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The generation of handwriting is a complex neuromotor skill requiring the interaction
of many cognitive processes. It aims at producing a message to be imprinted as an
ink trace left on a writing medium. The generated trajectory of the pen tip is made up
of strokes superimposed over time. The Kinematic Theory of rapid human movements
and its family of lognormal models provide analytical representations of these strokes,
often considered as the basic unit of handwriting. This paradigm has not only been
experimentally confirmed in numerous predictive and physiologically significant tests but
it has also been shown to be the ideal mathematical description for the impulse response
of a neuromuscular system. This latter demonstration suggests that the lognormality of
the velocity patterns can be interpreted as reflecting the behavior of subjects who are in
perfect control of their movements. To illustrate this interpretation, we present a short
overview of the main concepts behind the Kinematic Theory and briefly describe how its
models can be exploited, using various software tools, to investigate these ideal lognormal
behaviors. We emphasize that the parameters extracted during various tasks can be used
to analyze some underlying processes associated with their realization. To investigate the
operational convergence hypothesis, we report on two original studies. First, we focus on
the early steps of the motor learning process as seen as a converging behavior toward the
production of more precise lognormal patterns as young children practicing handwriting
start to become more fluent writers. Second, we illustrate how aging affects handwriting
by pointing out the increasing departure from the ideal lognormal behavior as the control
of the fine motricity begins to decline. Overall, the paper highlights this developmental
process of merging toward a lognormal behavior with learning, mastering this behavior to
succeed in performing a given task, and then gradually deviating from it with aging.
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learning, aging, lognormality

INTRODUCTION
The generation of handwriting is a very complex neuromotor skill
requiring the interaction of many cognitive processes. It aims at
imprinting on a writing medium a message encoded in the tra-
jectory of a pen tip, a trajectory ultimately made up of strokes
superimposed over time (Thomassen et al., 1983; Kao et al., 1986;
Plamondon et al., 1989; Van Galen, 1991). Taking a simplified
sequential process approach (Plamondon et al., 1999), the pro-
duction of a message can be seen as requiring the realization
of numerous and diverse cognitive tasks. Starting from commu-
nication intents where the content of a message is elaborated,
some semantic or cognitive networks must define and delimit the
context of this message. Then various syntactic processes must
activate the proper set of linguistic rules and interact with the
specific lexicon of the selected language. The handwritten ver-
sions of the words in these lexicons are considered as being made
up of allographs or character models. These models can be seen
as ideal action plans that have been learned over the years. They
can be instantiated to activate specific neuromuscular networks,

producing a series of basic strokes superimposed over time– the
fundamental units of handwriting movements—making up the
intended pen tip trajectory.

The challenging and interesting element of handwriting stud-
ies is that they can be tracked from a broad spectrum of perspec-
tives, from investigating high-level neurocognitive capabilities
associated with language production down to the purely mechan-
ical understanding of motor control gestures (Kandel et al., 2006;
Bosga-Stork et al., 2011). Numerous researchers from various
disciplines 1 have been involved in studying some of these pro-
cesses: neuroscience, experimental psychology, computer science
and engineering, physics, education and developmental sciences,
robotics, forensic science, paleontology and more. These studies
were conducted using bottom-up or top-down approaches and
exploit more or less sophisticated technologies, from complex

1An exhaustive database of papers in these fields is available at http://www.

graphonomics.org/, where the proceedings of all the biennal conferences of
the International Graphonomics Society over the last 30 years are deposited.
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fMRI investigations (Katanoda et al., 2001; Seitz, 2009; Richards
et al., 2011; Shah et al., 2013) to simple non-invasive digitizer
or instrumented pen signal analysis (Maarse, 1987; Baron and
Plamondon, 1989; Teulings, 1996). Several studies deal with the
fundamental understanding of the underlying neurocognitive
and neuromotor processes (Thomassen and Teulings, 1983; Van
Galen and Teulings, 1983; Van Galen, 1991) while others are pri-
marily concerned with practical applications like on-line or off-
line handwriting recognition (Nouboud and Plamondon, 1990;
Plamondon et al., 1999; Plamondon and Srihari, 2000; Koerich
et al., 2003; Lorigo and Govindaraju, 2006; Srihari et al., 2007;
Tagougui et al., 2011), signature verification (Plamondon and
Lorette, 1989; Leclerc and Plamondon, 1994; Pirlo and Impedovo,
2008; Impedovo et al., 2012; Plamondon et al., 2013a, 2014a),
writer identification (Schomaker, 2007; Sreeraj and Idicula, 2011;
Awaida and Mahmoud, 2012), and document analysis and pro-
cessing (Doermann and Tombre, 2013). Many of these experi-
ments rely in one way or another on a few basic models, and
this is particularly true for investigations dealing with the motor
control aspects of handwriting production. Indeed, many mod-
els have been proposed to study human movement control in
general and handwriting in particular: models relying on neural
networks (Bullock and Grossberg, 1988; Schomaker et al., 1989;
Schomaker, 1991; Kalveram, 1998; Gangadhar et al., 2007), equi-
librium point models (Feldman, 1966; Bizzi et al., 1978, 1992;
Feldman and Latash, 2005), behavioral models (Thomassen et al.,
1983; Van Galen and Teulings, 1983; Schmidt and Lee, 1999), cou-
pled oscillator models (Hollerbach, 1981; Kelso, 1995; Zanone
et al., 2005), emergent and convergent models (Plamondon,
1995a,b; Plamondon and Djioua, 2006), and models exploiting
minimization principles (Wada and Kawato, 1995; Engelbrecht,
2001) including minimization of the acceleration (Neilson, 1993;
Neilson and Neilson, 2005), of the energy (Nelson, 1983), of the
time (Hermes and LaSalle, 1969; Enderle and Wolfe, 1987; Tanaka
et al., 2006), of the jerk (Hogan, 1984; Flash and Hogan, 1985),
of the snap (Edelman and Flash, 1987), of the torque changes
(Uno et al., 1989) and of the sensory-motor noise (Harris and
Wolpert, 1998). At the stroke level, many of these models exploit
the properties of various analytic functions to reproduce and
reconstruct human movements: exponentials (Plamondon and
Lamarche, 1986), second order systems (Denier van der Gon
and Thuring, 1965; Dooijes, 1983), Gaussians (Leclerc et al.,
1992), beta functions (Alimi, 2003), splines (Morasso et al.,
1983), and trigonometric functions (Hollerbach, 1981; Maarse,
1987).

Among the models providing analytical representations of
the trajectories, the family of lognormal models predicted by
the Kinematic Theory of rapid human movements (Plamondon,
1995a,b, 1998; Plamondon et al., 2003; Plamondon and Djioua,
2006) has been used to explain most of the basic phenomena
reported in classic studies on human motor control (Plamondon
and Alimi, 1997) and to study several factors involved in
fine motricity (Djioua and Plamondon, 2009a; O’Reilly and
Plamondon, 2011; Woch et al., 2011). Apart from these funda-
mental studies, these models have also been used, directly or indi-
rectly, in many practical applications like the design of a signature
verification system (Plamondon, 1994), the development of tools

to help children learn handwriting (Carrières and Plamondon,
1994; Djeziri et al., 2002), the generation of synthetic signatures
and gestures databases for algorithm testing or classifier learn-
ing (Almaksour et al., 2011; Galbally et al., 2012a,b) as well as
the design of biomedical set-ups to detect fine motor control
problems associated with brain stroke risk factors (O’Reilly and
Plamondon, 2011, 2012a,b).

In this paper, we push one step further the lognormality
concept to point out how it can be used to provide a global
estimate of the performance of a handwriter. We begin by pre-
senting a brief overview of the Kinematic Theory of rapid human
movements to particularly illustrate how its family of lognor-
mal models can be seen as describing human beings when they
are in perfect control of their movements. We then give a list of
software tools that we have developed over the years to automat-
ically extract the model parameters from handwriting. Typical
examples of original and reconstructed trajectory patterns are
presented. References are also given to specific studies deal-
ing with how the theory can be used to reveal the conditions
for a lognormal handwriter to successfully execute a required
trajectory. Continuing along this paradigm, we look at motor
learning as a shift toward a lognormal behavior, a conduct that
we then master and exploit for a large part of our life and
that we slowly see decrease as we get older. To further inves-
tigate this interpretation of the lognormality, we look at some
aspects of the move toward lognormality by analyzing the hand-
writing of young kindergarten children, 3 to 5 years old, to
emphasize how they improve the control of their fine motric-
ity as they perform typical learning lessons. Using a similar
presentation scheme, we also study the move away from log-
normality by analyzing aging effects on handwriting. Typical
changes observed in the model-based descriptions are reported,
illustrating the deviation from lognormal behavior. The paper
concludes by briefly summarizing the results and exploring some
possible extensions of this approach to study health problems
(Parkinson disease, Alzheimer’s disease, brain stroke) and reha-
bilitation therapy.

MATERIALS AND METHODS
DEFINING AND TAKING ADVANTAGE OF LOGNORMALITY
The Kinematic Theory describes a neuromuscular network
involved in handwriting production as a linear system that con-
trols the velocity of the pen tip. Assuming that such a system is
made up of numerous coupled subsystems and that this coupling
can be expressed with proportionality relationships between the
cumulative time delays associated with the activation of these sub-
systems, the theory predicts, using the Central Limit Theorem,
that the magnitude of the velocity profiles produced by the
global system will tend toward a lognormal pattern (Plamondon,
1995a,b, 1998; Plamondon et al., 2003):

∣∣�vi(t; Pi)
∣∣ = Di�i(t0i; μi, σ

2
i )

= Di

σi
√

2 π(t − t0i)
exp

[
− [ln(t − t0i) − μi]

2

2σ2
i

]
(1)

where the set of parameters Pi = [Di, t0 i,μi, σi] describing a
lognormal pulse refers to:
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Di: the input command, which is the intended distance to be
covered with the pulse;

t0 i: the time occurrence of that command, as instantiated in
the central nervous system (CNS);

μi: the log time delay (the time delay on a logarithmic time
scale);

σi: the log response time (the response time on a logarithmic
time scale).

The production of a given stroke can thus, be seen as the
process of recruiting a sufficient number of time-coupled neu-
romuscular units to produce the most perfect lognormal profile.
These lognormal functions are the basic primitives, the elemen-
tary strokes that can be used to produce any complex pen tip
trajectory. Under this paradigm, handwriting generation starts
with the instantiation of an action plan made up of virtual targets
linked together by circular arcs. This planning space, which can be
modeled with a grid of leaky integrators simulating learning neu-
rons (Plamondon and Privitera, 1995), acts as a command gen-
erator, each command producing a lognormal stroke. A sequence
of commands results in a vector summation process where the
velocities of individual strokes are superimposed over time to pro-
duce a given pattern (a letter, a word, a signature, a gesture, and
so forth) (Plamondon and Guerfali, 1998). The magnitude and
direction of the velocity of a given trajectory are thus, described
by a Sigma-Lognormal equation (Plamondon and Djioua, 2006):
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where θsi and θei stand, respectively, for the starting and ending
angular direction of each discontinuous stroke, as ideally repre-
sented in the action plan. When only straight line movements are
produced, Equation 2 reduces to what is called a Delta-Lognormal
equation:

v (t) = D1�
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t; t0,μ1, σ
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) − D2�
(
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2
2

)
(4)

where the subscripts 1 and 2 refer, respectively, to the agonist and
antagonist neuromuscular networks.

From a validation point of view, apart from its outstanding
performances in reproducing handwriting under various con-
ditions (Plamondon et al., 1993, 2014a; Alimi and Plamondon,
1994; Plamondon and Alimi, 1997; Feng et al., 2002), as well as
making clear predictions regarding the conditions under which
the various speed-accuracy trade-offs emerge (Plamondon and
Alimi, 1997)2, two decisive experiments have provided functional

2Although many of these studies were using large strokes and trajectories for
practical experimental purposes and to facilitate parameter extraction, the
theory has been used for the analysis and the generation of movements of any

and biomedical supports to the theory and confirmed its under-
lying hypotheses and its physiological significance. On the one
hand, to get a lognormal convergence, the subsystems constitut-
ing a neuromuscular network must be synchronized in such a
way that the cumulative time delays of the command propagating
along a given network must obey proportionality relationships.
These proportional effects have been clearly observed between
various pairs of upper arm muscles involved in the production of
rapid movements using electromyography (EMG) (Plamondon
et al., 2013b). On the other hand, when a lognormal is observed,
the theory presumes that it is the result of a command that has
been activated in the CNS at a given time t0 (see Equation 1). This
prediction has also been confirmed using electroencephalography
(EEG), where it has been shown that a specific evoked response
potential (ERP) was produced at t0 (O’Reilly et al., 2013).

Several software packages have been developed over the years
to extract the lognormal parameters from various velocity curves
under different experimental data acquisition conditions and
set-ups (Guerfali and Plamondon, 1998; Djioua et al., 2007;
Plamondon et al., 2007; Djioua and Plamondon, 2009b; O’Reilly
and Plamondon, 2009a, 2010, 2012c), and most up-to-date algo-
rithms have been implemented in ScriptStudio research software.
These different tools allow a researcher to study handwriting
through the parametric lognormal description of the neuromus-
cular networks involved in a given task (Plamondon et al., 2009;
Plamondon, 2013). Starting with the pen tip position [x(t), y(t)]
as sampled by a digitizer, these software tools compute the veloc-
ity vector and, using different optimization algorithms, extract
the lognormal parameters of the strokes that best describe the
sampled trajectory. Figure 1 presents three typical examples of
velocity reconstruction. In 1A, a single stroke is reconstructed
using a Delta-Lognormal equation (Equation 4), while in 1B a
complex graphic trace has been reconstructed using a Sigma-
Lognormal equation (Equations 2 and 3) resulting in the speed
profile shown in 1C. In 1D and 1E, similar patterns are shown for
the handwritten character “a.” In each case, the parameter extrac-
tion algorithm provides the values of the lognormal parameters
that have been found to automatically reconstruct a profile, the
number of lognormals (nbLog) required to reconstruct the signal
as well as a measure of the quality of the reconstruction as eval-
uated by computing the signal-to-noise ratio (SNR) between the
original �vo(t) and the reconstructed �vr(t) profiles:

SNR = 10 log

⎛
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te∫
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ox(t) + v2
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]
dt
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[
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)2
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⎞
⎟⎟⎟⎠ (5)

where the global effect of the distortions is computed using the
velocity components vx(t) and vy(t) from the beginning ts to the
end te of these Cartesian signals.

size, from a few millimeters to decimeter letters, words, or signatures. Since
the size of a trajectory is controlled by the parameter D, which determines the
stroke amplitude, it has no effect on the lognormal convergence. It must also
be noted that the theory is not limited to the control of finger movements. It
has been used to analyze wrist, arm and head movements and eye saccades
(Plamondon, 1995a) as well as 3D full upper limb planar trajectories (Leduc
and Plamondon, 2001).
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FIGURE 1 | (A) Example of the speed profile of a delta-lognormal
modeling for a typical fast reaching movement. (B,C) Example of the
trace (B) and the speed profile (C) of the sigma-lognormal modeling of a

typical triangular movement. (D,E) Example of the trace (D) and the
speed profile (E) of the sigma-lognormal modeling of a typical
handwritten letter “a.”

In other words, with these optimization tools, for each hand-
writing trace produced by a subject, the Kinematic Theory pro-
vides a new parametric representation space to study its motor
control behavior. This offers a new window into studying human
movements, where some specific strategies for succeeding at a
given task can be pointed out, these strategies relying on how the
lognormality is mastered and exploited.

For example, it has been demonstrated that strong coupling of
agonist and antagonist neuromuscular networks were necessary
to produce a single fast stroke with a direction reversal with-
out a pause at the breaking point (Woch and Plamondon, 2010).
This resulted in very high correlations between the agonist and
antagonist lognormal parameters extracted from each individual
trajectory (Woch et al., 2011). Similarly, analyzing a Fitts’ task
under the paradigm of the Kinematic Theory, it has been shown
that the subjects had to correlate more tightly the impulse com-
mands sent to the agonist and antagonist neuromuscular systems

in order to achieve good performances as the difficulty of the task
increases whereas the correlation in the timing of the neuromus-
cular action co-varied with the size of the trajectory’s geometrical
properties (O’Reilly and Plamondon, 2013).

Overall, the theory has not only been experimentally sup-
ported in numerous predictive and physiologically significant
tests but it has also been shown to be the ideal mathematical
model to describe the impulse response of a neuromuscular sys-
tem (Djioua and Plamondon, 2010), which results in what is
known as “asymmetric bell-shaped velocity profiles.” This math-
ematical demonstration suggests that the asymptotic convergence
toward lognormal impulse responses and velocity patterns can
be interpreted as reflecting the behavior of subjects who are in
total control of their movements. In this context, if we specifically
focus on the basic mathematical convergence toward lognormal-
ity, handwriting learning, on the one hand, can be interpreted
as a migration toward an ideal control of perfectly mastered
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movements. In other words, we can account for the lognormality
of the underlying neuromotor processes as a convergence toward
the complete mastering of a given task. On the other hand, aging
should reveal a progressive decrease of the fine motor control, as
reflected by a departure from lognormality.

Additionally, from a mathematical point of view, the
Kinematic Theory is a theory of convergence toward smooth-
ness. The lognormal function is an optimal descriptor of the
velocity profiles: the smoothest velocity being reached when the
energy associated with the convergence error toward lognormal-
ity is minimized (Djioua and Plamondon, 2010). As such, the
Kinematic Theory can be considered as an ultimate minimization
theory. We strengthen this statement in the following sections by
investigating two phases of this process: characterizing handwrit-
ing learning as a move toward lognormality and characterizing
aging as a move away from lognormality. To do so, we utilize the
Kinematic Theory to reconstruct various handwriting samples
and analyze them using three performance criteria: the SNR of the
reconstructed pattern as defined in Equation 5, the nbLog used to
make that reconstruction, and the SNR/nbLog ratio which can be
seen as a global indicator of a given writer’s motor control skills.

EXPERIMENT 1: LEARNING
Moving toward lognormality
The mastering of fast writing and drawing movements is the
norm in healthy adults with full control of their neuromuscular
system (Zesiger, 1995; Karldottir, 1996; Senatore and Marcelli,
2012), but this is not the case for young children. According to
many studies, the automation of handwriting skill by children is
the usual outcome of a non-monotonous learning phase which
takes around 10 years (Meulenbroek and Van Galen, 1988; Vinter
and Mounoud, 1991; Albaret and Santamaria, 1996; Zesiger et al.,
2000; Frélicot et al., 2002; Chartrel and Vinter, 2004). In the
context of the Kinematic Theory, it is after this period that log-
normality should be well established and should begin to be fully
exploited. Indeed, it has been shown that rapid movements pro-
duced by young adults can be almost perfectly modeled as sums of
lognormal vectors (Guerfali and Plamondon, 1998; O’Reilly and
Plamondon, 2009a,b). When children are still in the early steps
of their learning process, is it expected that a lognormal behavior
should be already discernible.

The goal of the present study was to determine if the SNR of
the reconstructed pattern, the nbLog used to make a reconstruc-
tion and the SNR/nbLog ratio could be good indicators of the
progress of children’s performances in early phases of scolarship
(PS, MS, GS).

Participants
The subjects that have been chosen for this preliminary study had
reached the best scriptural behavior according to three early grade
criteria of kindergarten, and as such were considered as good
writers according to their grade. Such choice is necessary to try to
limit a priori the effects of some factors that can influence a child’s
handwriting skills like handwriting learning difficulties. To select
such samples of children for each school level we proceeded as
follows: during the 2011–2012 school year, a preliminary group
of 66 pupils was randomly selected within the population of a

Guadeloupe kindergarten to take part in preliminary data acqui-
sition. These children were from three school grades: the PS level
was grouping 3- and 4-year-old participants; the MS level, the
4- and 5-year-olds and the GS level, the 5- and 6-year-olds. The
members of the PS, MS, and GS grades had 6, 18, and 30 months
of handwriting lessons, respectively. This preliminary study was
necessary for screening, from a large pool of possible tasks, those
that had the higher discrimination potential. However, data col-
lected at this stage were not adequate for statistical analysis since
only a few samples, generally three to five, could be collected for
each kind of movement, to avoid exposing young children to large
number of trials. Given the high variability of human motor pro-
ductions, such a small number of repetitions per children and per
movement types was not sufficient to provide stable averages of
children neuromotor characteristics.

Thereafter, for each of the three grades, five children were
selected from this first group as participants in the present study.
This selection was performed according to three inclusion cri-
teria. First, the child’s teacher had pointed out that in normal
lessons the child was interested in handwriting and drawing,
and had demonstrated satisfying performances in these activities.
Second, the teacher had certified that the child had completed
the two drawing and the two writing activities proposed to all
the children in the group during normal classroom hours. These
first two criteria confirmed that each child’s performance was
in compliance with the French kindergarten program expecta-
tions for their specific group level. The third criterion dealt with
the results of the analysis of the child’s performance at the first
data acquisition phase. The teacher and the experimenter had
found that the child was motivated to take part in the experi-
ment and that the child had produced all the required trajectories
(about 40). The different trajectories that the child had pro-
duced for the first data acquisition had been reconstructed on
average with a SNR >25 dB and with an optimal nbLog for a
given pattern consistent with the ideal sigma-lognormal model.
This second experimental stage was necessary for producing data
that are adequate for statistical modeling (i.e., a large number
of repetitions per children for a small subset of highly discrim-
inative tasks). For ethical reasons and given the repetitive (and
possibly boring) nature of this experiment performed by very
young children, only the most interested children had to be
selected, resulting in a reduction from the initial pool of 66 chil-
dren to a subset of 15 highly interested children for the second
stage.

For each of these three groups (GS, MS, and PS), the five
selected participants were thus, a priori considered as being able to
successfully execute the required tasks and as having the most sta-
ble level of performance with respect to their own level of learning
and expertise.

Procedure and apparatus
During the first acquisition phase, selected children were asked
to produce their movements on a Wacom Intuos3 tablet and the
kinematic of the motion was digitized at 200 Hz. Eleven patterns
(Duval, 2012) had to be performed: an oblique trace, five pseudo-
letters, and three cursive letters (l, p, and r). It must be noted
that each child prior to participating to the study had been given
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the chance to familiarize himself or herself with the equipment,
practicing the required patterns under the supervision of a teacher.

A conclusion of the first acquisition phase was that among
the 11 tested patterns, the most successful ones were the oblique
traces (/) and the bridge movements (∩) (Duval et al., 2013).
Thus, these two tasks were selected for the next stage that aimed
to investigate a potential migration toward lognormality. For this
second acquisition phase, the requirement was to rapidly pro-
duce an oblique trajectory, starting from a common origin and
reaching a given fixed target, and a bridge trace, starting from
a common origin and reaching a given fixed target after pass-
ing over an intermediate target. Each pair of trajectories was
repeated 30 times by every participant, except for a few very young
PS participants who had difficulty staying concentrated on the
task. Due to these difficulties among the youngest children, 25
movements were missing. A few movements (8) were also lost,
having been inadvertently destroyed by the experimenter during
the acquisition.

Signal processing and statistical analyses
Each x(t) and y(t) trajectory produced by a participant was input
into the ScriptStudio software package for automatic lognormal
segmentation and optimal parameter extraction. These param-
eters were then used to reconstruct the velocity profile of the
original trajectory. The three performance criteria (SNR, nbLog,
and SNR/nbLog) were computed from this reconstruction pro-
cess. To observe if some of the performance criteria could show
differences between young writers of GS, MS, and PS, we tested
whether our three criteria were uniformly distributed in the dif-
ferent classes of writers (GS, MS, and PS), answering each of the
following questions:

(Q1) Is the quality of reconstruction (SNR) evenly distributed
among all classes of writers?

(Q2) Is average of the nbLog the same for all classes of writers?
(Q3) Is average of the ratio SNR/nbLog the same for all classes of

writers?
(Q4) Is average of the SNR the same for all classes of writers?

We have analyzed the distribution of SNR in a contingency table
and the averages of nbLog, of the ratio SNR/nbLog and SNR on
our raw data.

EXPERIMENT 2: AGING
Moving away from lognormality
Numerous experiments have shown that movements become
slower and less coordinated when people get older (Contreras-
Vidal et al., 1998; Ketcham and Stelmach, 2004; Barry et al.,
2005; Robinovitch et al., 2005) but it is still unclear if this is
due to a motor system deterioration or if it is the result of
compensatory strategies (Latash and Anson, 1996; Heuninckx
et al., 2008). In a previous study (Woch et al., 2011), we asked
seven subjects aged 63 to 70 and seven subjects aged 26 to 29
to produce handwriting strokes on a digitizer, in response to an
audio stimulus. The subjects were instructed to make bidirec-
tional strokes [i.e., delta-lognormal strokes that exhibit a signif-
icant return in their trajectory (Woch and Plamondon, 2010)]

as fast as possible and with their dominant hand. Three of the
older subjects did not produce enough bidirectional primitives
reconstructed with a SNR >15 dB 3 and were excluded from the
subsequent data analysis. This investigation exposed a substan-
tial increase in neuromuscular response delays and a decrease
in command amplitudes with age. Both the agonist and antago-
nist systems were similarly affected. Furthermore, it was observed
that age had a proportional effect on the various time charac-
teristics of the movements. Among other things, this experiment
pointed out that, even in the case of a significant slowing down of
the neuromuscular systems, the elderly could still achieve opti-
mal movement responses, characterized by the reconstruction
of their gestures with a single delta-lognormal primitive, simi-
lar to those produced by young healthy subjects. The number of
successful attempts was smaller in the older group. These pre-
liminary results indicated a mathematical depiction of age-related
movement alterations.

In the present study, we used reaching movements and trian-
gular drawings to illustrate how aging phenomena affect hand-
writing, pointing out the increasing departure from the ideal
lognormal behavior as the control of fine motricity begins to
decline. In this experiment, reaching movements are investigated
because they are one of the most elementary types of movement
normally involving a single stroke. They can be modeled using a
delta-lognormal function. These delta-lognormal movements are
considered as a fundamental primitive used in synergies to com-
pose more complex patterns such as those used in handwriting
and in drawing. As for the triangular movements, they are investi-
gated because they constitute a relatively simple task requiring the
coordination of at least four stroke primitives, each one described
by a single lognormal (see Figure 1C).

Participants
Two participant samples were studied to analyze the effect of age
in healthy and less healthy populations. The first sample (here-
after labeled NRF for “no risk factor”) contained 29 women and
28 men, with age varying between 25 and 87 years old. It corre-
sponds to the control subset of a sample of 120 subjects which
participated in a study on the impact of brain stroke risk factors
on movement kinematics (O’Reilly and Plamondon, 2010, 2011,
2013). The age distribution of the considered subsamples can be
seen in Figure 2A. Participants were considered healthy, had no
brain stroke history, and had none of the following brain stroke
risk factors: alcoholism, cigarette smoking (CS), obesity (OB),
hypertension (HT), hypercholesterolemia (HC), cardiac disease
(CD), and diabetes (DM). The second sample (hereafter labeled
WRF for “with risk factor”) was constituted of 39 women and
24 men, with age also varying between 25 and 87 years old. Each
of these participants had at least one of the previously listed risk
factors, except for alcoholism which was reported by none of
the subjects. The age and gender distribution as well as the risk
factor distribution within this sample can be seen, respectively, in
Figures 2B,C.

3This threshold is less restrictive than the 25 dB threshold used in the present
study because modeling bidirectional primitives with single delta-lognormals
generally results in lower SNR.
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As can be appreciated in Figures 2A,B, the distribution of
gender and age appears to be distributed independently. This is
confirmed by Kruskal–Wallis tests showing that the average age
of men and women is not statistically different in both sam-
ples (NRF: W = 344, p = 0.3258; WRF: W = 412, p = 0.4319).
Thus, gender is omitted in the following analyses since the effect
of age and gender cannot be confounded, the gender being
reasonably balanced with respect to age.

Participants in both samples were volunteers from the
École Polytechnique community or patients from Hôpital De
Réadaptation Villa Medica. They all gave informed written con-
sent. The experimental protocol was approved by the Ethics
Boards of École Polytechnique and Hôpital de Réadaptation Villa
Medica.

Procedure and apparatus
Participants were submitted to a test battery of nine experi-
ments. The full experimental protocol can be seen in (O’Reilly,

2012; O’Reilly and Plamondon, 2012b; Plamondon et al., 2014b).
For the present analysis, we considered two sets of acquisitions.
The first one contains the data of three reaction time experi-
ments, two on simple stimulus (auditory and visual) and one
on choice stimulus (visual). A targeted number of 15 valid sam-
ples were collected for the tasks using simple stimulus and 30
for the choice stimulus. The choice stimuli were leftward and
rightward arrows—chosen at random—indicating the requested
direction for the reaching movement. The targeted zones were
very large such that no precision was required. The movement
had to be performed on a Wacom Intuos2 tablet and the kine-
matic of the motion was digitized at 200 Hz. Figures 3A,B show
the sheets that were placed under the transparent folding of the
tablet to guide the subjects. A movement amplitude of at least
130 mm was asked for in reaction to simple stimuli, 38 mm for
choice stimuli. The laps of time between the instant the subject
took place at the starting position and the emission of the stim-
ulus was randomly distributed following a flat hazard function

FIGURE 2 | (A) Distribution of age and gender for the NRF subsample.
(B) Idem, but for the WRF subsample. (C) Distribution of the risk factors
in the WRF subsample. The height of the bars shows the overall number
of subjects with each risk factor. As subjects may have more than one risk
factor simultaneously, the bars are separated into colored sections

indicating how many risk factors the subjects have. For example, 40
subjects have HT (height of the HT bar); among these, about 8 subjects
have only the HT (the light gray portion of the HT bar) whereas one
subject who has HT also has 4 other risk factors, for a total of 5 (the red
portion of the HT bar).

FIGURE 3 | Guiding sheets used for the simple reaction time

experiments (A), the choice reaction time protocol (B), and the

triangular drawings (C–E). The starting position is shown as a dark circle

and the target zones as gray areas. For triangular drawing sheets, the targets
are 15 mm in diameter and are positioned at the apexes of equilateral
triangles with vertexes of 135 mm (C), 90 mm (D), and 45 mm (E) long.
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(i.e., the exponential distribution), with delays varying between 0
and 10 s.

The second set of movements consisted of triangular drawings
arranged in a factorial design, with three triangle sizes, two draw-
ing orientations, and two repetitions. Triangles were constituted
of a series of three targets to be hit sequentially and in a contin-
uous trajectory with the movement coming to a full stop within
the last target. Figures 3C–E shows the guiding sheets that were
used for this task.

Signal processing and statistical analyses
For fast movements performed in response to stimuli, such as in
reaction time tests, the delta-lognormal (Equation 4) is the most
appropriate type of modeling and has thus, been adopted for this
investigation. The system proposed by (Djioua and Plamondon,
2009b) cascaded with a supplementary non-linear optimization
step was used to obtain the delta-lognormal parameters from
the digitized movements. To test the hypothesis that, with nor-
mal aging, motor performances migrate away from a lognormal
behavior, we studied the relationship between the age and the
SNR of the delta-lognormal reconstruction. Since the nbLog is
fixed de facto to two components in a delta-lognormal model, the
two other performance criteria (nbLog and SNR/nbLog) were not
useful here.

For triangular movements, a sigma-lognormal modeling using
the Robust X0 algorithm (O’Reilly and Plamondon, 2009a)
was adopted. Our three response variables (SNR, nbLog, and
SNR/nbLog) were studied in relation with the movement direc-
tion and size as well as with the subject age as descriptive variables.
For statistical analysis, results of repetitions were averaged, giving
six outcomes per subject following the factorial plan of three sizes
by two orientations. All three response variables were modeled
with linear regression using our three descriptive variables, as well
as the interaction between the subjects’ age and the interaction
between the triangles’ size and drawing orientation.

RESULTS
LEARNING
On children’s trend to migrate toward a lognormal behavior
As seen in Figure 4A, for all oblique traces and bridges, the more
advanced in the writing learning phase the writers are, the better

is the reconstruction of their trajectories on average. To answer
the question Q1 we performed the chi square test to check the
hypothesis of independence between the SNR and the three dif-
ferent classes of writers χ2(2, N = 438) = 9.463. The result was
significant (p = 0.009). So, we conclude that the quality of the
reconstruction depends on the grade of writers A detailed com-
parison of the grade of writers per pairs showed, as reported in
Table 1, that the quality of the reconstruction is dependent on
the classes for the class of GS and PS χ2(1, N = 291) = 8.690,
p = 0.003, respectively, MS and PS χ2(1, N = 288) = 4.919,
p = 0.027 but it is independent of the grade for GS and MS
χ2(1, N = 297) = 0.539, p = 0.463. Thus, the variable SNR can
translate the migration to a lognormal behavior between writers
groups PS and GS, and PS and MS.

To answer the question Q2 we performed the Kruskal–Wallis
test to verify whether the average number of lognormals, nbLog,
was the same in the three classes of writers. The results were sig-
nificant as shown in Table 2 (p-value = 2.025e-21), indicating
a difference in averages. To confirm these trends, we performed
Mann–Witney tests to verify whether the nbLog was the same
in the classes of writers taken in pairs (GS, MS), (GS, PS), and
(MS, PS). As shown in the same Table 2, results indicate that
averages were significantly different (all p < 0.01) when using an
α = 0.05 corrected at 0.0083 for multiple comparisons, using the
Bonferonni approach.

To answer the question Q3 we performed the same tests to
check whether the distribution of the SNR/nbLog ratio was sim-
ilar in the three classes of writers on the one hand and in all the
classes of writers compared by pair on the other hand. Results

Table 1 | Test on classes for the SNR for oblique traces.

SNR threshold 25 dB GS-MS-PS GS-MS GS-PS MS-PS

Test statistic 9.463 0.539 8.690 4.919

Ddl 2 1 1 1

p-value 0.009 0.463 0.003 0.027

Critical value 5.991 3.841 3.841 3.841

Bold is used to indicate statistical significance (p-value <0.05). The chi square

test was used to compare the distributions of the SNR.

FIGURE 4 | SNR (A), nbLog (B), and SNR/nbLog ratio (C) as functions of the writer class for all movements.
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Table 2 | Test on classes nbLog, SNR/nbLog, and SNR for oblique traces.

Variable nbLog Kruskal–Wallis SNR/nbLog Kruskal–Wallis SNR Kruskal–Wallis

(p-value) chi-squared W (p-value) chi-squared W (p-value) chi-squared W

GS-MS-PS 2.025e-21 95.2973 4.071e-11 47.849 8.6e-3 14.116

GS-MS 6.544e-10 6471.5 3.809e-02 15659 0.1742 12031

GS-PS 7.807e-21 3285.5 1.960e-08 14604 2.21e-4 13225

MS-PS 2.679e-05 6538 1.315e-02 13532 0.0165 12058

Bold is used to indicate statistical significance (p-value <0.0166, corresponding to α = 0.05 corrected for multiple comparisons using Bonferonni). The Kruskal–Wallis

test was used to compare several distributions, and the Mann Whitney test to compare two distributions.

indicate that all distribution had significantly different averages
(Table 2) for the three classes of writers considered together
(p-values = 4.071e-11) as well as for each class taken by pair
except for the GS-MS pair. Finally to answer the question Q4,
we performed the same tests to check whether the distribution
of the SNR was similar in the three classes of writers and in all
the classes of writers compared by pair. Results indicate that the
distributions had significantly different averages (Table 2) for the
three classes of writers considered together (p-values = 8.60e-
3) as well as for the pairs of classes GS-PS, MS-PS, (p-values =
2.21e-4/0.0165). Only the distribution of the SNR for GS and
MS was similar (p-value = 0.1742), which suggests that after 1
year of handwriting learning in the PS group, the children have
already made substantial progresses. When they reach the MS
and the GS groups, the quality of the reconstruction of their
trajectories become similar but still differ in term of the num-
ber of lognormal needed to reconstruct these. In short, the box
plots of the Figures 4B,C show that for classes MS, GS, the more
the writers advance in their writing learning phase, the more
they tend control their lognormal behavior. That is, they use
fewer lognormals to perform a trace and their ability to con-
trol their motor system, as assessed by the ratio SNR/nbLog, is
improved.

AGING
Reaching movements
Figure 5 shows, for both NRF and WRF samples, scatter plots
displaying the relationship between the numbers of movements
associated with a poorer delta-lognormal modeling according to
the SNR < λ rule for the λ taken in decreasing order as 30, 25,
20, and 15 dB. In these graphs, a positive slope indicates that older
participants have more difficulty producing neat delta-lognormal
movements, suggesting poorer motor control.

A logistic regression was performed to model the variation
of the proportion of low SNR movements as a function of the
age. The best fitting curve was added on the plots of Figure 5.
Modeling coefficients and associated p-values are reported in
Table 3.

As can be seen by the positive age coefficients in Table 3,
regardless of the selected λ threshold, there is a significant overall
increase of proportion of low-SNR movements with age. These
data clearly support a positive relationship between age and the
proportion of low-SNR movements.

The relationship between age and the delta-lognormal move-
ment can also be appreciated in Figure 6, which shows a scatter

FIGURE 5 | Scatter plots of the proportion of rejected movements

when considering the rejection criterion SNR < λ, for different values

of λ (in dB). A logistic regression curves has been added to the plots to
show the average tendency. The plots (A,C,E,G) refer to the population
with No Risk Factor (NRF) having a SNR< 30,25, 20 and 15 dB, respectively.
The plots (B,D,F,H) refer to the population With Risk Factor (WRF) under
the same SNR conditions.

plot of the robust average SNR as function of the subjects’
age. To compute this average, SNR from the three reaction
time tests was pooled since there were no statistically significant
differences between the SNR obtained in these tests (p > 0.05).
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The Minimum Volume Ellipsoid algorithm (Rousseeuw and
Leroy, 1987) was used for robust computation.

Using a linear model to regress the SNR toward the age, a sig-
nificant effect of the age factor is obtained [NRF: F(1, 55) = 4.488,
p = 0.039; WRF: F(1, 61) = 14.30, p = 0.00038], with a large vari-
ability causing a low coefficient of determination (R2

NFR = 0.075,
R2

WFR = 0.19). Overall, the effect of age on the deterioration of
the motor control causing a decrease of the SNR is supported by
these data and the hypothesis of a migration away from a lognor-
mal behavior with the aging process is clearly corroborated.

Triangular drawings
A regression analysis similar to the one performed in section
Reaching Movements was performed for the data from trian-
gular drawings, with the difference that beside age, the impact
of the drawing orientation and triangle size are also modeled 4.
Using α = 0.05 as threshold for statistical significance, only age
(pNFR = 0.03, pWFR = 0.0001) and triangle size (pNFR = 0.03,
pWFR = 0.003 for the difference between large and medium trian-
gles; pNFR = 6e − 15, pWFR < 2 − 16 for the difference between

Table 3 | Modeling coefficients and associated p-values computed for

logistic modeling of data shown in Figure 5.

SNR threshold NRF WRF

Intercept

(p-value)

Age

(p-value)

Intercept

(p-value)

Age

(p-value)

30 −0.2550

(2.59e-2)

0.01765

(9.00e-10)

−0.4873

(2.04e-3)

0.03440

(2.67e-38)

25 −1.8189

(2.38e-47)

0.02134

(1.30e-17)

−1.8462

(1.57e-37)

0.03578

(1.63e-56)

20 −4.2304

(4.12e-76)

0.03592

(2.52e-18)

−2.6934

(1.71e-52)

0.02640

(5.14e-24)

15 −8.5925

(1.02e-24)

0.06751

(1.42e-7)

−5.6344

(6.55e-41)

0.04233

(4.87e-13)

Bold is used to indicate statistical significance (p-value <0.05).

FIGURE 6 | Scatter plot linking the average SNR to the subjects’ age.

The lines show the best linear models associated with these data. The plot
(A) is for the population with No Risk Factor (NRF) and the plot (B) for the
population With Risk Factor (WRF).

4Using the equation notation used in the S statistical language, the regression
performed follows the formula SNR ∼ age + size∗direction.

large and small triangles) were found significant for the SNR,
with higher SNR in older subjects and for smaller triangular
movements.

For nbLog and SNR/nbLog, only age (pNFR = 1e − 6,
pWFR = 8e − 11 for nbLog; pNFR = 0.0002, pWFR = 2e − 11 for
SNR/nbLog) is significant in both samples. For the WRF sam-
ple, the size difference of drawings also has a significant impact
when comparing small triangles with large ones for SNR/nbLog
(pWFR = 0.02).

A second analysis was performed on averaged values of
response variables aggregated per subject, regardless of movement
properties (i.e., triangle size and orientation). Estimated effects
and p-values are reported in Table 4. P-values are of course less
significant for this sigma-lognormal analysis than for the previous
regressions on the delta-lognormal data because the sample size is
smaller. However, the estimated statistical significances for demo-
graphic factors are more reliable because there is no repeated
measurement in this analysis.

As shown in this table, the SNR is not a discriminative fac-
tor here. All the subjects were able to carry out the expected task
and the ScriptStudio software was able to reconstruct all the tra-
jectories with very high SNR. It is the nbLog, and albeit to a
lesser extent SNR/nbLog, that are more relevant. In other words,
although the subjects were successful in this specific experiment,
this success was obtained at the expense of using more lognormal
components to execute their movements.

DISCUSSION
LEARNING
The lognormal performance criteria allowed us to observe a
tendencyintheyoungwriters tomovetowarda lognormalbehavior
as characterized by the three criteria used in this study. In fact,
although the participants were early in their learning of the writing
process, each of the three criteria (SNR, nbLog, and SNR/nbLog)
allow us to observe that the more children advance in their
learning, the more their movements tend to have the lognormal
scriptural characteristics of better mastered graphomotricity. This
phenomenon is more evident with the drawing of oblique traces
than for the bridges, which are a more complex shape. From a

Table 4 | Modeling coefficients and associated p-values computed for

the demographic factors.

Response NRF WRF

variable
Intercept

(p-value)

Age

(p-value)

Intercept

(p-value)

Age

(p-value)

SNR 21.28

(5.64e-42)

0.01516
(0.18)

21.82

(2.49e-46)

0.01095
(0.18)

nbLog 5.889

(3.61e-10)

0.03733

(0.037)

6.510

(8.41e-6)

0.06002

(0.0048)

SNR/nbLog 3.499

(2.03e-18)

−0.009885
(0.079)

3.196

(1.27e-17)

−0.01349

(0.0016)

Bold is used to indicate statistical significance (p-value <0.05).
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global and operational perspective, such results can be interesting
when considering the definition of rapid tests for the evaluation
of young children’s motor control abilities in school.

AGING
The hypothesis that age results in a divergence from lognormality
is supported by our study of fast reaching and triangular move-
ments. For the delta-lognormal reconstruction of rapid single
strokes, the SNR decrease with age as a result of motor con-
trol degradation is generally supported. For the sigma-lognormal
reconstruction of the triangles, taking into account the number
of lognormal components used to model the movement makes
apparent the divergence effect. In other words, the number of
lognormal components used in sigma-lognormal modeling is
robustly linked to the age factor in this specific experiment. This
might suggest that the deterioration of motor control with aging
is associated with the development of compensatory strategies
such as emitting more motor commands to generate an adequate
movement for a given task. One must also take into account that
a small part of this effect might be associated with the fact that
the Robust X0 extractor used for obtaining the sigma-lognormal
parameters tries to increase the SNR up to 25 dB by adding log-
normal components as long as they help to increase the SNR.
However, this latter overestimation effect seems to be of mild
important since the SNR/nbLog criterion confirms the aging
tendency in one of our groups (i.e., WRF).

We also note that, in most cases, the same general trends
have been observed in the two samples studied, which gives us
high confidence that the relationships reported as significant on
both population are not occurring by chance. Put together, the
results of section Reaching Movements and Triangular Drawings
indicate that lognormality (i.e., high SNR for lognormal model-
ing) and command efficiency (i.e., small number of lognormal
components) are high for young adults and decrease with aging.

CONCLUSION
In this paper, we have investigated the concept of the ideal lognor-
mal handwriter, as seen through the paradigm of the Kinematic
Theory of rapid human movements. Starting from the fact that
this theory predicts a convergence toward a lognormal impulse
response for neuromuscular systems that are made up of well-
synchronized subsystems, we have extended this interpretation to
present the capacity to reconstruct the velocity profile of a move-
ment with lognormal strokes as an indicator of the fine motor
control capacity of the person who produced that movement.
We first made a brief survey of the Kinematic Theory to clearly
define the concept of lognormality and then we reported on some
studies demonstrating that lognormality is indeed exploited by
mature subjects to succeed in some required tasks. With this ideal
descriptor in mind, we then investigated a corollary of this defini-
tion: the migration toward lognormality as young children grow
up and the deviation from lognormality with aging.

For the first case, we have studied the handwriting of young
children. We have shown that three indicators—SNR, nbLog, and
SNR/nbLog as extracted from the sigma-lognormal model—can
effectively point out the converging behavior toward lognormal-
ity of young writers producing simple movements. Indeed, the

quality of the reconstruction increases with age and school-based
learning of handwriting for oblique traces. For the oblique traces,
the older the writer, the better is the control of the movements. In
other words, the nbLog is smaller and the SNR/nbLog is higher.
To more accurately characterize the PS group in this hierarchy,
we will have to increase our dataset and eventually explore other
indicators to be combined with those that are already at our
disposal.

For the second case, we studied the handwriting of two popu-
lations of adults (with and without brain stroke risk factors), each
participant being required to produce rapid straight strokes in
reaction to a given stimulus and triangular movements. For rapid
handwriting strokes, we have shown that the move away from
lognormality with age was clearly observed as a decrease of the
SNR with age. For triangular movements, the trajectories could be
reconstructed with good SNR and the nbLog necessary for recon-
struction was clearly associated with the effect of aging, with older
participants needing more motor commands to perform the same
type of movement.

Apart from using the concept of lognormality to characterize
the level of learning in the first years of kindergarten and the effect
of aging on human motor control, the same approach can be
used to study departure from the ideal lognormal behavior when
health problems affect handwriting production. For instance, a
complete analysis of the whole population used in this experi-
ment (O’Reilly and Plamondon, 2011, 2012a,b,c; O’Reilly, 2012;
Plamondon et al., 2014b) clearly shows that there is a relationship
between the presence of brain stroke risk factors and the char-
acteristics of human movements as analyzed with the Kinematic
Theory. Although a large part of this may be attributed to the
effect of age and gender, there is convincing evidence that these
two factors do not account for it all. Furthermore, in a recent
study (Van Gemmert et al., 2013), it is observed that the nbLog
variable was significantly larger for individuals with Parkinson’s
disease than for an age-matched control group. A similar analysis
on Alzheimer’s disease has just started (Impedovo et al., 2013). In
this perspective, we can also assume that the same methodology
could be used for monitoring the rehabilitation process after some
injuries (Rohrer et al., 2002; O’Reilly and Plamondon, 2009b).
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