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In this paper, we consider a family of recently-proposed measurement invariance tests that
are based on the scores of a fitted model. This family can be used to test for measurement
invariance w.r.t. a continuous auxiliary variable, without pre-specification of subgroups.
Moreover, the family can be used when one wishes to test for measurement invariance
w.r.t. an ordinal auxiliary variable, yielding test statistics that are sensitive to violations
that are monotonically related to the ordinal variable (and less sensitive to non-monotonic
violations). The paper is specifically aimed at potential users of the tests who may wish
to know (1) how the tests can be employed for their data, and (2) whether the tests
can accurately identify specific models parameters that violate measurement invariance
(possibly in the presence of model misspecification). After providing an overview of the
tests, we illustrate their general use via the R packages lavaan and strucchange. We then
describe two novel simulations that provide evidence of the tests’ practical abilities. As
a whole, the paper provides researchers with the tools and knowledge needed to apply
these tests to general measurement invariance scenarios.
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1. INTRODUCTION
Some of the papers in this special issue focus on the topic
of approximate measurement invariance: we know that strict
hypotheses of measurement invariance do not hold exactly across
different groups, and this should be reflected in corresponding
tests of measurement invariance. Under a Bayesian approach, we
may implement the idea of approximate invariance (e.g., Muthén
and Asparouhov, 2013) by replacing across-group equality con-
straints on parameters with informative prior distributions. In
this paper, we describe an alternative approach: the development
of test statistics that are especially sensitive to violations that are
monotonic w.r.t. the variable of interest (and less sensitive to vio-
lations that are non-monotonic w.r.t. the variable of interest).
Because monotonic violations are more likely to be interpretable
and interesting to the researcher, we can gain more power to
detect these violations by de-emphasizing other types of viola-
tions. The resulting test statistics are specifically applicable to
situations where one wishes to test for measurement invariance
with respect to an ordinal variable, and they are special cases of a
family of tests that may be used to study measurement invariance
w.r.t. continuous, categorical, and ordinal variables.

The study of measurement invariance w.r.t. categorical aux-
iliary variables (via, e.g., likelihood ratio tests) is popular and
well known, and ordinal auxiliary variables are typically treated
as categorical in measurement invariance contexts. The study of
measurement invariance w.r.t. continuous variables is newer and
less known: along with the family described here, other meth-
ods include moderated factor models (Purcell, 2002; Bauer and
Hussong, 2009; Molenaar et al., 2010) and factor mixture models
(Dolan and van der Maas, 1998; Lubke and Muthén, 2005). These

methods require estimation of a model of greater complexity,
while the tests described in this paper work solely on the output
of a traditional factor model (see Merkle and Zeileis, 2013, for
further comparison of these methods). These methods all assume
that the estimated model is correctly specified, save possibly for
differences in parameter values between individuals.

The family of tests described here have recently been applied to
the study of measurement invariance (Merkle and Zeileis, 2013;
Merkle et al., 2014), though their practical application has been
limited to a small set of simulations and data examples. In this
paper, we provide a detailed illustration of the tests’ use and per-
formance under scenarios likely to be encountered in practice.
While the previous papers have described and studied the tests
under ideal conditions, we focus here on two topics of interest
to the applied researcher: software considerations for carrying
out the tests, and test performance under model misspecification.
The latter issue is particularly important because, in practice, all
models are misspecified. Hence, practically-useful tests of mea-
surement invariance should be robust to model misspecification.

In the following sections, we first briefly review the theoreti-
cal framework of the proposed tests and provide a short tutorial
illustrating the use of the tests in R (R Core Team, 2013). Next, we
study the tests’ performance in simulations that mimic practical
research scenarios. Finally, we provide some further discussion on
the tests’ use in practice.

2. BACKGROUND
This section contains background and discussion of the proposed
statistics as applied to structural equation models (SEMs); for a
more detailed account, see Merkle and Zeileis (2013) and Merkle
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et al. (2014). For details on the statistics’ application to general
statistical models, see Zeileis and Hornik (2007).

As currently implemented for SEM, the statistical tests
described in this paper can be applied to models that are esti-
mated via a multivariate normal or Wishart likelihood (or dis-
crepancy) function, with extension to other discrepancy functions
being conceptually straightforward. The tests are carried out fol-
lowing model estimation, making use of output associated with
the fitted model. In general, we fit a model that restricts param-
eters to be equal across observations, then carry out a post hoc
test to examine whether specific parameters vary across obser-
vations. This procedure is similar in spirit to the calculation of
modification indices (Bentler, 1990) and to Lagrange multiplier
tests (Satorra, 1989), and, in fact, those statistics can be viewed as
special cases of the family described here.

Following model estimation, the tests primarily work on the
scores of the fitted model; these are defined as

s(θ; xi) =
(
∂�(θ; xi)

∂θ1
, . . . ,

∂�(θ; xi)

∂θk

)�
, i = 1, . . . , n, (1)

where �(θ; xi) is the likelihood associated with individual i and
θ is a k-dimensional parameter vector. The corresponding max-
imum likelihood estimate θ̂ solves the first order condition:∑n

i = 1 s(θ̂; xi) = 0.
To verbally describe Equation (1), each individual has k scores

describing the extent to which the fitted model describes that par-
ticular individual. These scores are similar to residuals and, in
fact, the tests can be applied directly to residuals in other con-
texts (see Zeileis and Hornik, 2007): we can roughly interpret
scores near zero as providing a “good” description of an indi-
vidual, with scores far from zero providing a “bad” description
of an individual. This is only a rough interpretation as, even
when measurement invariance holds, some individuals’ scores
will be further from zero than others. However, under measure-
ment non-invariance, the scores will differ for different subgroups
of individuals (say, scores in subgroup A tend to be negative and
scores in subgroup B tend to be positive). Each of the k scores rep-
resents one model parameter, which, as further described below,
allows us to test subsets of model parameters for invariance. While
scores can be obtained under the multivariate normal likelihood
(discrepancy) function and alternatives such as generalized least
squares, most SEM software fails to supply the scores to the user.

To use the scores for testing, we order individuals according
to an auxiliary variable V (the variable against which we are
testing measurement invariance) and look for “trends” in the
scores. For example, imagine that we are testing for measurement
invariance w.r.t. age. If there exists measurement non-invariance
w.r.t. age, then some parameter estimates may be too large for
young individuals and too small for old individuals (say). This
result would be reflected in the scores, where young individuals’
scores may be greater than zero and old individuals’ scores less
than zero (though the sign of the scores will depend on whether
a function is being minimized or maximized). Conversely, if
measurement invariance holds, then all individuals’ scores will
fluctuate randomly around zero.

To formalize these ideas, we define a suitably scaled cumulative
sum of the ordered scores. This may be written as

B(t; θ̂) = Î
−1/2

n−1/2
�n·t�∑
i = 1

s(θ̂; x(i)) (0 ≤ t ≤ 1) (2)

where Î is an estimate of the information matrix, �nt� is the inte-
ger part of nt (i.e., a floor operator), and x(i) reflects the individual
with the i-th smallest value of the auxiliary variable V . While the
above equation is written in general form, we can restrict the value
of t in finite samples to the set {0, 1/n, 2/n, 3/n, . . . , n/n}. We
focus on how the cumulative sum fluctuates as more individu-
als’ scores are added to it, e.g., starting with the youngest and
ending with the oldest individual if age is the auxiliary variable
of interest. The summation is premultiplied by an estimate of
the inverse square root of the information matrix, which serves
to decorrelate the fluctuation processes associated with individ-
ual model parameters while preserving the behavior of individual
parameters’ fluctuations.

Under the hypothesis of measurement invariance, a central
limit theorem can be used to show that the fluctuation of the
above cumulative sum follows a Brownian bridge (Hjort and
Koning, 2002). This result allows us to calculate p-values and crit-
ical values for test statistics under the hypothesis of measurement
invariance. We can obtain test statistics associated with all model
parameters and with subsets of model parameters.

Multiple test statistics are available, depending on how one
summarizes the behavior of the cumulative sum of scores. For
example, one could take the absolute maximum that the cumula-
tive sum attains for any parameter of interest, resulting in a double
max statistic (the maximum is taken across parameters and indi-
viduals). Alternatively, one could sum the (squared) cumulative
sum across parameters of interest and take the maximum or the
average across individuals, resulting in a maximum Lagrange mul-
tiplier statistic and Cramér-von Mises statistic, respectively (see
Merkle and Zeileis, 2013, for further discussion). These statistics
are given by

DM = max
i = 1,...,n

max
j = 1,...,k

|B(θ̂)ij| (3)

CvM = n−1
∑

i = 1,...,n

∑
j = 1,...,k

B(θ̂)2
ij, (4)

max LM = max
i = i,...,ı

{
i

n

(
1 − i

n

)}−1 ∑
j = 1,...,k

B(θ̂)2
ij. (5)

Critical values associated with DM can be obtained analytically,
while critical values associated with the other statistics can be
obtained from direct simulation (Zeileis, 2006) or from more
refined techniques (Hansen, 1997). This issue should not be
important to the user, as critical values are obtained directly from
the R implementation described later.

Importantly, the above statistics were derived for situations
where individuals are uniquely ordered according to the auxiliary
variable. This is not always the case for measurement invariance
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applications, where the auxiliary variable is often ordinal. To rem-
edy this situation, Merkle et al. (2014) extended the framework to
situations where one has an ordinal auxiliary variable of interest.
Essentially, one allows all individuals with the same value of the
auxiliary variable to enter into the cumulative sum at the same
time. Analogous test statistics are then computed, with modified
critical values being adopted to reflect the change in the statistics’
computation.

For an ordinal auxiliary variable with m levels, these modifica-
tions are based on t� (� = 1, . . . ,m − 1), which are the empirical,
cumulative proportions of individuals observed at the first m − 1
levels. The modified statistics are then given by

WDMo = max
i∈{i1,...,im − 1}

{
i

n

(
1 − i

n

)}−1/2

max
j = 1,...,k

|B(θ̂)ij|, (6)

max LMo = max
i∈{i1,...,im − 1}

{
i

n

(
1 − i

n

)}−1 ∑
j = 1,...,k

B(θ̂)2
ij, (7)

where i� = �n · t�� (� = 1, . . . ,m − 1). Critical values associated
with the WDMo statistic can be obtained directly from a multi-
variate normal distribution (see Hothorn and Zeileis, 2008), while
critical values associated with max LMo can be obtained via sim-
ulation. This simulation is somewhat computationally intensive
and, in practice, takes about 10 min on the authors’ comput-
ers when 50,000 replications are sampled from the approximate
asymptotic distribution. However, the wait is often worth it, as
Merkle et al. (2014) found the performance of the max LMo

statistic to have more power than the WDMo statistic and the
traditional likelihood ratio test statistic when the measurement
invariance violation is monotonic with the ordinal variable.

Finally, if the auxiliary variable V is only nominal/categorical,
the cumulative sums of scores can be used to obtain a Lagrange
multiplier statistic. This test statistic can be formally written as

LMuo =
∑

�= 1,...,m

∑
j = 1,...,k

(
B(θ̂)i�j − B(θ̂)i�− 1j

)2
, (8)

where B(θ̂)i0j = 0 for all j. This statistic is asymptotically equiva-
lent to the usual, likelihood ratio test statistic, and it is advanta-
geous over the likelihood ratio test because it requires estimation
of only one model (the restricted model). We make use of this
advantage in the simulations, described later.

3. TUTORIAL
In this section, we demonstrate how the above tests can be car-
ried out in R, using the package lavaan (Rosseel, 2012) for model
estimation and strucchange (Zeileis et al., 2002; Zeileis, 2006)
for testing. We use data from Froh et al. (2011) concerning the
applicability of adult gratitude scales to youth, available in the R
package psychotools (Zeileis et al., 2013). The data consist of
responses to three adult gratitude scales from n = 1401 youth
aged 10–19 years. The original authors were specifically interested
in whether the scales were measurement invariant across age.
Because the sample size at each age was unbalanced, the authors
created age groups of approximately equal sample size. In the

examples below, we test for measurement invariance across these
age groups. For illustrative purposes, we conduct multiple tests
and compare them to the traditional significance level of 0.05.
In practice, however, one should generally adjust the significance
level for the number of tests carried out. Additionally, because
measurement invariance researchers often have large sample sizes,
cross-validation methods can be useful to help verify the test
results.

We focus on measurement invariance of the factor loadings
associated with one of the scales in the dataset, the GQ-6 scale
(McCullough et al., 2002). This scale consists of five Likert scale
items (there is a sixth item that is omitted from analyses, follow-
ing Froh et al.) with seven points each. We fit a one-factor model
to these items, examining whether the factor model parameters
are invariant with respect to age group. While the age group vari-
able is best considered ordinal, for demonstration we consider its
treatment as categorical, continuous, and ordinal. Each of these
treatments is described below in a separate section.

3.1. CATEGORICAL TREATMENT
Measurement invariance is most often tested using multiple
groups models (see, e.g., van de Schoot et al., 2012). This
amounts to assuming that our auxiliary variable is categorical
(i.e., unordered), which is not true for the age groups in the data.
However, we demonstrate the procedure for completeness.

To conduct the analysis, we first load the data and keep only
complete cases for simplicity (though the tests can be applied to
incomplete data).

R> data("YouthGratitude", package = "psychotools")
R> compcases <- apply(YouthGratitude[, 4:28], 1,
+ function(x) all(x %in% 1:9))
R> yg <- YouthGratitude[compcases, ]

Next, we fit two models in lavaan: a one-factor model where load-
ings are restricted to be equal across age groups, and a one-factor
model where loadings are free across age groups. This allows us
to test a hypothesis of weak measurement invariance that was of
interest to the original researchers (though, for ordinal variables,
all types of measurement invariance can be examined via the tests
described previously). By default, the code below sets the scale by
fixing the first loading to 1.

R> restr <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 +
+ gq6_5",
+ data = yg, group = "agegroup",
+ meanstructure = TRUE,
+ group.equal = "loadings")
R> full <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 +
+ gq6_5",
+ data = yg, group = "agegroup",
+ meanstructure = TRUE)

Finally, we can get the results of a likelihood ratio test via the
anova() function, which implies that the GQ-6 violates mea-
surement invariance.

R> anova(full, restr)

Chi Square Difference Test
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Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
full 30 18947 19414 139
restr 50 18945 19308 177 38.1 20 0.0087

To obtain the asymptotically equivalent LMuo (Equation 8), we
can use the sctest() function from strucchange:

R> sctest(restr, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "LMuo")

M-fluctuation test

data: restr
f(efp) = 31.4, p-value = 0.05018

This command specifies that we assess the parameters 1–4 of
model restr after ordering the observations according to
agegroup. Additionally, the observed information matrix is
used as the variance-covariance matrix. Note that the model
parameters 1–4 are the factor loadings supplied by lavaan, which
can be seen by inspecting coef(restr). This also leads to
somewhat smaller test statistics that are very close to being
significant at the 5% level.

Because our sample size is large, the likelihood ratio test is
known to be sensitive to small measurement invariance viola-
tions (Bentler and Bonett, 1980). That is, the LRT and LMuo test
from Equation (8) are sensitive to small measurement invariance
violations that are not likely to be of interest to researchers. For
example, imagine that the 15-year-olds’ parameters are slightly
different than the other age groups. The 15-year-olds are in
the middle of the age groups, and there is not likely to be
any theoretical justification for 15-year-olds differing from every
other age group. One solution to this problem would be the
Bayesian, approximate invariance methods described in the intro-
duction (Muthén and Asparouhov, 2013). Alternatively, we can
use the “ordinal” score-based statistics (from Equations (6), (7))
to obtain tests that are sensitive to the ordering of age.

3.2. CONTINUOUS TREATMENT
If we are interested in measurement invariance violations that
are monotonic with the age groups, it is perhaps simplest to
treat the age groups as continuous. In doing so, we can use
the statistics from Equations (3–5). That is, we can fit a model
whose parameters are restricted to be equal across all individu-
als and then examine how individuals’ scores s(θ̂; xi) fluctuate
with their age (where age ties are broken arbitrarily, using the
original order of the observations within each age group). This
is demonstrated below, with similar code being useful when
one is testing for measurement invariance w.r.t. truly continuous
variables.

Again, we employ the sctest() function to assess param-
eters 1–4 from the restricted model restr after ordering w.r.t.
agegroup:

R> dm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "DM")
R> cvm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "CvM")

R> maxlm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "maxLM")
R> c(dm$p.value, cvm$p.value, maxlm$p.value)

[1] 0.03804 0.11557 0.00414

We see that two of the three p-values output at the end of the
code are larger than that associated with the LRT (with the CvM
statistic being non-significant).

The tests carried out here assume a unique ordering of indi-
viduals by age, but this is obviously not the case. To compute
the statistics and p-values, the strucchange package implicitly
employed the (arbitrary) ordering of individuals who are tied on
age. If we were to change this ordering, the resulting statistics
and p-values would also change, potentially switching signifi-
cant results to being non-significant and vice versa. Clearly, this
is problematic. To accurately account for the multiple observa-
tions at the same age level, we must use the ordinal tests from
Equations (6) and (7). These are described next.

3.3. ORDINAL TREATMENT
The main difference between the ordinal test statistics and
their continuous counterparts is that the ordinal statistics are
unchanged when re-ordering individuals within the same age
group. To compute the test statistics, we allow the scores of all tied
individuals to enter the cumulative sum (Equation (2)) simulta-
neously. This results in modified critical values and test statistics
that are sensitive to measurement invariance violations that are
monotonic w.r.t. age group.

To carry out the tests, we can rely on the same function that we
used for the continuous test statistics. As mentioned previously,
calculation of the max LMo statistic (Equation (7)) can be lengthy
from the need to simulate critical values (though see the end of
this section, which provides a partial speed-up).

R> wdmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "WDMo")
R> maxlmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "maxLMo")

R> c(wdmo$p.value, maxlmo$p.value)

[1] 0.0588 0.0970

In computing the ordinal test statistics, we obtain p = 0.059
and p = 0.097, respectively.1 Both p-values are clearly larger than
that of the likelihood ratio test and neither is significant at α =
0.05. This provides evidence that there is no measurement invari-
ance violation that is monotonic with age group. Instead, given
the large sample size, the likelihood ratio test may be overly sen-
sitive to anomalous, non-monotonic violations at one (or a few)
age groups.

1To replicate both p-values exactly, R’s random seed needs to be set by
set.seed(1090) prior to each sctest() call.
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In addition to test statistics, “instability plots” can be gener-
ated by setting plot = TRUE in the sctest() calls above.
Figure 1 displays the resulting plots, which represent the ordi-
nal statistics’ fluctuations across levels of age group. The x-axis
reflects age group and the y-axis reflects test statistic values
(larger values reflect more instability), with the dashed horizon-
tal lines reflecting critical values. The hypothesis of measurement
invariance is rejected if the sequence of test statistics crosses
the critical value. While the measurement invariance tests are
non-significant, the plots imply some instability in the older age
groups (15, 16).

Finally, if the user anticipates multiple calculations of the
max LMo statistic for a specific dataset, it is possible to save time
by simulating critical values once and re-using them for multiple
tests. We can use the ordL2BB() function to generate critical
values and store them in an object mLMo, say. Then, this object
can be employed to obtain the test statistic in the usual manner.

R> mLMo <- ordL2BB(yg$agegroup)
R> maxlmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = mLMo)

The ordL2BB() command automatically generates critical val-
ues for testing 1–20 parameters at a time. If only a smaller number
of parameters (e.g., only up to 6) is to be tested, some computa-
tion time can be saved by setting the nproc argument accord-
ingly (e.g., nproc = 1:6). In the same way, nproc can be
employed to simulate higher-dimensional fluctuation processes
suitable for testing more parameters. One can re-use mLMo in
this manner for further tests of the youth gratitude data. Critical
values must be resimulated for new data, however, because they
depend on the proportion of individuals observed at each level of
the ordinal variable (denoted t� for Equation (7)).

In the above sections, we have illustrated the score-based tests’
computation in R. We suspect that the ordinal tests will be most
popular with users, because measurement invariance tests are typ-
ically carried out across categories (ordered or not), as opposed
to continuous variables. Thus, in the sections below, we conduct

novel simulations to study the ordinal statistics’ expected behav-
ior in practice. In particular, we wish to study (1) the extent to
which the ordinal statistics attribute measurement invariance vio-
lations to the correct parameter(s), and (2) the extent to which the
tests are robust to model misspecification. These issues are espe-
cially important to examine because SEMs are typically complex,
with many inter-related parameters that may exhibit measure-
ment invariance. Previous applications of score-based tests have
typically focused on regression-like models with only a small
number of parameters that may exhibit instability (e.g., Zeileis
and Hornik, 2007). Thus, the simulations here provide general
evidence about the extent to which the tests accurately capture
instabilities in complex models.

4. SIMULATION 1
In Simulation 1, we examined the extent to which the proposed
tests can “localize” a measurement invariance violation. If, say, a
factor loading violates measurement invariance, it is plausible that
this violation impacts other parameter estimates, including factor
covariances, intercepts or the unique variance associated with the
manifest variable in question. Thus, the goal of the Simulation 1
is to examine the extent to which the proposed tests attribute the
measurement invariance violation to the parameters that are truly
in violation.

4.1. METHODS
To examine these issues, we generated data from a two-factor
model with three indicators each (see Figure 2). The measure-
ment invariance violation occurred in one of four places: the fac-
tor loading associated with Scale 1 (λ11), the intercept (μ11), the
unique variance (ψ11), or the factor covariance (φ12). Note that
the latter violation is not necessarily a measurement invariance
(e.g., Meredith, 1993), but it is still a parameter instability that
can occur in this type of model. We then tested for measurement
invariance (parameter instability) in seven subsets of parameters:
each of the four individual parameters noted above, all six factor
loadings, all six unique variances and all six intercepts.

Power and Type I error were examined across three sam-
ple sizes (n = 120, 480, 960), three numbers of categories (m =

FIGURE 1 | Fluctuation processes for the WDMo statistic (left panel) and the max LMo statistic (right panel).
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FIGURE 2 | General model used for the simulations.

4, 8, 12), and 17 magnitudes of invariance violations (described
in the following sentences). The measurement invariance vio-
lations began at level 1 + m/2 of the auxiliary variable V and
were consistent thereafter: individuals below level 1 + m/2 of V
deviated from individuals at or above level 1 + m/2 by d times
the parameters’ asymptotic standard errors (scaled by

√
n), with

d = 0, 0.25, 0.5, . . . , 4 (see replication code for specific values
of the standard errors). For each combination of sample size
(n) × violation magnitude (d) × violating parameter × cate-
gories (m), 5000 datasets were generated and tested. Statistics
from Equations (6–8) were examined. As mentioned previously,
Equation (8) is asymptotically equivalent to the usual likelihood
ratio test. Thus, this statistic provides information about the
relative performance of the ordinal statistics vs. the LRT.

In all conditions, we maintained equal sample sizes in each
subgroup of the ordinal variable. Aside from the parameter
changes that reflect measurement invariance, the fitted models
matched the data generating model.

4.2. RESULTS
Full simulation results are presented in Figures 3–6. Figure 3 dis-
plays power curves as a function of violation magnitude in the fac-
tor loading λ11, with the parameters being tested changing across
rows, the number of levels m of the ordinal variable V across
columns, and lines reflecting different test statistics. Figures 4–6
display similar power curves when the factor covariance φ12, error
variance ε11, and intercept μ11 violate measurement invariance,
respectively. In these figures, we generally show tests associated
with parameters that exhibited non-zero power curves. For exam-
ple, in Figure 3, the middle row shows that power for tests of ψ11

stays near zero for all values of m and d. Similar rows have been
omitted from this figure and other figures.

Within each panel of Figures 3–6, the three lines reflect the
three test statistics. It is seen that the two ordinal statistics exhibit
similar results, with max LMuo demonstrating lower power across
all situations. This demonstrates the sensitivity of the ordinal
statistics to invariance violations that are monotonic with V .
In situations where only one parameter is tested, WDMo and
max LMo exhibit equivalent power curves. This is because, when
only one parameter is tested, the statistics are equivalent.

From these figures, one generally observes that the tests isolate
the parameter violating measurement invariance. Additionally,
the tests have somewhat higher power to detect measurement
invariance violations in the factor loading, factor covariance, and
intercept parameters, as opposed to the error variance parame-
ter. Finally, simultaneous tests of all factor loadings, all intercepts,
or all error parameters result in decreased power, as compared
to the situation where one tests only the violating parameter.
This occurs because, in testing a subset of parameters (only one
of which violates measurement invariance), we are dampening
the signal of a measurement invariance violation. This “damp-
ening” effect is more apparent for the max LMo statistic, because
it involves a sum across all tested parameters (see Equation 7).
Conversely, WDMo takes the maximum over parameters
(Equation 6), so that invariant parameters have no impact on this
statistic.

In summary, we found that the proposed tests can attribute
measurement invariance violations to the correct parameter. This
provides evidence that, in practice, one can have confidence in
the tests’ abilities to locate the measurement invariance viola-
tion. Of course, this statement is qualified by the fact that, in
this simulation, the model was correctly specified. In the follow-
ing simulation, we examine the tests’ performance in the likely
situation of model misspecification.
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FIGURE 3 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is λ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

FIGURE 4 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m, and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is φ12. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

5. SIMULATION 2
In Simulation 2, we examine the extent to which the results of
Simulation 1 are robust to model misspecification. Specifically, we
generate data from the factor analysis model used in the previous

section, except that the model contains an extra loading from
the second factor to Scale 1. The estimated model matches that
displayed in Figure 2, however, resulting in model misspecifi-
cation. The goal of this simulation is to examine the proposed
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FIGURE 5 | Simulated power curves for max LMo, WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is ψ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

statistics’ power to detect measurement invariance violations (and
to attribute the violation to the correct parameter) under this
misspecification.

5.1. METHOD
A measurement invariance violation could occur in each of the
four parameters from Simulation 1 (factor loading, factor covari-
ance, unique variance, and intercept), and a violation could also
occur in the extra, unmodeled loading. In each condition, a single
parameter exhibited the violation. Sample size and magnitude of
measurement invariance violation were manipulated in the same
way as they were in Simulation 1. The tested parameters were also
the same as Simulation 1.

5.2. RESULTS
Results of primary interest are conditions where the unmodeled
loading violates measurement invariance. A subset of results is
displayed in Figure 7. One can generally observe that tests of the
first loading and unique variance exhibited high “power,” which
is actually a high Type I error rate here. This Type I error is
also observed when testing all loadings and all unique variances
(see the Supplementary Material). Tests associated with the factor
covariance and intercept did not demonstrate this error, however.
In terms of specific statistic performance, max LMo and WDMo

demonstrated higher Type I error than LMuo in each panel, espe-
cially with increasing levels. This is likely because the unmodeled

loading’s non-invariance was monotonic with V ; if it were not
monotonic, we would expect LMuo to have higher Type I error.

When the parameter violating measurement invariance was
modeled, results were generally the same as Simulation 1. When
the modeled factor loading, λ11, violated measurement invari-
ance, the statistics were generally able to pick up the violation
despite the misspecification. Similar results were observed when
the unique variance, intercept and factor covariance parameters
violated measurement invariance; these results are all shown in
the Supplementary Material. In particular, power of the ordered
statistics was higher than power of the unordered statistic in each
panel.

In summary, the proposed test statistics appear robust to
unmodeled loading parameters, when the unmodeled loading
does not violate measurement invariance and when the rest of the
model is correctly specified (save for the measurement invariance
violation). If the unmodeled loading does violate measurement
invariance, the tests can still detect measurement invariance vio-
lations. The violations are assigned to modeled parameters that
do not violate measurement invariance, however. The impacted
parameters include the error variance and other loadings associ-
ated with the manifest variable that has an unmodeled loading.
Thus, as for other tests of measurement invariance, it is impor-
tant to study the extent to which the hypothesized model includes
all parameters of importance (i.e., the extent to which the model
is well specified).
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FIGURE 6 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is μ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

One could begin to study model misspecification by fitting
models with different discrepancy functions (say, a multivari-
ate normal function and a generalized least squares function).
If parameter estimates differ greatly across the functions, then
this implies model misspecification. Additionally, if one has a
large sample size, one could split the data into subgroups and
examine consistency of results across subgroups. These issues
are important for all the tests discussed here (score-based or
otherwise).

6. GENERAL DISCUSSION
In this paper, we first described a novel family of test statistics for
measurement invariance and illustrated their use via the R pack-
ages lavaan and strucchange. Next, we examined these statistics’
abilities to identify the parameter violating measurement invari-
ance under well-specified and misspecified models. We found that
the proposed statistics could generally isolate the model param-
eter violating measurement invariance, so long as the violating
parameter is included in the model.

In the remainder of the paper, we first compare the use these
tests to the use of traditional tests in practice. We then discuss test
extension to other fit functions and to other specialized models.

6.1. APPLICATIONS
Many of the applications in this volume, along with many mea-
surement invariance applications in general, focus on testing

across unordered categories such as nations or gender. As dis-
cussed earlier in this paper, the score-based tests for unordered
categories are equivalent to the usual likelihood ratio test. Given
a measurement invariance violation across these unordered cat-
egories, however, researchers typically wish to know why the
violation occurred. At this point, researchers may examine educa-
tion level, socioeconomic status, income levels, and so on across
the unordered categories. These variables are often ordinal or
continuous in nature, so that the family of tests described in this
paper are applicable. This is a first step toward describing why
measurement invariance violations occur, as opposed to simply
detecting measurement invariance violations. The tests described
here are convenient for this purpose, as they do not require a
new model to be estimated for each ordinal variable. Instead,
each ordinal variable defines an ordering of observations, which
in turn yields a test statistic that is specific to that ordinal variable.

6.2. EXTENSION
In this paper, we focused on testing for measurement invari-
ance in factor analysis models that assume multivariate normality
and that are estimated via maximum likelihood (ML). The fam-
ily of tests described here generally apply to estimation methods
that maximize/minimize a fit function, however (see Zeileis and
Hornik, 2007), so they are potentially applicable to alternative
SEM discrepancy functions such as generalized least squares
(e.g., Browne and Arminger, 1995). Score calculation for these
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FIGURE 7 | Simulated power curves for max LMo, WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 2.

The parameter violating measurement invariance is the unmodeled loading.
Panel labels denote the parameter(s) being tested and the number of levels
of the ordinal variable m.

alternative discrepancy functions has not been implemented (to
our knowledge), though the calculation could be implemented.
Test statistic calculation and inference would then proceed in
exactly the same manner as the calculation and inference illus-
trated in this paper. Study of the proposed tests’ application to
larger SEMs is warranted.

In addition to alternative fit functions, the tests can be
extended to other models estimated via ML. Of primary relevance
to the topic of measurement invariance, the tests can be extended
to item response models to examine differential item functioning.
In particular, Strobl et al. (2014) studied application of these tests
to the Rasch model, using them as the basis of a recursive par-
titioning procedure that segments subgroups of individuals who
exhibit DIF. Further study and extension of these tests for IRT are
warranted.

COMPUTATIONAL DETAILS
All results were obtained using the R system for statistical
computing (R Core Team, 2013), version 3.1.0, employing

the add-on package lavaan 0.5–16 (Rosseel, 2012) for fit-
ting of the factor analysis models and strucchange 1.5–0
(Zeileis et al., 2002; Zeileis, 2006) for evaluating the param-
eter instability tests. R and both packages are freely available
under the General Public License 2 from the Comprehensive
R Archive Network at http://CRAN.R-project.org/. R code
for replication of our results is available at http://semtools.
R-Forge.R-project.org/ and also in an online supplement to this
article.
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The accompanying zip file contains R code for replication of all
analyses and simulations from the article. File descriptions appear
below.

• mz-frontiers.R: Model estimation functions for simulations.
• sim-frontiers.R: Functions for data generation, power evalua-

tion, and power summaries.
• replication-frontiers.R: Code for the tutorial and simulations,

utilizing the other two files.
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