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The skills required to solve crossword puzzles involve two important aspects of lexical
memory: semantic information in the form of clues that indicate the meaning of the
answer, and orthographic patterns that constrain the possibilities but may also provide
hints to possible answers. Mueller and Thanasuan (2013) proposed a model accounting
for the simple memory access processes involved in solving individual crossword clues,
but expert solvers also bring additional skills and strategies to bear on solving complete
puzzles. In this paper, we developed an computational model of crossword solving that
incorporates strategic and other factors, and is capable of solving crossword puzzles
in a human-like fashion, in order to understand the complete set of skills needed to
solve a crossword puzzle. We compare our models to human expert and novice solvers
to investigate how different strategic and structural factors in crossword play impact
overall performance. Results reveal that expert crossword solving relies heavily on fluent
semantic memory search and retrieval, which appear to allow experts to take better
advantage of orthographic-route solutions, and experts employ strategies that enable
them to use orthographic information. Furthermore, other processes central to traditional
AI models (error correction and backtracking) appear to be of less importance for human
players.
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1. INTRODUCTION
Crossword puzzles were first introduced in 1913, and have
become both a popular pastime, mental training aid, and a
domain of study for psychological researchers (e.g., Nickerson,
2011), who have long acknowledged the role of memory access
in puzzle solving. Previously, Mueller and Thanasuan (2014) we
proposed a model of the basic memory search processes involved
in solving individual crossword clues, and suggest that the joint
access and constraint provided by cues in crossword puzzles make
it similar to expert decision making in many domains.

For many of the same reasons that make them engaging
puzzles for humans, crossword puzzles also pose an interesting
problem for Artificial Intelligence (AI) systems, as solving them
requires using many of the fundamental aspects of modern AI:
search, heuristics, constraint satisfaction, knowledge representa-
tion, optimization, and data mining. Because crossword solving
requires searching simultaneously within two distinct spaces (i.e.,
semantic and orthographic), and easily permits backtracking and
recursion, it is also a useful problem for learning and teaching
AI (e.g., Ginsberg et al., 1990; Harris et al., 1993; Shazeer et al.,
1999; Littman et al., 2002). “Dr. Fill” (Ginsberg, 2011) is currently
the best-known and most advanced AI crossword solver, and it
typically performs perfectly on nearly all “straight” puzzles, only
making mistakes on puzzles with complex or unusual themes or
letter arrangements (Lohr, 2012). For example, when competing
at the 2012 American Crossword Puzzle Tournament (ACPT), Dr.
Fill failed on a puzzle in which many of the answers were required

to be filled in backward, a twist that also challenged many human
solvers. Dr. Fill finished the 2012 ACPT 141st of approximately
600 contestants and improved to 92nd place in 2013, and 67th
place in 2014. The improvement over time is related not only
to broader knowledge corpora being used, but also the incorpo-
ration of more rules for handling tricky puzzle themes, which
often include puns, rebuses (i.e., letter substitutions), and other
wordplay devices.

Although Dr. Fill illustrates that AI can be competitive with
the best human players, AI systems typically use very non-human
strategies to accomplish this. In arriving at a final answer, they
may end up solving a puzzle dozens or hundreds of times, select-
ing the solution that best fits many constraints. In contrast,
human solvers use a different combination of skills, including
decision making, pattern recognition (Grady, 2010), lexical mem-
ory access (Nickerson, 1977) and motor skills such as typing or
moving in a grid. Speed-solvers develop these skills to challenge
themselves, to enable solving more puzzles per day (often five
or six), and to compete in competitions. They tend not to use
backtracking or error correction extensively (at least to the extent
that computerized systems do), and they are minimally impacted
by difficulty (see Mueller and Thanasuan, 2013). Moreover, they
still outperform AI solutions on puzzles that are moderately
challenging.

Although AI crossword solvers can complete many puzzles
almost perfectly, these systems tend not to be based on human
strategies or known human memory structure. In this paper, we
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adopt a Biologically-Inspired Artificial Intelligence approach (see
Samsonovich and Mueller, 2008) to understand human expert
crossword play, derived from assumptions about the lexical access
routes and solution strategies of expert crossword players. We will
use this model to understand the relative contributions of differ-
ent types of knowledge and strategies to crossword play, in an
effort to understand some of the cognitive skills that are highly
developed in superior crossword players.

2. AN RECOGNITION-PRIMED AI MODEL OF CROSSWORD
PLAY

In many domains, expert decisions appear to be described by
the Recognition-Primed Decision (RPD) model (Klein, 1993).
Although many decision theories focus on making choices
between clearly-defined options that often embody trade-offs,
RPD argues that what makes experts good at what they do is
in their ability to quickly generate and evaluate a single work-
able candidate solution from their vast knowledge and experience
(rather than weighing and comparing options). For example,
Klein et al. (1986) applied the model to a fireground inci-
dents and found that, rather than selecting between courses
of action, fireground commanders typically selected the first
option that came to mind and adapted it to fit the current
situation (akin to the “take the first” strategy hypothesized by
Johnson and Raab, 2003). This maps onto the phenomenology
of crossword play–rarely are players choosing between options
to determine which is best1 . Instead, solvers either know the
answer, or do not. In contrast to the types of situations to which
RPD has typically been applied, crossword play does not per-
mit approximate solutions, and so the decision problem is one
where a player must determine whether or not they know the
exact answer, and if they do not know the answer, they must
decide how to continue search (i.e., either via continued memory
search, generating more candidates through associative mem-
ory, or by trying to obtain more letter hints by solving other
clues).

Mueller and Thanasuan (2013) described and devel-
oped a crossword solving model by modifying the Bayesian
Recognitional Decision Model (BRDM; Mueller, 2009), a
Bayesian implementation of the RPD model. The model imple-
ments a decision process via memory retrieval, and the basic
mechanisms originate from models of recognition memory
(Raaijmakers and Shiffrin, 1981), although the basic notion
of experience-based and case-based decision making has been
explored in a number of computational models (Dougherty
et al., 1999; Warwick et al., 2001; Sokolowski, 2003; Ji et al.,
2007; Thomas et al., 2008). The basic procedure applies two
independent routes to solve a crossword clue:

• A semantic route: the model takes clue-word associations as
cues to search for possible answers and checks them with

1To be fair, there are classes of clues that are deliberately ambiguous so that
the solver is likely to know that one of a small number of responses is correct,
but not which one. For example, “Morning hour” ‘- - - A M’ is likely to be
ONEAM, TWOAM, SIXAM or TENAM; “Late Month” ‘- - - - M B E R’ could
be NOVEMBER or DECEMBER, etc.

an orthographic cue for feasibility. An example of clue-word
associations is shown in Figure 1.

• An orthographic route: the model uses letter combinations and
letter-word associations to generate candidate answers. The
example is shown in Figure 1. These candidates are checked for
semantic similarity and pattern matches.

Both routes adopt the same basic retrieval mechanism based on
previous models of recognitional decision making. This mecha-
nism was explored in its simplest form in Mueller and Thanasuan
(2014) as a model of word-stem completion, and more fully in
Mueller and Thanasuan (2013) for both orthographic and seman-
tic routes. We will first describe the basic memory retrieval mech-
anisms. The form we use simplifies the Bayesian calculation in the
BRDM model proposed by Mueller (2009) (which makes some
of the computations easier on the large corpus), but in practice
the rank-order distributions produced by the present model are
nearly identical to those produced by the BRDM implementation.

2.1. RETRIEVAL MECHANISMS
Our approach to modeling crossword play is grounded in mem-
ory retrieval described by Mueller and Thanasuan (2013), with
the addition of a memory processing time parameter so that we
can make predictions about performance time. We hypothesize
that both the orthographic and semantic routes work similarly,
but since their information is from different modalities, they
cannot be combined in order to simultaneously probe memory.
Although this assumption differs from the conclusions reached
by Massaro et al. (1991) on a similar task (discussed in Mueller
and Thanasuan, 2013), our two-routes hypothesis is simpler, is
sufficient to model our data, and alternatives produce results that
are generally difficult to distinguish from the version we use here.
Instead, each route is probed independently, the two candidate
answers are evaluated with respect to their association strength
to the clue, and the alternative with greater strength is used.
We assume that the strength between a word and its associa-
tions (either word parts or clue parts) is learned via a simple
model based on Estes (1950) stimulus sampling theory. As more
and more associations are learned, the strength between each
word and its associates grows and asymptotes to a finite level,
but even though a single word-word association may be strong,

FIGURE 1 | The example of semantic and orthographic routes.
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each associate competes with other associates, making specific
associations difficult to access.

Once learned, a set of features present in a clue will have
strengths of association to many possible answers. We assume the
search and identification process is both a logical and a proba-
bilistic process. First, a set of association strengths is computed
between any cue hint (e.g., a letter, letter pair, word, or word
bigram) over all possible answers, for either the orthographic
(PrO) or semantic (PrS) memory:

PrO(Ai|uj) = Oij/
∑

i

Oij (1)

PrS(Ai|uj) = Sij/
∑

i

Sij (2)

where uj represents either semantic or orthographic features
indexed by j and Ai is a candidate answer i. Thus, the strength
of association between any feature and any cue is monotonically
related to the frequency with which that cue tends to be have
appeared with that answer.

Any clue u will consist of a set of features uj, and we compute

the joint probability of that set via the nth root of the product of
each individual probability (plus a smoothing constant σ ). Here,
n refers to the number of features in u. First, the strength B for
each clue is computed, after which it is normalized based on the
strength for all possible clues to compute PrX(Ai|u) (substituting
X for O or S):

B(Ai|u) =
⎛
⎝∏

j ∈ u

PrX(Ai|uj) + σ

⎞
⎠

(1/n)

(3)

PrX(Ai|u) = B(Ai|u)/
∑

i

B(Ai|u) (4)

The probability value PrX(Ai|u) provides a strength index indicat-
ing the relative likelihood of different candidate answers coming
to mind, given a particular clue.

2.2. SEARCH, RECOVERY, AND CHECKING MECHANISMS
This basic memory retrieval mechanism described above will lead
to a rank-order set of activations that produce candidate solu-
tions activated by either orthographic or semantic information.
Much like previous models of memory retrieval (Raaijmakers
and Shiffrin, 1981), we assume that this provides an activation
distribution that enables memory “images” to be identified. For
orthographic cues, the retrieval results in a complete word that
tends to contain the features in the cue. For semantic cues, we
assume the retrieval identifies an concept whose specific lexical
form still needs to be recovered. The probability of recovery is
determined by PrS(Ai|u) in Equation (4), and a recovery or flu-
ency parameter whose value we assume may differ as a function
of expertise:

Prrecovery = 1 − exp
(−PrS(Ai|u) ∗ recovery

)
(5)

Consequently, Equation (5) provides one potential source for
modeling expertise. Our assumption is that experts may be espe-
cially fluent at recovering lexical exemplars associated with a
concept, even if the answer could be recognized as correct if pro-
vided. Although this is most easily interpreted as the probability
of generating the “surface features” of particular word based on
a semantic gist “image,” it could also represent other more con-
ceptual memory retrieval failures that also differ between more
traditional memory paradigms such as recognition memory and
free recall2. By using the recovery probability to model expertise,
it represents several related aspects of fluency, but it remains an
open question of whether crossword experts are especially flu-
ent for both surface features and deeper semantic or episodic
associations.

In our models, the recovery parameter also stands in for the
overall richness of the knowledge base. Our expert and novice
models both use the same knowledge-base corpus. Although
experts clearly have a richer body of crossword-specific knowl-
edge, and likely have broader general knowledge (cf. Hambrick
et al., 1999), we have elected to not use separate corpora for
experts and novices, for several reasons. First, our experience is
that the answers to most clues are recognizeable by most peo-
ple once the answer is revealed. This indicates that most of the
knowledge in a crossword is available in latent form that can be
recognized but not retrieved, which maps closely onto our recov-
ery parameter. A second concern is that the clue data we employ
is large enough that we found it impractical to create multiple
versions for experts and novices, and so a using the recovery
parameter is a simple way to make part of the expert lexicon
inaccessible to novices.

2.3. TIMING
Retrieval time for declarative information has long been assumed
to be related to activation strength of the facts being recalled
(see Lewis and Vasishth, 2005). Although it is difficult to pre-
dict how changes in the lexicon will impact timing (as it may lead
to a greater competition for activation), it is certainly true that
experts must retrieve facts very quickly in order to solve the puz-
zle. However, several aspects of timing are involved in solving a
clue, which we can separate into four operators: moving, reading,
typing, and retrieving.

Tsolving = d ∗ tmoving + treading + n ∗ tretrieval + wl ∗ ttyping (6)

where treading represents the time that participant spends reading
a clue, n is the number of candidate answers that the model gen-
erates before it gets the first one that fit the orthographic pattern,
tretrieval is the generating and checking time for each candidate
answer. wl is a word length and ttyping is the average typing time,
tmoving is the time required to move between adjacent cells, while

2For example, if a clue were “Spacey costar” (with the correct answer BYRNE),
someone may 1. fail to retrieve the answer even while picturing Gabriel Byrne’s
face, but also 2. think about the film The Usual Suspects, and fail to remember
Byrne was in it, even if they would be able to generate the name. In both
cases, we presume that the solver would recognize the clue as correct if it were
present, but cannot actually generate it.
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d is the number of moves needed to go to the first letter cell of the
next clue (i.e., the Manhattan distance).

Although any of these may differ between novices and experts,
it can be difficult to separate these in a naturalistic context.
Consquently, we will use default values (estimated by Kieras,
2001) of 0.28 s for the typing time, 0.14 s for moving time, and
1.0 s for reading time, for all users. Thus, we have elected to
attributed all expert-novice differences to retrieval time. This
assumption is probably incorrect, because experts have a lot of
experience navigating in crossword software, and are typically
intrinsically motivated to be fast.

In general, tretrieval could be computed based on mem-
ory activation directly, using for example the ACT-R retrieval
time equation (RT = FefAi ). In the present simulations, we
will allow retrieval time to vary independently, to inves-
tigate how speed on its own might explain expert-novice
differences.

2.4. GRIDFILL STRATEGY
Another way in which experts may differ from novices is via
the strategy by which they choose the next clue to solve. For
example, experts appear to be more likely to attempt clues
that are already partially solved, as well as those close to the
last solved clue, rather than picking easy clues far from a
previously-solved clue3. Although strategies may differ between
novices and experts, it is unclear whether they have a large or
small impact on overall performance. If the main time bottle-
neck is memory retrieval, then changing gridfill strategies may
only increase overall solution times marginally. This may help
an expert reduce their solution time by a few seconds, but
would not enable a novice to become an expert. To investigate
this, we will examine whether gridfill strategy play a role in
expertise.

The first strategy is one we refer to as a Random movement
strategy. Using this strategy, players simply choose a random un-
answered clue to attempt to solve next. This model provides a
least-informed but reasonable strategy that may provide a lower
bracket on performance. The second strategy, which we refer to as
an Optimizing movement strategy, attempts to select clues that (1)
are partially filled; (2) are close to the current clue; and (3) have
not been attempted previously. As we will discuss, neither of the
strategies uses extensive error detection, error correction, or back-
tracking, which is roughly consistent with observed crossword
play.

2.5. OVERALL CROSSWORD SOLVER
The solver we ultimately created does not view the crossword
grid visually, but rather has access to all clues and word pat-
terns from the grid puzzle directly (see Figure 2) in the form
of two tables. The first table depicts position coordinates cor-
responding to the clues. The second table contains essential
variables such as word lengths, clues, directions, and start posi-
tions. The AI algorithm can be segmented into three stages:

3Other advanced strategies reported by competetive players and observed in
our studies include ploys like waiting to correct an error until the end of a
puzzle, or deferring entering a solved word to fill it in with the crossing words.

selection, retrieval, and updating. The selection process describes
how we select a clue to solve based on the current state of the
puzzle. For the retrieval process, if no orthographic informa-
tion (other than word length) is present, only semantic cues
are used. Otherwise, both semantic and orthographic routes
are employed independently to retrieve candidate answers. Each
retrieval route process returns the first answer that fits the word
pattern (consistent with Mueller and Thanasuan, 2013, which fit
data only from individual clues). Then, the semantic probabil-
ities (i.e., the activation strength) of those answers from both
routes is compared and the larger one is used as the best answer.
The final process is updating. If an answer is returned from
the retrieval process, the crossword status is updated to reflect
new filled letters and completed words, in both across and down
orientations.

The optimizing solver must have some ability to determine
when search for a clue has failed so that it should give up and
move on to another clue, to avoid getting stuck repeatedly trying
to solve the same “best” clue. Normally, the model selects (prob-
abilistically) the best clue to attempt, but if it fails, it could end
up oscillating between one or two “best” options that it repeat-
edly fails at. To deal with this, we implement a strategy to avoid
revisiting failed clues, using counters shown in Figure 2 as Cycle
and Attempt (that maps roughly onto a an activation marking
past search; cf. Mueller et al., 2013). Although this particular
implementation is somewhat ad hoc, the basic process is repre-
sentative of a class of strategies that attempt to seek out novelty.
The counter is incremented any time an attempt to solve a clue is
made.

Although we believe that neither experts nor novices use back-
tracking and error detection frequently, it certainly can happen,
and this point in the cycling process could be used to signal an
error that could lead to correction. This could be used to isolate
an error to a small set of clues that could then be re-evaluated,
“erased,” and re-solved. We have not implemented such a process
in our current model, because the ability to backtrack (a core AI
principle) can potentially hide the weaknesses of a less capable
solver if used extensively.

2.6. KNOWLEDGE BASE
For the current demonstration, we use the associative knowledge
base described by Mueller and Thanasuan (2013), relying solely
on Ginsberg’s crossword constructor clue-answer pairs database
(http://www.otsys.com/clue/), which contains more than 4 mil-
lion clues. However, other associative knowledge bases could
be used to provide additional semantic and orthographic cues
relevant to solving crossword puzzles. For orthographic knowl-
edge, a set of associations between words and word parts must
be inferred, and for semantic knowledge, a set of associa-
tions between answers and potential clue words and clue word
combinations. This could incorporate free association norms
(Nelson et al., 2004), semantic spaces derived from co-occurrence
statistics, n-grams, WordNet (Miller et al., 1990), thesaurus
(Samsonovich, 2014), and other sources. We suspect that addi-
tional knowledge bases would broaden the knowledge, but might
ultimately reduce the specificity of associative cues and produce
worse overall solvers.
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FIGURE 2 | The overall solution strategy. The model iteratively selects clues, attempts to solve one, and then updates the current state of the grid.

3. EXPERIMENT
In order to test the ability of the proposed model to account for
data, and to understand the relative importance of our hypothe-
sized parameters, we conducted an experiment involving novices
and experts attempting to solve a crossword puzzle.

3.1. PARTICIPANTS
We recruited 21 participants both from the Michigan
Technological University undergraduate subject pool, and
14 crossword experts from attendees of the 2012 American
Crossword Puzzle Tournament (ACPT). The study was approved
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through the Michigan Technological University Human Subjects
Institutional Review Board, and were conducted under U.S.
Federal human subjects guidelines. All participants had to read
and either signed or clicked to accept an informed consent
statement. Then, they were tested via instrumented computer
software, undergraduates in a laboratory setting, and experts on
their own computers via a downloadable software package.

3.2. PROCEDURE
3.2.1. Demographic survey
The study began with a brief computerized survey implemented
using PEBL survey generator (Mueller and Piper, 2014), which
included a series of questions related to personal experience with
crosswords and related word games. Most undergraduate par-
ticipants reported rarely playing crossword puzzles previously,
although some had experience with related word games such
as Scrabble, Bananagrams, Words with Friends, or Boggle. On
the other hand, crossword experts reported playing puzzles on
average more than 3 h per week (213 ± 149 min), and had been
playing crossword puzzles for 15.3 ± 14.7 years.

3.2.2. Crossword puzzle
Following the survey, participants solved two crossword puzzles
using specially-developed software. We adapted the open source
python-based application called XWord (http://sourceforge.net/
projects/x-word/), which we instrumented to allow better control
over data collection, and to improve data logging and keystroke-
level recording. The software was adapted so that each clue was
only viewable when the corresponding grid entry was selected,
to enable us to better know how much time was spent looking
at each clue. The first puzzle was a 4-min practice puzzle that
allowed participants to become familiar with the control of the
software. This was a standard sized puzzle (15 x 15), but along
with each clue, the correct answer was provided. Most partici-
pants finished this puzzle in the allotted time. The second puzzle
was a 78-clue 15 x 15 test puzzle, originally entitled “Quiet,
Please” (Gamache, 2009), but with many of the clues edited
to make them somewhat easier. Filled-in answers are shown in
Figure 3, and the clues are shown in Table 3. The participants
were instructed to solve the puzzle as fast as they could in 25
min. In addition to the puzzle and the survey, participants also
took part in a stem completion test whose results are reported in
Mueller and Thanasuan (2014).

4. RESULTS
Results showed that the experts performed much better than
novices in both speed and accuracy. No novice players could fin-
ish the puzzle in the 25 min allotted (average complete answers
23.9 ± 9.4 sd; correct answers = 23.1 ± 9.5). On the other hand,
all expert players completed the puzzle (in 5.3 ± 2.5 min), with
on average 77.2 out of 78 answers correct (±1.5).

To examine performance differences between these two
groups, we first inferred the cumulative time spent on each clue.
Cumulative clue time is difficult to determine unambiguously in
a natural crossword-solving setting, because a solver may revisit
a word multiple times before an answer is completed, and some
experts even “save up” an answer they have solved, entering it

FIGURE 3 | The test puzzle used in the present experiment (“Quiet,

Please” by Paula Gamache). Used by permission.

letter-by-letter when each cross-answer is solved. In addition, as
the grid fills, the last letter of some clues will necessarily be filled
while completing a crossing clue. Using several heuristics, we esti-
mated cumulative response time for each clue by combining every
time interval participants spent on each clue before they fin-
ished it. We then conducted a linear regression on log(cumulative
response time) using answer length and the test clue frequencies
(as they appear in the Ginsberg database) as predictors, along with
a categorical predictor allowing the intercept to differ for each
participant.

Within the crossword puzzles, shorter answers are more com-
mon, and this was true for the crossword we tested (ln(frequency
in the lexicon) and word length were correlated with Pearson’s
R of −0.797). Because of this colinearity, it can be difficult
to identify the source of length or frequency effects. A mixed-
effects model (using the lmer function of the lme4 package of
the R statistical computing language) treating participant and
answer as random factors found the best-fitting model predict-
ing ln(completion time) was −0.089 × ln(freq + 1) + 0.065∗wl
with distinct intercepts for experts (1.31) and novices (2.72).
Separate χ2 tests comparing models with and without each pre-
dictor showed that the effects were each significant (for word
length, χ2 = 6.26, p = 0.01, partial η2 = 0.009; for frequency,
χ2 = 55,p < 0.001, partial η2 = 0.044, for expert status, χ2 =
56,p < 0.001, partial η2 = 0.58. Models that included expertise
by word length or frequency interactions did not significantly
improve the overall fit of the model, suggesting that as a first
approximation, time factors that are related to length (such as
typing time) does not differ between experts and novices.

As discussed in the description of the model, if we assume
the time differences stem from cognitive processes (rather than
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motor processes) and use the average typing speed of 0.28 s per
keystroke described by Kieras (2001), we can estimate memory
retrieval times for the two groups. We do so by assuming the
average solving time for each clue is the difference between cumu-
lative response time for each clue and the sum of typing time
of that clue. When adjusting in this way for word length, we
found that the experts came up with an answer approximately
six times faster than the novices did (novice: 17.7 ± 8.01 s/clue,
expert: 3.1 ± 1.3 s). This finding will be used to estimate memory
access time of expert and novice in the model simulation section.

This shows that experts require less time to solve clues, but
does not provide an indication of why. This may be because
experts are able to retrieve answers better and more quickly with
the same amount of information. To examine this, we computed
the proportion of letters completed prior to solving each consecu-
tive solved clue (see Figure 4). For example, if a 6-letter word were
solved with three letters that had previously been solved via cross-
ing words, it would be given a score of 0.5, as would an 8-letter
word with four letters present. We found that for both experts and
novices, as the puzzle progressed, the proportion of previously-
answered letters increases. Yet this proportion rose quickly in the
experts to around 40% of the word, whereas the novices reached
that point only when they had completed nearly all the answers
they were capable of. Thus, although the experts may be able to
solve clues with a fewer letter hints, they tended not to do so, pre-
sumably because solving clues with more letters makes the puzzle
easier and solution times faster. We will investigate the implica-
tions of this strategy in our model simulations, which we turn to
next.

5. MODEL SIMULATION
The basic behavioral results show that experts are much bet-
ter and faster than novices at lexical and memory access for

FIGURE 4 | Proportion of letters previously solved as the puzzle

progresses. Experts (dashed line) solve with 40% partial letters after the
first few clues, novice increase slowly and only reach this point when they
have completed as much of the puzzle as they are able. Results are
averaged across consecutive three-clue blocks.

crossword-related information. They also show that some solu-
tion strategies of experts appear to differ from novices. These
factors undoubtedly work together to help experts produce supe-
rior performance, but it is difficult to cleanly separate them in a
naturalistic data set. Consequently, we used the model described
earlier to explore the hypothesized differences between experts
and novices.

We tested eight distinct models, factorially manipulating strat-
egy (random and optimizing strategies), fluency (two levels of the
recovery parameter) and memory access speed (fast and slow),
each in order to explain the expert-novice differences. These
models are shown in Table 1, in which the smoothing parameters
(orthographic σ and semantic σ ), likelihood threshold (λ) and
search set used values are identical to those determined by Mueller
and Thanasuan (2013). We evaluated these models for both com-
petency (ability to solve the puzzle) and resemblance to human
data (ability to reproduce effects related to lexical variables and
expertise; see Mueller et al., 2007). For these models, two recov-
ery and retrieval time parameter sets were selected as high and
low comparisons, and the parameter values were free parame-
ters selected so that they accounted for either expert or novice
performance. However, no other deliberate parameter-fitting was
conducted, and all other parameters were fixed.

5.1. SIMULATED SOLUTION STRATEGIES
Two solution strategies introduced earlier were examined. The
Random movement strategy was based on our observation that
novice players appeared hunt for clues that were easy to solve,
and so their solving strategy appeared haphazard and somewhat
random. Although there may have been some nuances not cap-
tured by this strategy (e.g., preferring short words; picking clues
with fill-in-the-blank patterns), the random strategy picked the
next clue at random from the remaining unsolved clues, moved
to it, and attempted to solve it. In contrast, we observed that
experts tended to make shorter, more deliberate moves from clue
to clue, and appeared to solve clues that (1) were close to the cur-
rent location in the puzzle, and (2) were already partially solved.
We adapted a neurocomputational model of search goal selec-
tion (Mueller et al., 2013; Perelman and Mueller, 2013) to guide
this Optimizing movement strategy model. The model first com-
putes weights of each unsolved clue by using Equation (7). The
constraints include a cost, which is a distance between the current
position and an unsolved clue, and a reward, which is a number
of filled letters of each unsolved clue. Then, the strategy decides
on the next clue to solve by choosing the largest weighted prob-
ability (Pri) via a Luce choice rule from Equation (8), where the
weights are the estimated discounted proportion of the clue that
has already been solved:

wi = (1 − α)di ∗ (wfi/atti + s1) + s2 (7)

Pri = (wi)/
x∑

i = 1

(wi). (8)

Here, wi is the weight of unsolved clue i; α is a discounting
parameter (set to 0.02) indicating how much a potential reward
is discounted for each move that must be made; di is the distance
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Table 1 | Parameters of simulation models.

Parameter Models

1 2 3 4 5 6 7 8

Code OFF OFS ODF ODS RFF RFS RDF RDS

Strategy1 O O O O R R R R
Recovery2 15 15 0.5 0.5 15 15 0.5 0.5
Retrieval (s) 0.25 3.0 0.25 3.0 0.25 3.0 0.25 3.0
Reading (s) 1.0
Typing (s) 0.28
Moving (s) 0.14
Smoothing Orth. σ 0.001
Smoothing Sem. σ 0.00000001
Likelihood λ 100
Search set 10

Three-letter code indicates Strategy (Optimizing or Random), Recovery (Fluent or Disfluent), and speed (Fast or Slow).
1R, Random movement strategy; O, Optimizing movement strategy.
2Recovery impacts only the probability of semantic recovery.

FIGURE 5 | Mean proportion of letters previously solved for human

data (experts and novices) and the simulation results (average of all

random models and all optimizing models).

between the current position to the first position of unsolved clue
i; wfi is a number of filled letters of unsolved clue i; atti is a
number of times that a model tries to solve clue i, s1 and s2 are
smoothing parameters (set to 0.001 and 0.00001, respectively),
that ensure all clues have a non-zero chance of being chosen, and
x in Equation (8) is the total number of unsolved clues. The basic
insight for this calculation is that potential reward, indexed by the
ease with which clues can be solved, is discounted via a decaying
spreading activation to provide cues about which candidate is the
“best closest” clue to attempt.

By comparing the eight different models, we are able to under-
stand the extent to which different processes may underly supe-
rior performance in crossword play. First, to examine the impact
of strategy, we analyzed how the proportion of letters previously
solved changed as the puzzle was solved, for both human and sim-
ulated players (Figure 5). This shows the extent to which players

FIGURE 6 | Proportion of puzzle words completed (highest bars) and

completed correctly (gray bars) for the eight different models. Red inset
bars show performance after 25 simulated minutes, indicating that the slow
models are able to perform as well as the fast models if given enough time.

choose (and are able to) solve clues that are already partially
completed. Here, the two strategies produce distinct differences
that mirrored expert and novice players: the optimizing strat-
egy tended to use more letters almost immediately, whereas the
random strategy increased slowly as play progresses.

The simulation results in Figure 6 show the probability of
complete and correct answers of each model and Figure 7 shows
how the mean percentage of the puzzle solved grows over time,
for both human and simulated players. Comparing the models
to the expert players, only Models 1 and 5 completed the puz-
zle with timing and accuracy trajectory similar to experts. These
models outperformed all human novices, although they did not
quite reach the accuracy of experts. These two models have high
recovery parameters and fast retrieval times, and differ only in
their strategy. Here, the optimizing model is slightly (but not
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FIGURE 7 | The average number of correct answers (out of 78) over

time for eight models. Models 1–4 use the optimizing strategy; 5–8 use
the random strategy. Odd-number models are fast solution times and
even-numbered models are slow solution times. 1,2,5,6 have high fluency,
whereas 3,4,7 and 8 have low fluency.

overwhelmingly) better than the random model, suggesting that
experts require both fast and fluent retrieval, but their strategy
choice may only impact them marginally.

The other six models account for novice play with different
combinations of parameters. Models 3 and 7, which have low
recovery parameters but fast retrieval times, performed about
twice as good as the average novice, and were also better than
Models 2 and 6 (which have high recovery parameters but slow
retrieval times). This suggests that, at least for our models, over-
all performance is more sensitive to speed than retrieval fluency.
However, Models 3 and 7 asymptote with around 75% of the puz-
zle complete; wherease Models 2 and 6 will continue to steadily
solve the puzzle, and ultimately will complete the puzzle with the
same accuracy as the best models, if given enough time. Models
that were slow and disfluent (4 and 8) performed worse even most
novices, suggesting these provide a lower bound for reasonable
performance. The best account of novice players is that they are
somewhat slower and substantially less able to retrieve correct
responses than experts. Curiously, although the optimizing strat-
egy made only a small difference for the high-fluency models (i.e.,
those with high recovery parameters), it was paradoxically worse
than the random strategy for the low-fluency (novice) models.
For the non-expert models (and humans), advanced strategies
dictating how to solve the puzzle require the solver to have a
choice in their solution path. Novices may not really have much
of a choice; there may be only a few clues they can easily solve,
and so a more exploratory (i.e., random) model may find these
sooner than a more deliberate strategy.

Up until this point, we have primarily examined the prob-
ability of completing clues and the entire puzzle over time. To
solve each clue, the model uses both orthographic and semantic
information. The results indicate that experts adopt strategies that
enable them to solve clues with more partial letters than novices,
and models with poor semantic fluency perform worse when they

adopt this strategy. To understand the extent each of these two
types of information lead to chosen answer for different models,
we examined 100 simulation traces for each model, across 300
consecutive solution attempts as the puzzle was solved. In these
cases, we identified the answers produced by orthographic and
semantic routes in isolation, to determine the probability of the
response arising from each route (Figure 8). Here, because no
time limit was imposed, each row of models (differing only in
timing) are essentially identical (Model 1/2, Model 3/4, Model
5/6, and Model 7/8). All models show that the semantic route is
more likely to produce a preferred answer, indicating that being
able to fluently retrieve answers to clues is of primary importance.
However, the number of answers that match on the orthographic
(red squares) or both routes (blue triangles) increases to around
30% in Model 1/5 and 2/6, and then falls off as the puzzle is com-
pleted. The optimizing strategies (Model 1/2) produce this rise
earlier in the puzzle, which is consistent with the patterns shown
in Figure 5. Even though the recovery parameter only directly
impacts only the semantic route, the high-fluency models are able
to make orthographic-route solutions possible earlier, and strate-
gies can make these accessible even earlier. We hypothesize that
orthographic-route solutions are faster and more automatic as
they rely on visual pattern completion. Better semantic skills, cou-
pled with appropriate strategies, help transform the puzzle into
one where orthographic cues are more useful.

To determine whether these results hold more generally, we
also ran the models on two additional puzzles: a simple Monday
puzzle (February 27, 2012, by Bill Thompson) and a more diffi-
cult Thursday puzzle (March 1, 2012, by Steven E. Atwood) pub-
lished by the New York Times. The results are shown in Figure 9
for the Monday puzzle, and in Figure 10 for the Thursday puzzle.
For the Monday puzzle, absolute performance and performance
across models is nearly identical to the puzzle tested in our exper-
iment. For the Thursday puzzle, accuracy gets moderately worse,
as would be expected because of its greater difficulty. Models 1
and 5 were able to solve these puzzles better than the others, and
replicated the finding that the optimizing strategy only improves
play for the best models.

6. DISCUSSION
The model and experiment we presented here examine what
enables humans, and experts in particular, to solve crossword
puzzles. Because crossword play is fairly complex, a number of
sources could contribute to expert-novice differences. Table 2
highlights these factors, with an assessment of their importance
in crossword play. Although we have drawn a number of conclu-
sions from these models, they suggest that differences in semantic
knowledge are sufficient to explain expert-novice differences. This
includes both the richness of relevant semantic associations, and
the ability to fluently retrieve the correct response via these asso-
ciations. Other factors (including strategy and speed) may differ
between experts and novices, but these factors are ineffective or
counterproductive without substantial knowledge of the cross-
word lexicon. Finally, although experts might have better ortho-
graphic fluency, this alone cannot explain their superior perfor-
mance because they actually tend to solve clues with more partial
letter information than novices. This suggests they may prefer
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FIGURE 8 | Model simulations showing the probability of each

memory route (or both routes) producing the selected answer

(semantic route = green circles; orthographic route = red

squares; both=blue triangles). At each timepoint, the three values

sum to 1.0. The trials categorized as “both” indicate that both
routes selected the same answer; trials categorized as either
orthographic or semantic were ones in which that route alone
produced the better answer.

to use orthographic information to solve clues when able, and
our analyses indicates that improved semantic fluency actually
enables them to do so. Next, we will discuss each of the cognitive
factors contributing to crossword solving in greater detail.

6.1. SEMANTIC KNOWLEDGE
Our results suggest that the primary factor separating experts and
novices is in their ability to fluently and quickly access mem-
ory via semantic cues. The four fluent models (1, 2, 5, and 6)
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FIGURE 9 | Model performance on an easy (Monday) puzzle. Bars show
proportion completed and correct for eight different models, with red inset
bar showing performance after 25 simulated minutes.

FIGURE 10 | Model performance on a difficult (Thursday) puzzle. Bars
show proportion completed and correct for eight different models, with red
inset bar showing performance after 25 simulated minutes.

were all able to solve 70–90% of each of the clues from the puz-
zles we examined (if given enough time). This is consistent with
Hambrick et al. (1999), who showed that general knowledge is
correlated with crossword solution performance. Logically, this
makes sense because orthographic-based cuing is only feasible
if enough constraining orthographic information is present, and
this is only possible by solving at least some clues using a primarily
semantic route.

A number of open questions remain about the access and
representation of semantic knowledge in crossword players.
Certainly, experts learn information specific to the relationship
between clues and responses, and this is exactly the knowledge
that our models possess. However, much of this knowledge is
general information, some of which consists of general knowl-
edge and trivia (especially person and place names in history,

geography, entertainment, pop culture, etc.), and general word
meanings. It remains an open question whether experts sim-
ply know the crossword-related information better, or whether
they possess something else, such as the ability to encode or
retrieve general associations, that may benefit them more gener-
ally. Anecdotal evidence suggests that experts may be especially
good at encoding knowledge or retrieving knowledge learned
only once, because many of the top players became great either
at a young age, or relatively soon after starting to play seriously.

Although it did not perform as good as the top players, our
model does perform better than novice and casual players. This
suggests that its knowledge base is probably too rich, or at least
too specific to crossword information. Incorporating more non-
crossword information would likely make the model worse, as
other associations irrelevant to crossword play would compete
for retrieval. We have explored incorporating other more general
knowledge information, reducing the use of a crossword-specific
corpora, but these experiments go far beyond the scope of the
research reported here.

6.2. ORTHOGRAPHIC KNOWLEDGE
Because experts solve puzzles so quickly, it is tempting to assume
that they are relying heavily on visual pattern recognition to
fill in possible answers. The problem of this assumption is that
some partial information is necessary to solve via an orthographic
route, and a puzzle cannot provide these constraints without first
solving some clues semantically.

Our analysis suggests that experts play strategically in such
a way that increases their chance of using orthographic infor-
mation, solving words that have at around 40% of the letters
complete. This indicates an important role for orthographic
information. Other findings (Mueller and Thanasuan, 2013) sug-
gests that experts can use orthographic information, such that if
there are three or fewer missing letters, the correct solution can
be guessed with above 80% accuracy (even for difficult clues),
whereas novices achieve 40-50% accuracy on the same clues. An
important consequence of this is that solutions via orthographic
information reduce the impact of clue difficulty, and so strate-
gies that encourage orthographic solutions can essentially make a
difficult puzzle easier.

6.3. SPEED
The overall speed with which a player can type, move, and gener-
ate responses can explain some of the differences between novice
and expert players. Our models attribute all differences to mem-
ory retrieval, The slow fluent models (Model 2 and 6) complete
the puzzle as well as the fast models if given enough time, but are
simply slower. Among experts, the best are both fast and accurate,
but as players age they may tend to slow down while remaining
accurate. There may also be other aspects of preparation, prac-
tice, experience, and genetics that lead speed and accuracy to be
dissociable in crossword play.

To examine this more, we looked at the scores of the 2013
American crossword puzzle tournament4, which recorded solu-
tion times for 572 competitors on 7 puzzles. If we consider only

4http://www.crosswordtournament.com/2013/standings/tabdelim2.txt
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Table 2 | Cognitive factors that are involved in crossword play, and our evaluation of their relative importance in explaining crossword

expertise.

Factor Expert-novice

importance

Comments

Semantic knowledge High Semantic knowledge is the primary avenue to solving crossword puzzles.
Semantic retrieval fluency High Solvers need not only to possess the knowledge, but must be able to retrieve and

produce it.
Orthographic pattern matching Small Having more orthographic information reduces the semantic difficulty, and experts appear

to use this strategically.
Error detection Minor Models with no error detection can perform close to expert-level and better than novices.
Error correction Minor Expert models perform slightly worse than human experts; error correction could reduce

this gap.
Backtracking Minimal Unlike classic AI, deep backtracking is of little importance for experts.
Solution strategies Moderate Strategies help experts solve puzzles more often via orthographic route; these same

strategies harm performance in novice models.

the 2935 (out of 4004) puzzles that were completed within the
time limit, the correlation between number of missing letters
and time remaining after solving was only −0.12 (indicating that
slower solvers tended to make slightly more errors). Although
this is statistically significant [t(2899) = −6.5, p < 0.001], this
suggests that the very large difference in solution times are not
reflected strongly in errors committed (including all 4004 puz-
zles raises the correlation to −0.51; this correlation must be
stronger because those who did not finish in the allotted time
almost always made errors). Consequently, this suggests that
there are substantial aspects of speed that are independent of
memory retrieval fluency, and it is reasonable to model these as
independent sources of expertise.

6.4. GRIDFILL STRATEGY
Although the optimizing strategy we examined was measure-
ably different from the random strategy, its use amounted to
small improvement for the fluent model, and actually harmed
the novice model. The choice of a solution strategy may shave off
precious seconds for an elite solver, but changing one’s solution
strategy will not generally enable a novice to improve substantially
(and may be counterproductive). Furthermore, the strategies
experts engage in may not realistically be available to novices;
improving speed by deciding how to solve will only work if the
player really has a number of options to solve. Novices may not
have many true options–there may only be a few clues they can
answer at any given time, and so their best strategy is one that
attempts to find those earlier.

Our results also suggest that experts’ strategies may tend to
shift solutions from a semantic-route solution strategy to one
that enables the use of orthographic information. Our previ-
ous research showed that orthographic solutions can reduce and
nearly eliminate the difficulty of the clue, and so to the extent that
experts use an “optimizing” strategy, it appears to help increase
the chances of an orthographic-route solution that makes difficult
clues easy.

6.5. COMPARISON TO TRADITIONAL AI APPROACHES
The most successful AI crossword solvers have worked in
ways that are fundamentally different from human solvers. For

example, Dr. Fill’s strategies are heavily based on constraint sat-
isfaction, and use orthographic and crossing words extensively to
constrain possible results. In addition, it takes advantage of the
computer’s speed, searching through the solution space to solve a
puzzle many times before identifying the best solution.

Our present model is not as good at solving as Dr. Fill. Whereas
our model solves 80-90% of puzzle clues, Dr. Fill has no prob-
lem completing almost any straightforward puzzle. However, our
expert model still outperforms average and novice players, and
produces performance akin to very good players. The reasons for
these differences are instructive, highlighting the additional skills
that humans have, and also indicating the extent to which they are
important. First, our model does not incorporate any complex
rules for tricky theme puzzles (often involving letter substitu-
tion, puns, rebuses, and other wordplay). Such rules might be
the aspect of Dr. Fill’s intelligence that is most human, because
they are learned conventions that an expert solver must use to
transform the best answer into one that fits the grid. These rules
are things that experts learn and use, but they are also things
that give novices the most trouble. Yet many puzzles don’t even
include such tricks, and so although implementing them might
be informative about the types of logical processes expert cross-
word solvers engage in, they may not translate as easily to other
domains as does our basic memory access model. Second, the
model does not detect or correct errors. It is interesting that
our model’s performance can nevertheless be very good (and
much better than typical novices), even while making errors that
prevent later responses from being correct. Third (and related),
the model does not perform backtracking. Consequently, it can
sometimes get stuck on an incorrect solution that prevents it from
completing several other clues in a puzzle, even though the error
may be relatively easy to detect. This is informative because tra-
ditional AI algorithms using search will typically compensate for
uncertainty in generating the correct partial solution with exten-
sive trial-and-error. Experts may only need to do this on occasion,
because they are almost always certain of being correct when they
make a response.

Overall, although traditional AI solutions to crossword puz-
zles are both useful for testing AI algorithms, and are a sub-
stantial engineering feat, the processes they typically use differ
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Table 3 | Clues from puzzle, matching answers in Figure 3.

• 1A Electrical Rock Band Name • 72A Walk or trot or gallop, for a hors

• 5A D.C. interest groups • 73A Monopoly payment

• 9A Space (airhead) • 1D Nile serpants

• 14A Make like a tree and leave! • 2D Spiced tea beverage

• 15A From a different perspective, in a chatroom • 3D Voodoo

• 16A Tropical Island neighbor of Bonaire • 4D Seinfeld’s field

• 17A Tree that grows dates • 5D Many a university lab employee

• 18A Arty spot in lower Manhattan near Tribeca • 6D Building block of matter

• 19A Ways to send a office messages before e-mail • 7D Regis and Kelly, e.g.,

• 20A Talking picture’s predecessor • 8D Powerful push

• 22D Abbr. at the end of many company names • 9D Regained consciousness

• 23A Nonvegetarian sandwich, for short • 10D Is, for many

• 24A Pet Bo or Barney of the White House • 11D Food-service elevator

• 25A Dismissed • 12D Virus named for an African river

• 27A Child on a military base • 13D Delectable

• 31A Generic vending machine drink choice • 21D A Duke or Earl

• 32A Letters from one who’s low on cash? • 26D Swiss mountain range peak

• 33A Cowboy cattle catcher • 27D it the truth!

• 35A of the litter • 28D Libertine

• 38A Trail mix ingredient • 29D It may be pressed for privacy during a conference call

• 39A Massachusetts summer time zone (abbr.) • 30D Fictional terrier

• 40A Train boarding location (abbr.) • 34D Department of Labor arm protecting worker safety

• 43A Mai (tropical drink) • 36D It’s pushed in a grocery store

• 44A Be abundant with • 37D Peck on the cheek

• 46A Playwright Fugard • 41D Young scientist of old teen fiction

• 48A Hospital locations open for treatment at all hours (abbr.) • 42D Dominant dog

• 49A Dull, dull, dull • 45D Dodgers’ org.

• 52A O’er the we watched, were so gallantly streaming • 47D Cheerful refrain in song

• 54A Fizzy liquid ingredient of many cocktails • 50D Hockey statistic

• 57A Moo pork • 51D cross buns

• 58A Mare’s morsel • 53D Writer

• 59A They may run deep • 54D Follow-the-leader party dance

• 64A Capone henchman Frank • 55D Hideouts

• 66A Long length of fashion • 56D Joltin’ Joe

• 67A Informal greeting • 60D Sixty-two, in roman Numerals

• 68A Increases • 61D Ireland, in Irish

• 69A First Arabic letter • 62D Saving Private

• 70A Kind of thermometer or hygiene • 63D It comes from a shaker

• 71A Like • 65D Only even prime number

substantially from how experts approach and solve puzzles. In
contrast, our model succeeds by using strategies akin to human
players; iteratively solving a puzzle, clue by clue, one time. To do
so, rather than attempting to make many guesses and letting the
web of constraints identify an optimal solution, a decision must
be made regarding whether the candidate answer is good in on its
own right. This is the essence of recognitional-decision making in
many domains, especially for domains requiring exact solutions.

6.6. CROSSWORD PLAY AND RECOGNITIONAL DECISION MAKING
The present model shows that the traditional AI approach fails as
a reasonable model of human crossword expertise. In contrast,
a memory-based retrieval process is used. Such recognitional
decision processes are common to many fields of expertise, but

the domain of crossword play involves some caveats to earlier
models.

First, the core of the RPD model common in the Naturalistic
Decision Making community is that cues in the world activate a
past workable solution, which may be adapted (via mental sim-
ulation) to provide the best course of action. For many expert
domains, such solutions are not only common, they may be the
only way to proceed. For example, every house fire differs, and so
a decision about how to fight the fire based on a past solution
must be adapted at least minimally to suit the current situa-
tion. Furthermore, there are likely to be dozens of essentially
equivalent workable approaches that could be used successfully.
In contrast, crossword puzzles only permit a single solution,
and so the approach must be different. To some extent, a clue
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may activate a similar word-clue from the past, or may acti-
vate an incorrect answer that is nevertheless semantically similar
to the correct one. However, the critical process is one where a
generated answer is evaluated for acceptability, and discarded if
it won’t work, either to continue search on the present prob-
lem or to move to a new problem until more information is
gained.

This suggests a class of problems for which the classic RPD
model must be amended: expert domains requiring or encourag-
ing exact solutions. Although many types of puzzles are examples
of these, other domains may involve costs and logistics that make
approximate solutions inadmissible or inappropriate. In such
cases, the decision space may not permit adapting a candidate
decision to fit the current situation, and is likely to involve (1)
determining if the current solution is good enough, and (2) con-
tinuing to search if not. There are aspects of medical diagnosis
and general troubleshooting (e.g., both mechanical and soft-
ware) that are likely to fit this kind of decision style. In some of
these cases, approximate solutions may be ill-advised or unten-
able, and a decision cannot be made until the exact source of a
the problem is identified. Similarly, other domains of expertise
afford little opportunity to adapt plans. For example, Veinott and
Mueller (2011) examined decision times in NFL quarterbacks,
who must sequentially evaluate and discard high-probability low-
gain options in favor of later high-gain lower-probability options
that are yet to emerge. These favor a decision style in which candi-
dates are retrieved and rejected until an appropriate path is found,
and so is conceptually similar to the search problem delineated
here.

In conclusion, we have examined expert and novice per-
formance in crossword play, and used a biologically-inspired
AI model to understand how some of the underlying pro-
cesses contribute to crossword play in general, and cross-
word expertise in particular. Results indicate the importance
of semantic retrieval fluency, and suggest that such fluency
may be a common property of many knowledge-based expert
domains.
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