in either
real or simulated real time. After each selection, the IM agent then
received a reward which represented the relative ease or difficulty
of sequentially predicting the selected gaze samples. In particular,
the IM agent received a larger reward when it picked a set of COG
samples that were “easily” learned (i.e., that resulted in compara-
tively lower prediction errors), while the scalar reward was lower
when the COG samples (and the corresponding PN) produced
higher prediction errors. Our primary prediction was that, given
the assumption that infants are mastering the skill of visual explo-
ration, the COG samples produced by the 9-month-olds would
be the most predictable, and therefore, the IM agent would prefer
samples produced by the 9-month-olds over those from the other
four observer groups.

METHOD
Ten simulation runs were conducted. At the start of each run, the
five PNs were initialized as described above. In addition, the set of
Q-values for the five corresponding actions was uniformly initial-
ized to 1. During Simulation 1, the temperature parameter τ used
in the Softmax function for action selection was 0.01. Finally, the
learning rate value α used for updating the Q-values (Equation
5) was 0.1. Each simulation run was composed of 500 episodes,
during each of which the IM agent chose a set of COG samples,
the corresponding PN was trained on the selected set of samples
for one epoch, and the IM agent then received a reward and the
respective Q-value was updated.

RESULTS
For the purpose of analysis, the results over the 10 simulation runs
were averaged together. We focus here on three questions. First,
during learning, does the IM agent develop a preference for any
of the five observer groups? Second, how does the IM agent dis-
tribute its selections over the five groups? Finally, how well do the
five PNs collectively perform over the 500 episodes?

We addressed the first question by transforming the Q-values
at the end of each episode into standardized “preference” val-
ues, which are simply the probabilities assigned to the choices by
the Softmax function. Figure 6A presents the mean preferences
for the five observer groups as a function of episode, averaged
across 10 simulation runs. Mean preferences were analyzed statis-
tically by dividing the 500 training episodes into 10 blocks, each
50 episodes long. We then conducted a two-factor mixed-model
ANOVA for each of the blocks, with observer group (infant,
adult, saliency, entropy, and random) as the between-subjects fac-
tor, and episode as the within-subjects factor. We report here
the results of the planned paired-comparison tests for the five
observer groups, focusing specifically on whether the group (or
groups) with the highest preference values differed significantly
from the remaining observer groups. Note that the top legend in
Figure 6A illustrates the outcome of these comparisons for each
of the 50-episode blocks, by indicating the group/groups with the
highest preference value and the significance level of the planned
comparison (I = infant, A = adult, S = saliency, E = entropy,
R = random).

There were three major findings. First, for approximately the
first 50 episodes, preference values varied considerably, resulting
in no significant differences between the five observer groups.
Second, a preference for the COG samples from the infant
observer group emerged between episodes 50 and 100, while the
values for the other four groups continued to decline. Third, and
confirming our prediction, this pattern continued and strength-
ened between episodes 100 and 500.

Figure 6B presents the proportion of time that each of the five
observer groups was selected over the 500 episodes. Recall that
because a stochastic decision rule was used to select the groups,
the actual frequency of selection may not necessarily align with
the corresponding preference values. However, as Figure 6B illus-
trates, there was a close match between the IM agent’s preference
values, and the resulting selection pattern. In particular, dur-
ing the last 200 episodes, effectively all of the training time was
directed toward the infant observer group’s PN.

Finally, Figure 6C presents the RMSE—pooled over the five
PNs—as a function of episode. At the start of training, the RMSE
was approximately 0.25 per pixel. Fluctuations in the error level,
between episodes 1 and 300, reflected the fact that the IM agent
continued to explore the observer groups throughout this period.
However, as the infant observer group became the sole preferred
choice, the IM agent focused on the COG samples from this group
and the error rate declined more consistently. By 500 episodes,
the RMSE had fallen below 0.07. Thus, Figure 6C suggests that all
of the PNs improved during training, but the infant group’s PN
eventually received the majority of training time and accordingly
benefited.

SIMULATION 2
While Simulation 1 confirmed our prediction that the IM agent
would prefer the infant observer group’s COG samples, it is also
important to note that the particular reward function used poten-
tially suffers from a “snowball” bias. In other words, because the
reward function favored low prediction errors, the group with
the lowest errors at the start of training would have an advantage
over the other four groups. In addition, a bias toward providing
this group with additional training time would then continue to
improve the predictions of their PN, thereby lowering prediction
errors further and increasing the advantage of that group. Such a
bias would also reduce exploration of the competing groups, and
consequently, leave them with higher errors.

To address this issue, we investigated an alternative reward
function, which favored learning progress, that is, a reduction
in the RMSE over two consecutive episodes. As Equation 4
highlights, the reward function in Simulation 2 was scaled by
the RMSE of the first episode of each pair, which effectively
produced a reward value equal to the percent change in the
RMSE. Interestingly, this solves one problem while creating a
new challenge for the model: in particular, by linking reward to
changes in performance of the PNs, the IM agent’s learning task
becomes non-stationary. Specifically, by selecting the “best” (i.e.,
most-improving) observer group for training, learning in that
group should eventually level off, and thus, the IM agent’s long-
term estimates of the group’s Q-value should systematically drift
downward over time. Fortunately, there is also a hidden advan-
tage to this approach, namely, that the IM agent should therefore,
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FIGURE 6 | Set of 3 performance measures for Simulation 1 (A–C) and Simulation 2 (D–F). The legend at the top of panels (A,D) represents the results of
planned comparisons between the observer groups (n.s. = not significant, †< 0.06, *< 0.05, **< 0.01, ***< 0.001). See the text for additional details.

switch its preference from the COG samples of one observer
group to another, as improvement in the leading group slows. As
we highlight in the discussion, such a switching pattern has the
potential to be interpreted as a developmental pattern, in which
the simulated observer shifts from one visual-exploration strategy
to another.

Recall that our prediction for Simulation 2 was that, like
Simulation 1, the COG samples from the infant observer group
would be preferred first, and that the model would then shift its
preference to the samples from the adult observer group.

METHOD
The same procedures as Simulation 1 were followed in Simulation
2. However, given an expected decline in the absolute magnitude
of the reward (relative to Simulation 1), the Softmax parame-
ter τ was increased to 0.1, the initial Q-values were lowered to

0.01, and the learning rate value α used for updating the Q-values
was lowered to 0.05. In addition, as noted above, the IM agent
selected an observer group on every odd-numbered episode, and
then received a reward value after the subsequent even-numbered
episode. Training of the PNs continued, as in Simulation 1, for all
episodes.

RESULTS
Figure 6D presents the mean preference values for the five
observer groups in Simulation 2, as a function of episode number.
These values were analyzed following the same analytical strat-
egy described in Simulation 1. A key finding from the analysis
is that the range of preference values was considerably nar-
rower than the pattern observed in Simulation 1. In addition,
although we predicted that the COG samples from the infant
observer group would have the highest initial preference values,
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this preference was not as robust as we anticipated. In particu-
lar, there was a marginally-significant preference for the infant
observer group (p < 0.06) between episodes 1 and 50. Between
episodes 50 and 100, there was no longer a significant differ-
ence between the infant and adult observers, though the two real
observer groups had significantly higher preference values than
the artificial observer groups (p < 0.01). This pattern maintained
through episode 150. For the next 100 episodes (150–250) there
was no significant difference between the five groups. Between
episode 250 and 300, the leading preference shifted to the saliency
observer group. This pattern persisted through the remaining
episodes, although as Figure 6D illustrates, the preference val-
ues for the entropy observer group increased toward the end of
training.

In contrast to Simulation 1, in which a clear preference for
one of the observer groups was matched by a tendency for the
corresponding group to also be selected consistently by the IM
agent, there was a comparatively narrower preference pattern in
Simulation 2, and as Figure 6E illustrates, also lack of a clear
selection pattern. Indeed, the proportion of times each group was
selected in Simulation 2 continued to fluctuate throughout the
entire simulation.

Finally, Figure 6F presents the RMSE (pooled over observer
groups) generated by the PNs over 500 episodes. In contrast to
Figure 6C, the error rate declined more slowly in Simulation 2.
There are several factors that may have contributed to this pat-
tern. First, as noted above, the IM agent continued to explore until
the end of Simulation 2, while in Simulation 1, exploratory selec-
tion of the sub-optimal observer groups ended on average by the
300th episode. Another contributing factor is that the relative dif-
ferences in the five Q-values were smaller in Simulation 2, which
also increased the chances of exploratory selections. Indeed, as we
expected, there was no sustained “winner,” but rather, a series of
shifts from one observer group to another.

However, it should be noted the second observer group
that became preferred by the IM agent (i.e., after episode 250)
was not the adult observer group, as we predicted. Instead, as
Figure 6D illustrates, it was instead the saliency observer group.
This result raises an important and interesting property of the
reward function used in Simulation 2. In particular, note that
the saliency observer group is the least preferred in Simulation
1, which is ostensibly due to having the largest initial predic-
tion errors. Nevertheless, these initially high prediction errors
may have helped to make the saliency observer group stand out
in Simulation 2, as the COG samples from this group presum-
ably provided the second-best opportunity for the IM agent to
optimize its learning progress.

GENERAL DISCUSSION
We provided an artificial agent with the opportunity to
select among five sets of visual-exploration patterns, and then
reinforced the agent for selecting COG samples that were
either the easiest to learn (Simulation 1), or afforded the
largest improvements in learning (Simulation 2), as estimated
by a prediction-learning model. The agent was intrinsically-
motivated, in the sense that it was not solving an explicit task—
such as locating an object in a visual scene or comparing two
images—but rather, it was rewarded for how well it learned (or

more accurately, how well it selected a set of training images
together with an artificial neural network that learned the set).

The pattern of findings from two simulation studies confirmed
the first of three predictions, and partially confirmed the sec-
ond. First, in Simulation 1—where the reward function was based
on minimizing prediction errors—we found that the IM agent
showed a consistent preference for learning from the COG image
samples that were produced by human infants, rather than those
produced by human adults, or those from three groups of artifi-
cial observers. Second, in Simulation 2 we predicted that infants’
COG image samples would initially be preferred, and that the
IM agent would then switch its preference to the adult observer
group. While the first half of the prediction was confirmed, there
were two qualifications: (a) the initial preference for the infant
observer group was only marginally significant, and (b) this pref-
erence soon gave way to a collective preference for both the infant
and adult COG image samples—that is, a preference for the real
observer groups over the artificial observer groups. We also did
not observe a clear switch to the adult observer group. Instead and
contrary to our third prediction, the second preference “wave”
in Simulation 2 was for the saliency observer group. While the
data collected in the present study may not provide a comprehen-
sive explanation for this result, we note below that our previous
work highlights the important role of image salience, and may
ultimately provide some insight into the pattern of findings in
Simulation 2.

There are a number of implications for understanding devel-
opment, as well as important questions, which are raised by these
findings. First, our results suggest that if (1) prediction-learning
and future-oriented actions play a central role in early visual
development, and (2) infants are intrinsically-motivated to fine-
tune and improve their ability to predict or forecast upcoming
events, then the gaze patterns produced by 9-month-olds are
well-suited to achieving both of those goals, compared to the
gaze patterns of adults or the artificial observers that we gen-
erated. However, this finding also raises the question: what are
the features of 9-month-olds’ gaze patterns that make their COG
samples easier to learn than those of other observers?

The kinematic analyses presented in Figure 3 suggest that how
infants distribute their gaze over space may provide an impor-
tant clue to answering this question. One possibility is that
because 9-month-olds tend to have less-disperse gaze patterns
than adults, and to shift their gaze a shorter distance, the result-
ing COG samples they produce tend to be more homogenous,
and therefore, easier to learn. Alternatively, it may be the case
that infants have the a priori goal of generating easily-learnable
gaze patterns, and as a result, they therefore, tend to produce
more compact scanpaths, with shorter gaze shifts between fixa-
tions. An essential step toward addressing this “chicken-and-egg”
question is to collect gaze samples from a wider range of infants
(e.g., 3- and 6-month-olds) and to evaluate the model when those
additional COG samples are included. Another approach is to
pit gaze-travel distance against local/global similarity, by using
carefully-designed test images, in which there is high variability at
the local level, with sets of highly-similar regions that are spaced
relatively far apart.

A second issue suggested by our findings is what the develop-
mental pattern will look like when the gaze data from younger
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infants are included. For example, should the agent prefer 3-
month-olds’ COG samples over those from 9-month-olds? In
principle, with data from infants between birth and 12 months,
our intuition is to expect an inverted U-shaped developmental
pattern, in which gaze data from very young infants is poorly-
controlled and therefore, highly unpredictable. We would then
expect maximally-predictable COG samples between 3 and 4
months, and then an increasing trend afterwards of gradually less
and less predictable gaze patterns. Fortunately, this is an empiri-
cal question that can be tested without any major modifications
to our model.

Finally, a third question is whether the pattern of results—in
particular, the shift that we observed during Simulation 2—can
be interpreted as implying a developmental pattern. This is a diffi-
cult question to answer, as the timescale of the simulation reflects
learning in an artificial agent, and does not map directly onto the
infant-developmental timeline. Nevertheless, we might “read off”
the results from Simulation 2 as suggesting that an initial strategy
for visual exploration during infancy is to first focus on producing
relatively dense clusters of fixations (i.e., like those produced by
the two real-observer groups), which then shift toward becoming
more widely distributed, and in particular, increasingly sensitive
to the presence of salient regions in the visual scene. While this
issue remains an open question, our prior work demonstrates that
image saliency is an important factor that successfully accounts
for infants’ performance on a number of perceptual tasks (e.g.,
Schlesinger et al., 2007, 2011, 2012).

There are also a number of ways that our current approach
can be improved. First, it is important to note that the PNs were
trained offline—that is, the networks were trained to predict gaze
sequences that had already been collected or generated. A dis-
advantage of this method is that any changes that occur in the
agent cannot be propagated back to the observer groups. In other
words, while the agent influences the amount of training time that
each PN receives, it cannot influence how the COG samples are
produced. An alternative and perhaps more-informative design
would be for the choices of the agent to have an impact on the
COG sampling process itself. Indeed, such a mechanism could be
designed so that the production of eye movements in the artifi-
cial model is linked to the choices of the agent. However, there is
no obvious way in which a similar connection could also be made
between the agent and a live observer.

A second limitation of our model is that five different PNs were
employed, which might be interpreted to suggest that infants’
generate multiple sets of parallel predictors during visual explo-
ration and then sample among them. While we remain agnostic

to the specific cognitive structures or architectures exploited by
human infants during visual exploration, a more elegant solution
on the computational side would be to employ a single, unified
predictor that learns over a range of sampling strategies (e.g.,
Schmidhuber, 2010).

Finally, a third issue concerns the models of the artificial
observers, and in particular, the procedure used to transform the
saliency and entropy maps into sequences of simulated eye move-
ments. A key difference between the artificial and real observers is
that the artificial observers tended to produce more disperse fixa-
tions, and return to previously-fixated locations less often than
the human infants and adults. This issue can be addressed by
imposing a theoretical energy or metabolic “cost” to the simu-
lated eye movements, which is proportional to the size of the
saccade. In addition, we can also continue to tune and improve
the IOR mechanism, perhaps by modifying the decay rate, so that
inhibition for previously-fixated locations decreases more rapidly.
Another promising approach is to “yoke” the simulated gaze
data to the actual moment-to-moment eye movements produced
by real observers, so that kinematic measures such as fixation
duration or saccade size are matched across the real and artificial
data sets.

We conclude by noting that our work thus far takes advantage
of machine-learning methods—in particular, the set of learning
algorithms and architectures used to study intrinsic motiva-
tion in natural and artificial systems—as a means toward the
goal of understanding visual development in human infants.
Nevertheless, it is important to stress that the influence also runs
in the other direction, that is, what lessons can be taken from
our approach that might prove useful to the design of robots and
artificial agents? One interesting insight is that our findings are
consistent with the idea of “starting small” (e.g., Elman, 1993;
Schlesinger et al., 2000): in other words, infants’ gaze patterns may
provide an advantageous starting point for learning in a naïve
agent, relative to more-experienced observers such as adults. As
we continue to extend and elaborate our model, in particular with
data from younger infants, we anticipate that other important
lessons for designing and developing artificial agents will continue
to emerge.
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