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A variety of converging operations demonstrate key differences between separable
dimensions, which can be analyzed independently, and integral dimensions, which are
processed in a non-analytic fashion. A recent investigation of response time distributions,
applying a set of logical rule-based models, demonstrated that integral dimensions are
pooled into a single coactive processing channel, in contrast to separable dimensions,
which are processed in multiple, independent processing channels. This paper examines
the claim that arbitrary dimensions created by factorially morphing four faces are
processed in an integral manner. In two experiments, 16 participants completed a
categorization task in which either upright or inverted morph stimuli were classified in
a speeded fashion. Analyses focused on contrasting different assumptions about the
psychological representation of the stimuli, perceptual and decisional separability, and the
processing architecture. We report consistent individual differences which demonstrate a
mixture of some observers who demonstrate coactive processing with other observers
who process the dimensions in a parallel self-terminating manner.

Keywords: integrality, separability, serial vs. parallel, coactivation, holistic processing, categorization,

computational modeling, reaction time

INTRODUCTION
Understanding how our perceptual systems process multidimen-
sional stimuli provides fundamental insights into basic cognitive
operations such as categorization (Ashby and Gott, 1988; Fifić
et al., 2010; Little et al., 2011), object representation (Folstein
et al., 2013), and recognition memory (Nosofsky et al., 2011,
2012). Of critical importance is the difference between stimuli
that consist of either separable or integral perceptual dimensions.
Separable dimensions are those which can be attended to and
analyzed in isolation, such as size and shape (Attneave, 1950;
Torgenson, 1958; Shepard, 1964; Garner, 1974, 1978). In contrast,
integral dimensions are thought to be psychologically “fused,”
such that one integral dimension cannot be attended to at the
expense of the other; both must be processed together (Garner,
1974; Burns and Shepp, 1988).

Although many stimulus dimensions have been studied in
the information processing literature, research demonstrating the
integrality of stimulus dimensions has focused primarily on the
dimensions of brightness and saturation of Munsell colors for
visual stimuli (Shepard and Chang, 1963; Garner, 1974; Nosofsky,
1987; Shepard, 1987; Burns and Shepp, 1988; Nosofsky and
Palmeri, 1996; Fifić et al., 2008; Little et al., 2013) and pitch and
loudness for auditory stimuli (Grau and Kemler-Nelson, 1988).
Though these dimensions meet several empirical criteria for inte-
grality (defined further below), there is also a sense in which these
dimensions are easily used to form a mental representation of the
stimuli; that is, given a set of stimuli which vary in brightness
and saturation, individuals are likely to form a psychological

representation of the stimuli using dimensions which corre-
spond to brightness and saturation. Consequently, these dimen-
sions are psychologically privileged and fall short of Grau and
Kemler-Nelson’s (1988) notion of the “extreme-end” of integral-
ity, where the individual dimensions are unable to be accessed
at all.

More recently, Goldstone and Steyvers (2001; see also Gureckis
and Goldstone, 2008; Hendrickson et al., 2010; Folstein et al.,
2012; Jones and Goldstone, 2013) have utilized a set of morph
dimensions which are thought to have no perceivable dimen-
sional structure yet still meet the empirical criteria for integrality;
consequently, these arbitrarily-defined morph stimuli may ful-
fill Grau and Kemler-Nelson’s (1988) notion of an “extreme”
integral stimulus. This renders these morphs useful for study-
ing the difference between integral and separable dimensions.
In this paper, we test whether these arbitrarily-defined morph
dimensions demonstrate evidence of integrality in a task which
goes beyond the classic converging operations by utilizing not
only mean response time (RT) and choice comparisons, but
also analysis of the full RT distributions and the time course
of information processing. Our measure thus provides a more
nuanced understanding of integrality than previous empirical
criteria.

CONVERGING EMPIRICAL OPERATIONS FOR INTEGRALITY
There are a number of converging operations suggesting that
integral dimensions are processed differently from separable
dimensions (Garner, 1974):
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(1) The distances between stimuli derived from proximity
estimates (e.g., similarity ratings, identification confusions
and so on) using multidimensional scaling (MDS) are better
described by an Euclidean distance metric if the dimen-
sions are integral but by a city-block distance metric if the
dimensions are separable (Attneave, 1950; Torgenson, 1958;
Shepard, 1964, 1987; Nosofsky, 1992).

(2) People tend to sort integral-dimensioned stimuli based on
overall similarity but separable-dimensioned stimuli based
on individual dimensions (Imai and Garner, 1968; Handel
and Imai, 1972; Garner, 1974).

(3) Learning to attend to important attributes takes place more
efficiently for separable-dimensioned stimuli (Shepard et al.,
1963; Posner, 1964; Nosofsky, 1986) than for integral-
dimensioned stimuli (Shepard and Chang, 1963; Nosofsky,
1987; Nosofsky and Palmeri, 1996).

(4) Integral dimensions, but not separable dimensions, tend to
interfere with each other if one of the dimensions must be
ignored, but tend to facilitate one another if the dimensions
are varied in a correlated manner (Lockhead, 1966; Egeth,
1967; Garner, 1969; Garner and Felfoldy, 1970; Biederman
and Checkosky, 1970; Garner, 1974).

Each of these operations suggests that integral dimensions are
processed as an entire object (Lockhead, 1966, 1972), but sepa-
rable dimensions are processed as independent, component parts
of an object.

Despite this wealth of converging operations, Cheng and
Pachella (1984) argue that integrality may be an artifact of testing
perceptual dimensions which do not correspond to an observer’s
psychological representation. For example, results showing a
failure of converging operations (e.g., an interference effect
between purported integral dimensions but no facilitation effect,
(Garner, 1974; see also Biederman and Checkosky, 1970; Levy
and Haggbloom, 1971; Gottwald and Garner, 1975; Pomerantz
and Sager, 1975; Smith and Kemler, 1978) reduce the “explana-
tory power” of the concept of integrality (Cheng and Pachella,
1984, p. 283). In order to conclusively demonstrate integrality,
Cheng and Pachella (see also Grau and Kemler-Nelson, 1988)
argue that one must demonstrate that the experimenter-defined
and participant-defined dimensions are commensurate and that
the dimensions still satisfied the empirical criteria for integrality.
Obviously, this presents a problem for empirically justifying the
integrality of dimensions at the extreme-end of integrality which
are meant to be without perceivable dimensional structure.

ARBITRARY DIMENSIONS AND INTEGRALITY
One possible set of dimensions that might satisfy the criteria
of being both integral and having no identifiable dimensional
structure, are the factorially-generated morph dimensions shown
in Figure 1 (top panel). These stimuli are created by morphing
together four base faces (e.g., Goldstone and Steyvers, 2001). The
morphed stimuli vary on two dimensions, with each of these
dimensions representing the transition between two of the base
faces (faces A–D in Figure 1). Hence, each stimulus can be defined
by its proportional value on each of the morph dimensions, but
the morph dimensions are very difficult to analyze independently.

The dimensions are termed arbitrary because, although each
stimulus varies systematically along two face morph axes, the
face morph axes do not correspond to any naturally interpretable
dimensions.

Goldstone and Steyvers (2001) showed that the morph dimen-
sions demonstrated an interference effect in the filtration condi-
tion of the Garner (1974) speeded classification task, supporting
the claim that the dimensions are processed in an integral fash-
ion. Furthermore, Folstein et al. (2012) found that there was no
advantage for learning an orthogonal boundary compared to a
diagonal boundary in a factorially-generated morph space such as
the space shown in Figure 1 (although it is important to note that
Folstein et al., used morph cars and not morphed faces). Taken
together these results indicate the arbitrary morph dimensions
seem to fulfill Grau and Kemler-Nelson’s (1988) criteria for the
extreme-end of integrality.

Despite the large number of converging operations to identify
integrality, we argue that these operations are, in fact, some-
what equivocal with regard to the actual theoretical mechanism
underlying the processing of integral dimensions. For example,
there have been suggestions that integrality is a continuum from
completely integral to completely separable (Torgenson, 1958;
Shepard, 1964; Lockhead, 1972; Garner, 1974; Foard and Kemler,
1984; Grau and Kemler-Nelson, 1988; Melara and Marks, 1990)
and that separable stimuli, with practice, may become integral
over time (Ashby and Maddox, 1991; Goldstone, 2000; Blaha
et al., 2009). Consequently, it is unclear whether integral dimen-
sions are always processed in a consistent fashion, especially
for those dimensions which, unlike brightness and saturation
or pitch and loudness, may not involve “a positive correlation
between the ranges of variation of stimuli associated with impor-
tant consequences” in the environment (Shepard, 1991, p. 68).
Indeed, many purportedly integral dimensions are not perfectly
described by a Euclidean metric, but instead by a metric some-
where in-between city-block and Euclidean (Grau and Kemler-
Nelson, 1988). Hence, the converging operations typically used to
identify integrality do not always converge.

Furthermore, some converging operations, such as finding
slower RTs in Garner’s (1974) classic filtration task when com-
pared to the corresponding control task, are open to multiple
interpretations about the underlying processing architecture. For
instance, in a filtration task, the number of stimuli is increased
from two to four stimuli compared to the control condition. Like
the control task, only one of the dimensions is relevant for clas-
sification, and the increased RT in the filtration task compared
to the control task is taken as evidence that the variation on
the irrelevant dimension interferes with selective attention to the
relevant dimension. Such a result is used to diagnose integral-
ity. However, rather than reflecting interference due to irrelevant
variation, the increase in RT in the filtration task might sim-
ply reflect increased confusability due to the increased number
of stimuli (Maddox, 1992). Indeed, increased RTs in a filtration
task have been reported for stimuli that appear to be nominally
separable (Shepp, 1989).

Determining whether the arbitrary morph dimensions are, in
fact, processed coactively is a fundamental question, as a number
of important learning results are predicated on this assumption
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FIGURE 1 | Top: Example of morph stimuli for Experiment 1. Each of the
dimensions are created by morphing between two base faces. Each morph
stimulus is a proportional mixture of all four base faces. Bottom: Schematic
illustration of category space indicating the nomenclature used in the text.
Stimuli which lie above and to the right of the decision boundary (dotted line),
belong to the target category (category A), stimuli which low below and to

the left of the decision boundary belong to the contrast category (category
B). Stimuli in the target category are referred to by their salience which can
be high (H) or low (L) depending on whether an item is far from or close to
the category boundary, respectively. Contrast category items are referred to
as internal (I), external (E), and redundant (R) depending on their positions in
the stimulus space.

(e.g., Goldstone and Steyvers, 2001; Gureckis and Goldstone,
2008; Hendrickson et al., 2010; Jones and Goldstone, 2013).
For example, Goldstone and Steyvers (2001) trained participants
to categorize face morphs using a single orthogonal category

boundary; then in a second phase, transferred participants to
a new boundary which was either a 90◦ or 45◦ rotation of the
originally trained boundary. Participants were able to perform
more accurately with the new 90◦ boundary than with the 45◦
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boundary suggesting that the initially integral morph dimen-
sions were differentiated into two orthogonal dimensions which
mapped directly onto the dimensions used to create the stim-
uli. Although, the morph dimensions were not confirmed to be
processed separably (e.g., using a Garner interference task) after
training, better performance with the 90◦ boundary rotation than
the 45◦ rotation suggests that the dimensions are “psychologically
privileged” after training. This effect provides strong empirical
evidence that learning changes perception by creating a featu-
ral or dimensional vocabulary which perceptual processes can
use for future learning and decision making (Goldstone, 1998;
Goldstone et al., 2000, 2008). The emergence of psychologically
privileged dimensions, termed differentiation, has been suggested
as one of the key perceptual changes underlying human develop-
ment from infancy (Smith, 1989; Goldstone et al., 2011) and the
development of expertise (Burns and Shepp, 1988).

This finding is somewhat controversial as other researchers
have found that differentiation does not occur with other inte-
gral dimensioned stimuli (e.g., “blobs” created via the convo-
lution of sine waves in polar coordinates varying in amplitude
and frequency; Op de Beeck et al., 2003) or even other morph
dimensions created using a different morphing technique (i.e., by
blending four base stimuli rather than factorially combining the
base stimuli as in Figure 1; see Folstein et al., 2012, for a detailed
explanation of the difference). By contrast, Hockema et al. (2005)
found that differentiation did occur for blob stimuli if an adap-
tive learning procedure, which started with categorization of the
easiest items and increased the difficulty of the task by gradually
moving the selection of items closer to the category boundary, was
used.

In this paper, we investigate whether the morph stimuli used
to demonstrate differentiation (Goldstone and Steyvers, 2001;
Folstein et al., 2012) are initially processed in an integral fash-
ion by examining a more theoretically motivated test of integrality
than previously used for these stimuli. We draw on two theoret-
ical frameworks for understanding integrality. The first, General
Recognition Theory (GRT; Ashby and Townsend, 1986) grew out
of the signal detection theory tradition (Green and Swets, 1966)
but allowed for rigorous theoretical definition of several empir-
ically defined notions of independence and separability (both
perceptual and decisional). The second, logical rule models of
categorization (Fifić et al., 2010), utilizes the representational

concepts from GRT but combines these representations with
processing assumptions based on sequential sampling models
(Ratcliff, 1978; Busemeyer, 1985) and information processing
approaches to response time (Kantowitz, 1974; Townsend and
Ashby, 1983; Townsend, 1984). A further aim of this paper
is to investigate the combination of assumptions necessary for
explaining an individual’s categorization decisions using these
face morph stimuli.

THEORETICAL FRAMEWORKS FOR UNDERSTANDING SEPARABILITY
AND INTEGRALITY
General recognition theory
General Recognition Theory (Ashby and Townsend, 1986) is a
multivariate generalization of signal detection theory (Green and
Swets, 1966). In this framework, each stimulus is represented by
a distribution, often a bivariate or multivariate normal distribu-
tion, capturing the mean location of the stimulus in a multidi-
mensional perceptual space as well as the perceptual variability
associated with that stimulus. A theory of categorization decisions
is made possible in this framework by assuming that a decision
boundary is established in the category space (Ashby and Gott,
1988) and integrating the perceptual distribution in each category
region. This value provides the probability with which a particular
categorization decision is made given a particular stimulus.

GRT provides a theoretical unification of differing ideas about
perceptual independence, perceptual separability and decisional sep-
arability. For example, the category space shown in Figure 2A
(GRT PS + DS) shows the isoprobability contours for nine two-
dimensional stimuli. The isoprobability contours can be thought
to represent a top view of a slice through the bivariate normal
distributions representing each stimulus. Note that the distribu-
tions are circular representing the idea that there is no statistical
correlation between the perceived values of the dimensions. This
absence of correlation is termed perceptual independence and is a
construct which refers to a single stimulus.

By contrast, separability and integrality are constructs which
refer to collections of stimuli. To explain, perceptual separability
occurs when the mean locations, and variability, of the stimuli
are aligned along a dimension making it possible to represent the
collection of the stimuli by the same marginal distribution along
that dimension. Note that perceptual separability can occur with
or without perceptual independence. A violation of perceptual

FIGURE 2 | (A) Isoprobability contours when perceptual separability
and decisional separability hold. (B) Isoprobability contours when
there is a violation of perceptual separability due to mean shift

integrality but decisional separability holds. (C) Isoprobability
contours with mean shift integrality and an optimal decision
bounds.
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separability occurs if the perceptual effect of one dimension is
affected by the level of another dimensions. Although there are
many ways in which this can occur, two of these violations are
through varying the means of the distributions, termed mean
shift integrality, or by altering the variances between the stim-
uli, termed variance shift integrality (Ashby and Maddox, 1994).
Figures 2B,C illustrate mean shift integrality. In contrast to vari-
ation of the stimulus characteristics, decisional separability refers
to the alignment of decision bounds with the dimensional axes
of the stimuli. When decisional separability holds, the decision
bound is orthogonal to the dimensional axis to which it applies.
By contrast, violations of decisional separability occur when the
boundaries are not orthogonal. For instance, in Figure 2C, the
placement of the decision boundaries at an optimal orientation
with respect to the stimuli represents a violation of decisional
separability.

These constructs are important and useful because they pro-
vide a quantitative framework which can be used to predict some
of the different empirical operations which differentiate perfor-
mance with integral and separable dimensions; though predicting
the response time effects in, for instance, Garner’s (1974) classic
experiments, requires auxiliary assumptions about how RTs are
generated. For instance, Maddox (1992) adopted the RT-distance
hypothesis which posits that RTs are a monotonically decreas-
ing function of the distance of a stimulus from the decision
boundary (Ashby and Maddox, 1991). Within this framework,
facilitation for integral dimensioned stimuli when there is cor-
related variation between dimensions can then be explained by
assuming optimal decision boundaries. By contrast, interference
effects due to irrelevant dimensional variation can be explained
by an increase in perceptual variability.

Nosofsky and Palmeri (1997) examined these predictions by
examining the full RT distributions from a replication of Garner’s
(1974) conditions. These authors argued that if perceptual vari-
ability increases with irrelevant variation, then under the RT-
distance hypothesis the fastest RTs from the filtration condition
should be faster than in those in a control condition (with no
irrelevant variation). That is the increase in perceptual variability
would mean that some proportion of the RTs would be gener-
ated when the perception of the stimulus was further from the
decision boundary than in a control condition. Nosofsky and
Palmeri’s results, however, showed that RTs were slower overall
with irrelevant variation at all quantiles of the RT distribution.
This result argues against the RT-distance hypothesis (see also
Nosofsky and Little, 2010). However, coupling the GRT frame-
work with other mechanisms for generating response times, such
as sequential sampling models, does not make this prediction
since the integrated distribution can be thought to provide a “drift
rate” which represents the evidence for which a stimulus belongs
to each category (cf., Ashby, 2000; Fifić et al., 2010). Furthermore,
new theoretical insight can be gained by combining GRT with
mental architecture approaches to understanding when stimu-
lus dimensions are processed independently and when they are
pooled together into a single process.

In summary, in the present work, we utilize the represen-
tational assumptions defined in GRT but couple these with
processing-based assumptions that allow us to predict RTs for

each item in the task. This is a novel departure from GRT
because it allows a theoretical definition of integrality which is
not based on the representation of the stimulus dimensions but
on how those dimensions are processed. In the following sec-
tion, we present coactivity (i.e., the pooling of information from
all stimulus dimensions into a common processing channel) as
a plausible theoretical definition of how integral dimensions are
processed.

Coactivity as a theoretical definition of integrality
A novel, theoretically-driven definition of integrality can be
achieved by directly contrasting the information processing of
multidimensional stimuli. In particular, by using factorial exper-
iments and analyzing full RT distributions, one can differentiate
between processing which analyzes each of the dimensions inde-
pendently (i.e., either in serial or in parallel) and processing which
pools the dimensions together into a single processing channel
(hereafter, termed coactive processing; Townsend and Nozawa,
1995; Townsend and Wenger, 2004). Independent channel pro-
cessing and coactive processing provide a novel theoretical dis-
tinction between separability and integrality that coheres with the
traditional definitions of these concepts that emphasize analytic
vs. non-analytic or holistic processing.

Using a combination of non-parametric analyses and para-
metric response time models, Little et al. (2013 see also Fifić
et al., 2008; Fifić and Townsend, 2010; Little et al., 2011) demon-
strated that integral dimensions of brightness and saturation are
pooled into a single, coactive processing channel, but separable
dimensions, such as brightness and size, are processed indepen-
dently and in multiple channels. In this paper, we test whether
the arbitrarily-defined face morph dimensions also demon-
strate coactivity. Before turning to our experimental results, we
first briefly introduce our methodology, the logical-rule models
framework, which allows identification of independent chan-
nel and coactive processing, and in turn, we describe how our
experiment implements this methodology.

Logical-rule model framework
The logical rule-based models (Fifić et al., 2010) synthesize the
representational assumptions of GRT and decision-bound the-
ory (Ashby and Townsend, 1986; Ashby and Gott, 1988), along
with sequential sampling (e.g., random walk models; Ratcliff,
1978; Townsend and Ashby, 1983; Busemeyer, 1985; Luce, 1986;
Link, 1992; Ratcliff and Rouder, 1998) and mental architecture
frameworks (e.g., serial vs. parallel; Sternberg, 1969; Kantowitz,
1974; Townsend, 1984; Schweickert, 1992). The models are
best explained with reference to the stimulus space shown in
Figure 1. In this space, nine face-morph stimuli are created by
orthogonally combining two dimensions, each varying in three
levels.

The four stimuli in the upper right quadrant, which are
assigned to the target category, Category A, factorially com-
bine an easy or high discriminability (H) boundary decision
and a difficult or low discriminability (L) boundary decision
across two dimensions; hence, the four target category stimuli
are referred to as LL, LH, HL, and HH. The target category is
defined by a conjunctive rule; that is, a stimulus must have a
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value on dimension X greater than the vertical category bound-
ary and a value on dimension Y greater than the horizontal
boundary to belong to the target category. Because the stimuli
in the target category must satisfy both rules, the dimensions of
these stimuli must be processed exhaustively (i.e., both dimen-
sions must be processed before a target category decision can be
made).

Like GRT, the logical rule-based models (Fifić et al., 2010)
assume that the perception of each stimulus dimension is repre-
sented by a normal distribution of perceptual effects. In order to
make a decision, evidence is sampled from these distributions and
used to drive a random walk process (see Figure 3). More specif-
ically, following decision-bound theory (Ashby and Townsend,
1986; Ashby and Gott, 1988), observers are assumed to establish
a decision boundary (represented by the dashed line in Figure 3)
to separate Category A and Category B. In order to make a cate-
gory decision the observer samples from the stimulus distribution
using a random walk process. A sample from Category A, for
example, will lead to a step toward the criterion +A. This process

of evidence accumulation continues until a criterion is reached.
The logical-rule models assume that the closer a stimulus is to a
decision boundary in space, the more difficult it is to classify, and
therefore the larger the RT.

The possible combinations of separate random-walk processes
can be described using three mental architectures (i.e., serial, par-
allel, and coactive). For serial and parallel processes, two separate
random walks occur, each driven by samples from each separate
dimension. These independent random walks can occur in a serial
or parallel fashion. In the case of a self-terminating stopping rule,
the dimension that finishes first determines the final categoriza-
tion decision and RT. In the case of an exhaustive stopping rule,
however, final categorization decisions and RTs are determined by
the output of both random walks.

In contrast to serial and parallel processing, coactive process-
ing assumes that a single random walk model is driven by samples
from a joint bivariate normal distribution on both dimensions X
and Y. At each time step, a sample is drawn from the bivariate dis-
tribution representing the particular stimulus. If the sample falls

FIGURE 3 | Illustration of the random-walk process. Left: Each
stimulus is represented by a bivariate normal distribution. The
dotted line represents the decision boundary. Right: Example of
the serial (top), parallel (middle), and coactive (bottom) processing

models. The serial and parallel models are driven by samples from
the marginal stimulus distributions; the coactive model is driven by
samples from the bivariate stimulus distribution. See text for more
details.
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in the Category A region, the model will take a step toward the
decision criterion +A. However, if the sample falls in the Category
B region, the random walk will take a step toward the decision
criterion −B. This single, pooled random-walk process continues
until one of the criteria is reached.

ANALYSIS OF MODEL PREDICTIONS
As described by Fifić et al. (2010), the double factorial com-
bination of the dimensional values in the target category
allows us to leverage several non-parametric measures known as
Systems Factorial Technology (SFT; Townsend and Nozawa, 1995;
Townsend and Wenger, 2004) to qualitatively differentiate the
candidate models. For example, the mean interaction contrast
(MIC) and survivor interaction contrasts (SIC) can be used to
differentiate serial, parallel, and coactive information process-
ing architectures. These non-parametric analyses require correct
stochastic ordering (i.e., stochastic dominance) for items in the
target category. To explain, the RT for the HH face is expected
to be faster than RT for the LL face since the former is further
away from the category boundary than the latter. In order for the
qualitative predictions to provide meaningful diagnostic infor-
mation, the RTs for the HL and LH faces should be between
the HH and LL faces. This ordering is reflective of the effec-
tive selective influence (Townsend and Nozawa, 1995; Heathcote
et al., 2010; see also Schweickert et al., 2000; Dzhafarov, 2003;
Dzhafarov et al., 2004; Dzhafarov and Gluhovsky, 2006) of each of
the dimensions on the RT. Under the condition of selective influ-
ence, the MIC and SIC provide an empirically-observable, non-
parametric measure which speaks directly to theoretical questions
about the processing architecture and the underlying stopping
rule.

Piloting of the experimental stimuli revealed that most par-
ticipants demonstrated a violation of stochastic dominance, even
after extended categorization training. Consequently, the cur-
rent experiments will not report the SFT analyses to differentiate
between information processing architectures. Instead, we will
only fit RT distributions to the logical-rule models, and utilize
model comparison to differentiate between mental architectures.
(Further information about these analyses is available from the
authors upon request).

PROCESSING DIFFERENCES FOR SEPARABLE AND
INTEGRAL-DIMENSIONED STIMULI
To date, a number of different dimensions and stimulus manip-
ulations have been analyzed using this logical-rules framework.
Across experiments, the largest differences in processing have
been observed between separable-dimensioned and integral-
dimensioned stimuli. For instance, when the stimulus dimensions
were separable and located in spatially-separated locations (Fifić
et al., 2010; Little et al., 2011) processing of the dimensions was
best explained by a serial and self-terminating model. When sep-
arable dimensions were spatially overlapped (Little et al., 2011;
Experiment 2), processing was best described as a trial-by-trial
mixture of serial and parallel processing. By contrast, when the
stimulus dimensions were integral (i.e., Munsell colors varying
in brightness and saturation; Fifić et al., 2008; Little et al., 2013),
processing conformed to the predictions of the coactive model.

To highlight the large effects of separability and integrality on
processing, it is worthwhile noting that several manipulations had
very little effect on processing (Fifić et al., 2010; Little et al., 2011).
For instance, with separable dimensions, processing was serial
regardless of whether observers were given the rule that defined
the categories upfront, whether the rule had to be learned via
trial-by-trial feedback, whether observers were instructed to focus
on responding quickly or on responding accurately, and whether
the dimensions were spatially separated or part of a single object
(cf. Fifić et al., 2010; Little et al., 2011).

RELATIONSHIP TO GRT’s DEFINITIONS OF SEPARABILITY AND
INTEGRALITY
In previous studies, the application of the logical rule models has
always assumed perceptual independence, perceptual separability,
and decisional separability. In those studies, the full RT distribu-
tions from the entire collection of stimuli from both categories
could be accounted for by varying only the architecture used to
determine how the information from each dimension was inte-
grated over time. Little et al. (2013) tested whether allowing mean
shift integrality and diagonal decision boundaries would allow,
for instance, a parallel model to mimic a coactive model when
fitting the integral dimensioned data. In that analysis, mean shift
integrality was introduced by shifting the means of the stimuli so
that they lied on a tilted parallelogram rather than a square grid.
Even with this systematic violation of perceptual separability, nei-
ther a serial model nor a parallel model could mimic the coactive
model’s predictions.

Nonetheless, it is reasonable that less systematic shifts in stim-
ulus location might require allowing for violations of perceptual
separability and decisional separability. In the following, we ana-
lyze the RT distributions from individual categorization responses
using the face morph stimuli shown in Figure 1. In analyzing this
data, we fit several models which allow for differences in pro-
cessing architecture (serial, parallel, and coactive), stopping rule
(self-terminating vs. exhaustive) as well as violations of percep-
tual and decisional separability. To limit the scope of the project,
in addition to the categorization data, we also collected similarity
ratings for each pair of stimuli which we use to derive an MDS
solution that can inform whether perceptual separability holds or
is violated. For example, by constraining the MDS solution to lie
on a grid (e.g., Borg and Groenen, 2005) we enforce perceptual
separability, but by allowing the mean locations of the stimuli to
vary, we capture any violations of perceptual separability.1 The
MDS solutions also act as a further independent empirical assess-
ment of stimulus integrality since we can also test whether the
scaling solution is better fit using a city-block or Euclidean metric
(Attneave, 1950; Torgenson, 1958; Shepard, 1964, 1987; Nosofsky,
1992). Our approach therefore combines three major theoretical

1We do not examine variance shift integrality (or other violations of per-
ceptual separability) in this paper because when coupled with the decision
boundary, the effect of changing the mean or changing the variance of a per-
ceptual distribution in the logical rule models is to change the probability that
the random walk takes a step up or down toward the +A or −B boundary. We
considered it unlikely that we would be able to differentiate these two accounts
using the present design and instead leave that for future research.
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approaches to understanding separability and integrality: GRT,
MDS and the logical-rule modeling framework.

Finally, we also assumed that the decision boundaries might
be either orthogonal to the decision axes or rotated to capture
the optimal discrimination between stimuli from the target and
contrast categories. Consequently, for each of the mental archi-
tectures, we tested three different sets of the assumptions about
the perceptual representation:

(1) By assuming perceptual separability (represented by using
stimulus coordinates found using a constrained MDS
solution) and decisional separability (orthogonal decision
bounds).

(2) By assuming violations of perceptual separability (by using
an unconstrained MDS solution) and decisional separability
(orthogonal decision bounds).

(3) By assuming violations of both perceptual and decisional sep-
arability (represented by using stimulus coordinates found
using an unconstrained MDS solution and by allowing
optimal decision boundaries).

EXPERIMENT 1
We examined a set of purportedly integral stimuli created from
arbitrary morph dimensions. By using the conjunctive category
design shown in Figure 1, we test whether the morph stimuli are
processed in a coactive fashion or whether the morph dimen-
sions are better described by an independent channel processing
model (i.e., parallel or serial processing). We utilized these face
morphs in both an upright and inverted orientation to extend the
generalizability of our basic procedure. There is a possibility that
upright faces are processed holistically, whereas inverted faces are
not (Yin, 1969). However, there is a dimensionality to these face
morphs which is relevant for categorizing both the upright and
inverted faces (i.e., unlike for, say, recognizing upright vs. inverted
faces in daily life), and consequently, we do not a priori expect a
difference between them.

METHOD
Participants
Eight participants from the University of Melbourne commu-
nity with normal or corrected-to-normal vision were randomly
assigned into the upright condition and the inverted condi-
tion with four in each condition (labeled U1–U4 and I1-I4 for
the upright and inverted conditions, respectively). Participants
received $12 for each session plus an extra $3 bonus for accurate
performance (over 90% accuracy) during categorization sessions.
All procedures were approved by the University of Melbourne
Human Ethics Advisory Group.

Apparatus and stimuli
A category space was created using a field morphing technique
(Steyvers, 1999), to morph four base faces together into a two-
dimensional array (i.e., each dimension was a systematic blend
from one face to a second face; Figure 1), creating a 3 × 3 matrix
of faces, that are composed of factorial proportions of each of the
four base faces. The base faces used in this study were identical
to base faces used in Goldstone and Steyvers (2001, Experiment

1; Kayser, 1984). Dimension X was formed using the morph
between faces C and D and Dimension Y was formed using the
morph between faces A and B (see Figure 1). Each face in the
stimulus space can be defined by a factorial combination of values
on Dimension X and Dimension Y. Stimuli in the inverted condi-
tion were rotated 180◦, but were otherwise identical. The stimuli
were presented at a monitor resolution of 1280 × 1024 and sub-
tended a visual angle of approximately 10◦. RTs for categorization
sessions were collected using a calibrated response time box (Li
et al., 2010).

PROCEDURE
Categorization
Each participant completed a series of 1-h sessions on consecu-
tive or near consecutive days for five sessions. At the beginning
of each session, participants were shown experimental instruc-
tions, including example stimuli relevant to their condition (i.e.,
upright or inverted faces).

Each session consisted of 819 trials (9 practice trials and 810
experimental trials, divided into 9 blocks of 90 trials). Although
each stimulus was presented 10 times during each block, pre-
sentation of stimuli was randomized. In between each block,
participants were instructed to take a short break and were given
feedback on their percentage accuracy. Participants advanced to
the next block by pressing any button on the RT box. During each
trial a fixation cross was presented for 1170 ms. After 1070 ms
a warning tone was presented for 700 ms. A face was then pre-
sented and the participant was required to decide whether the face
belonged to Category A or Category B. Faces were presented until
a response was made. Feedback was provided only after incorrect
responses; feedback “too slow” was provided for RTs greater than
5000 ms.

Similarity ratings
We ran a similarity rating study using Amazon Mechanical Turk
to obtain similarity ratings for the faces shown in Figure 1. In
two conditions, participants rated the similarity of the stimuli
in either the upright or inverted condition of Experiment 1. A
single Human Intelligence Task (HIT) was created on Amazon
Mechanical Turk with 40 assignments. We restricted access to the
HIT by requiring users to have at least a 90% acceptance rate (i.e.,
90% of a user’s completed HITs were accepted by the requester),
having completed at least 1000 approved HITs, and were located
in the United States. Participants were paid $2.00 USD to com-
plete the task, which took approximately 25 min to complete.
Allocation of participants to conditions was random; this resulted
in 20 participants in upright condition and 20 participants in the
inverted condition.

On each trial, a pair of stimuli was presented in the upper-
left and upper-right of the screen. Subjects rated the similar-
ity of each pair from 1, “least similar” to 8 “most similar.”
Subjects were instructed to try to use the full range of ratings,
and were given examples of high, medium, and low similarity
pairs using a different set of upright faces before commencing
the task. For each condition, there were 36 unique pairings of
the 9 stimuli. Each pair was presented six times for each sub-
ject; the order of presentation was completely randomized as
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was the left-right presentation of each face. The experiment was
self-paced.

RESULTS
For the categorization task, any trials with RTs less than 200 ms
or greater than 3 SDs above the mean were removed from the
analysis. No trials were removed using this method. The first ses-
sion was considered practice and discarded from these analyses.
Mean RTs and error rates for each participant are reported in
Table 1. In the upright condition, error rates across items were
low; only three items showed error rates above 10% (LH and
EX for U2, and LH for U3). As expected the greater difficulty in
processing of inverted faces resulted in higher error rates for all
four participants in the inverted condition. Participants I1 and I2

showed high error rates across all items (>20%), with very poor
accuracy for items HL, LH, LL, and EX and EY . Overall error rates
for participants I3 and I4 were comparatively lower (12 and 16%
respectively). Similar to I1 and I2, items HL, LL, EX, and EY were
poorest for I3 and I4. All four participants showed high error rates
for item LL. This is unsurprising since LL lies adjacent to both
decision boundaries.

COMPUTATIONAL MODELING
Multidimensional scaling of similarity ratings
We first sought to identify participants who utilized the entire
rating scale as instructed; consequently, we computed the
multinomial likelihood of the counts of each rating value 1 to 8
(i.e., across all pairs) assuming that responses were (a) generated

Table 1 | Mean RTs and error rates for each stimulus.

Subject HH HL LH LL Ex Ix Ey Iy R

EXPERIMENT 1

Mean RTs

U1 846.65 1045.90 1092.50 1083.70 749.29 757.55 1034.40 834.62 739.03

U2 726.59 824.60 928.07 762.62 779.13 781.31 946.26 787.91 707.82

U3 643.29 812.05 766.35 741.77 626.60 627.55 708.08 604.06 525.17

U4 504.02 570.28 582.97 535.11 492.51 497.92 520.67 524.22 450.07

I1 820.75 840.61 888.08 949.38 910.41 815.71 858.14 769.13 746.85

I2 764.86 851.34 878.78 924.04 1036.00 830.62 752.88 740.32 685.86

I3 1362.50 1656.30 1459.90 1847.00 1534.70 1653.50 1624.00 1528.20 1551.00

I4 978.05 1424.90 1198.40 1394.00 1292.90 1152.80 1341.50 1376.10 966.11

Error rates

U1 0.03 0.08 0.06 0.23 0.10 0.01 0.16 0.00 0.00

U2 0.03 0.18 0.14 0.20 0.12 0.04 0.12 0.18 0.01

U3 0.00 0.00 0.04 0.03 0.01 0.01 0.01 0.00 0.00

U4 0.02 0.03 0.12 0.08 0.04 0.01 0.09 0.07 0.00

I1 0.05 0.06 0.21 0.17 0.03 0.00 0.10 0.30 0.03

I2 0.01 0.02 0.03 0.10 0.11 0.01 0.06 0.02 0.00

I3 0.01 0.15 0.07 0.08 0.11 0.09 0.09 0.03 0.00

I4 0.00 0.03 0.05 0.08 0.04 0.02 0.09 0.01 0.01

EXPERIMENT 2

Mean RTs

U5 738.05 769.17 790.8 853.55 792.6 696.99 821.56 701.51 642.98

U6 842.46 890.03 962.3 957.15 867.32 830.68 866.29 906.27 777.98

U7 577.65 641.28 711.48 782.32 653.74 635.23 677.29 637.93 549.97

U8 1105.4 1514 1662.4 1713.8 1302.1 1097 1311.1 1643 983.33

I5 861.98 1000.6 1021.1 1056.7 787.89 717.57 940.36 1048.7 813.29

I6 752.23 916.65 918.9 1202.3 998.28 737.51 1020.9 821.31 664.97

I7 917.49 1410 1183.3 1696.5 1082.7 1188.7 1235.6 1121.1 951.46

I8 829.3 1038.3 1006.8 1140.5 965.36 1038.9 1016.6 921.6 910.21

Error rates

U5 0.01 0.02 0.08 0.09 0.01 0.00 0.03 0.02 0.00

U6 0.00 0.03 0.12 0.01 0.02 0.01 0.11 0.02 0.00

U7 0.01 0.08 0.12 0.03 0.02 0.10 0.07 0.03 0.00

U8 0.00 0.04 0.05 0.01 0.01 0.02 0.02 0.02 0.00

I5 0.09 0.24 0.25 0.58 0.47 0.14 0.34 0.10 0.04

I6 0.07 0.19 0.26 0.60 0.47 0.13 0.14 0.06 0.01

I7 0.01 0.12 0.08 0.29 0.13 0.18 0.18 0.07 0.03

I8 0.00 0.29 0.06 0.40 0.19 0.09 0.14 0.21 0.02
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uniformly for each rating value, (b) assuming that responses were
sampled primarily from only one rating value and (c) assuming
that responses were sampled primarily from only two rating val-
ues. That is, each of these assumptions was used to generate a
prior probability of selecting each of the response options [e.g.,
(a) with equal probability for each response option, (b) with most
of the probability on one response option, or (c) with most of
the probability spread across two response options]. Using these
prior probability distributions and a multinomial likelihood, we
computed the posterior probability for each hypothesis given the
observed distribution of counts across rating values, using Bayes’
rule. We then removed any observer with a posterior probabil-
ity less than 0.5 for the uniformly distributed rating hypothesis.
This resulted in the removal of two participants from the upright
condition and six participants from inverted condition

We computed the averaged similarity rating for each pair of
stimuli and found the two-dimensional scaling solutions for each
condition. This was done by fitting the averaged ratings using a
model which assumed a negative linear relationship between the
predicted similarity ratings and the Euclidean distance between
the estimated coordinates. To find the best fitting coordinates,
we minimized the sum-of-squared deviations between the pre-
dicted and observer ratings from 100 starting points chosen to
span the coordinate space. There were 20 parameters in total
(the nine coordinate values, and the slope and the intercept
of the negative linear distance-to-similarity function) used to
fit the 36 similarity ratings. The estimated two-dimensional-
scaling solution accounted for 97 and 99% of the variance in
the averaged ratings for the upright and inverted conditions,
respectively. To display the scaling solutions, we first performed
a Procrustes rotation (Borg and Groenen, 2005) to the ideal
coordinate values (see Figure 1). The rotated scaling solutions
for the upright and inverted condition are shown in Figure 4.
In general, both the inverted and upright scaling solutions con-
formed to the ideal category space outlined in Figure 1. In the
upright condition, the scaling solution showed a pattern whereby
the interior stimuli are positioned further from the (presumed
location of) the orthogonal boundary compared to the exte-
rior stimuli. In the inverted condition, the overall shape of the
scaling solution is best described by a parallelogram. In partic-
ular, both the interior and exterior stimuli of the A-B and C-D
morph dimensions appear to “slope” away from the orthogonal
boundary.

For each condition, we also fitted a scaling solution that con-
strained each of the nine co-ordinates to a 3 × 3 grid. This
model only had six free parameters and allowed only the distance
between values on the A,B and C,D morph dimensions to vary.
This constrained scaling solution accounted for 85 and 79% of
the variance in the averaged ratings for the upright and inverted
conditions, respectively. As explained above, the constrained and
unconstrained scaling solutions allow for the examination of
whether changing the perceptual representation affects the model
fitting.

Finally, we fitted additional scaling solutions that assumed
city-block distance instead of Euclidean distance between the
estimated coordinates. The unconstrained model accounted for
94 and 98% of the variance in the averaged ratings for the

FIGURE 4 | Average multidimensional scaling solutions collected via

Amazon Mechanical Turk for Experiment 1. The top panels show the
unconstrained and constrained scaling solutions for the Upright condition.
The lower panels show the corresponding solutions for the Inverted
condition.

upright and inverted conditions, respectively. In contrast, the
constrained model accounted for 77 and 73% of the variance
in the upright and inverted conditions. As illustrated in Table 2,
the models assuming city-block distance provided worse fitting
scaling solutions than the models assuming Euclidean distance.
Consequently, better fitting scaling solutions with a Euclidean
distance metric suggests that these face morph dimensions are
integral dimensions.

Model fitting
Having established the coordinate values from the scaling anal-
ysis, we then estimated, for each model, the variances of the
perceptual distributions, the decision boundaries, and the ran-
dom walk parameters. For simplicity, we assumed equal variance
across all levels of a given dimension, but allowed for differ-
ences in the variances between dimensions. As illustrated in
Figure 4, the unconstrained scaling solution for both conditions
deviates greatly from the ideal 3 × 3 grid layout. Given that the
logical-rule models (Fifić et al., 2010) utilize the representational
assumptions of GRT (Ashby and Townsend, 1986; Ashby and
Gott, 1988), we can use the GRT framework to fit models that
vary in the assumption of the perceptual representation of the
stimuli.

We fitted three sets of models, each set containing the five
possible logical-rule models, which accounted for violations of
perceptual and/or decisional separability. The first set of models
allowed violations of perceptual separability but maintained the
assumption of decisional separability; we label this set of models
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Table 2 | Summary of the fits of the scaling models for Experiment 1 and 2.

Cityblock Euclidean

Condition Model SSD BIC R2 SSD BIC R2

EXPERIMENT 1

Upright Full 4.73 −27.80 0.94 2.51 −50.56 0.97

Constrained 17.25 −31.40 0.77 11.45 −46.15 0.85

Inverted Full 1.00 −66.97 0.98 0.59 −85.72 0.99

Constrained 12.86 −24.99 0.73 9.88 −34.48 0.79

EXPERIMENT 2

U5 Full 1.06 10.26 0.82 1.21 15.01 0.79

Constrained 2.92 −3.43 0.50 2.82 −4.71 0.52

U6 Full 2.76 −15.76 0.91 3.17 −10.76 0.90

Constrained 12.23 −12.29 0.61 9.27 −22.28 0.70

U7 Full 6.52 −28.17 0.94 4.44 −41.98 0.96

Constrained 21.38 −35.57 0.80 10.10 −62.56 0.90

U8 Full 4.88 −31.62 0.94 3.27 −45.99 0.96

Constrained 21.04 −29.18 0.76 12.07 −49.20 0.86

I5 Full 1.37 −82.87 0.99 1.55 −78.31 0.98

Constrained 11.38 −56.72 0.89 9.65 −62.65 0.90

I6 Full 4.57 −27.17 0.94 2.93 −43.22 0.96

Constrained 13.85 −37.43 0.81 9.90 −49.53 0.86

I7 Full 11.32 −21.13 0.92 8.92 −29.73 0.94

Constrained 35.59 −30.07 0.76 28.51 −38.04 0.81

I8 Full 3.94 −16.67 0.91 2.93 −27.30 0.94

Constrained 11.83 −27.29 0.74 8.26 −40.20 0.82

SSD, Sum of Squared deviations; BIC, Bayesian Information Criterion.

The best model for each observer is shown in bold.

MSI and DS for mean shift integrality and decisional separability.
In effect, these models were fitted using the unconstrained scal-
ing solutions and assumed orthogonal decision bounds. The
second set of models assumed both perceptual and decisional
separability (hereafter, PS and DS). These models were fitted
using the constrained scaling solutions. The third family of
models assumed both violations of perceptual and decisional sep-
arability (hereafter, MSI and OP, because the boundaries were
rotated to an optimal orientation). A diagonal decision bound-
ary was estimated using the unconstrained scaling solution. We
freely estimated for each participant and each model perceptual
variances, σX and σY , and decision boundaries, DX and DY, for
Dimensions X and Y, respectively. For the optimal decision bound
models, the slope (in degrees) of the decision boundaries along
the X and Y dimensions was calculated prior to model fitting. The
intercepts of these bounds (called Offset1 and Offset2) were esti-
mated as free parameters and they replaced parameters DX and
DY from the previously described models. For the random walk
components of the models, we freely estimated response criteria
+A and –B. We also assumed an additional non-decision time
(i.e., time associated with encoding and movement time) was
generated from a log-normal distribution \with location, μr , and
scale, σr and added to the decision time generated from the ran-
dom walk. We further assumed that each step in the random walk
was scaled to milliseconds by a multiplicative scaling constant, k.
Hence, each of the logical rules models has nine free parameters.

The sole exception is the serial self-terminating model for which
we also estimated the probability that dimension X was processed
before dimension Y, pX .

We fitted the models simultaneously to the correct-RT distri-
butions and the error rates for each item by using quantile-based
maximum likelihood estimation (Heathcote et al., 2002). For each
item, correct RT predictions were generated for the 10, 30, 50,
70, and 90% quantiles. We did not attempt to fit the error-RT
distributions since error rates were generally low. The fit of the
models to the data was given using the multinomial log-likelihood
function:

ln L =
n∑

i = 1

ln (Ni!) −
n∑

i = 1

m + 1∑

j = 1

ln
(
fij!

) +
n∑

i = 1

m + 1∑

j = 1

fij · ln
(
pij

)

where Ni is the total number of times each item i (i = 1, n) was
presented, fij is the frequency with which item i had a correct RT
in the jth bin (j = 1, m) or was an error response (m + 1), and pij

is the predicted probability that each item i had a correct RT in the
jth bin or was an error. We compared each model’s log-likelihood
adjusted for model complexity using the Bayesian information
criterion (BIC; Schwarz, 1978). The complexity penalty in the
BIC is based on the number of free parameters and the size of
the sample as follows:

BIC = −2 ln L + np ln (M) ,
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where np is the number of free parameters and M is the total
number of observations in the sample. Models with smaller
BIC values are preferred. Predictions were generated by sim-
ulating 10,000 RTs for each item; details of the simulation
method for each model are given in Fifić et al. (2010, pp.
311–317; numerical methods for generating model predictions
are given in Little, 2012). The model fits for each subject
in the upright and inverted conditions are shown in Table 3
and the parameters of the best fitting model are shown in
Table 4.

Upright condition
Table 3 shows the best fitting model (serial, parallel, or coac-
tive) for each participant within each set of models. Inspection
of Table 3 shows that the coactive model was the best fit-
ting model for all participants in the models assuming MSI
and DS. When both PS and DS was assumed, the parallel
self-terminating was the best fitting model for three of four
participants (U1, U2, and U4); the serial exhaustive model
best fits U3 within this set of models. However, when MSI
and OP were assumed, the parallel self-terminating model
provided the best fit for all four observers in the upright
condition.

Overall, there was a consistency of the best fitting model (par-
allel self-terminating or coactive) within each set of models. That
is, we can rule out serial processing and, for the most part,
any exhaustive processing, which accords with previous findings
regarding integral dimensioned stimuli (Little et al., 2013) and
stimuli with dimensions in the same spatial location (Little et al.,
2011). However, in considering the best fitting model for each
individual participant across all stimulus sets, there were marked
individual differences. For instance, the parallel self-terminating
model, was the best fitting model for participants U1 BIC =
546.51) and U2 (BIC = 821.08), and the coactive model was the
best fitting model for U3 (BIC = 753.72) and U4 (BIC = 505.62).
The assumption of PS also varied between these participants. The
best fitting model assumes MSI and DS for U3 and U4, but the
best fitting models assume PS and DS for U1, and MSI and OP
for U2. The predictions of the best fitting parameters are plotted
against individual RT distributions in Figure 5.

Inverted condition
For the inverted condition, the coactive model was the best fit-
ting model for all participants in the two sets of models that
assume perceptual integrality (regardless of decisional separabil-
ity or integrality). For the set of models that assume both PS and

Table 3 | Model Fits to subjects in Experiment 1 (model with the lowest BIC in each set is bolded; best overall model is bolded an italics).

Subject Coactive Parallel exhaustive Parallel Self-terminating Serial exhaustive Serial self-terminating

-lnL BIC -lnL BIC -lnL BIC -lnL BIC -lnL BIC

PS AND DS

U1 290.07 616.04 471.95 979.8 255.26 546.41 380.75 797.41 308.04 655.97

U2 437.07 910.04 448.34 932.58 419.45 874.79 489.27 1014.4 443.56 927

U3 462.32 960.55 533.06 1102 452.12 940.13 427.55 891.01 441.19 922.27

U4 314.04 663.98 442.85 921.6 264.83 565.55 384.25 804.39 341.48 722.84

I1 231.62 499.14 376.03 787.96 267.22 570.33 514.06 1064 280.39 600.67

I2 215.65 467.2 400.75 837.4 256.6 549.09 531.55 1099 253.04 545.97

I3 306.93 649.76 288.92 613.75 258.91 553.72 366.95 769.8 258.42 556.73

I4 289.2 614.29 413.1 862.1 236.11 508.11 542.26 1120.4 268.18 576.24

MSI AND DS

U1 277.82 591.54 418.40 872.69 307.71 651.31 349.33 734.56 309.52 658.93

U2 417.36 870.61 486.76 1009.40 419.94 875.78 470.07 976.04 425.09 890.06

U3 358.91 753.72 579.67 1195.20 444.50 924.90 462.10 960.09 446.36 932.61

U4 234.86 505.62 387.66 811.23 263.47 562.84 396.34 828.59 344.65 729.19

I1 291.25 618.41 536.66 1109.20 435.17 906.25 639.92 1315.70 457.87 955.64

I2 296.89 629.68 616.82 1269.50 481.39 998.68 716.87 1469.60 498.94 1037.80

I3 325.64 687.19 515.23 1066.40 494.15 1024.20 561.77 1159.40 504.63 1049.20

I4 208.42 452.73 558.00 1151.90 424.44 884.77 608.31 1252.50 503.77 1047.40

MSI AND OP

U1 277.46 590.82 380.43 796.76 263.48 562.86 302.37 640.64 894.47 1828.84

U2 413.13 862.16 472.74 981.38 392.59 821.08 459.87 955.64 1026.32 2092.53

U3 373.81 783.52 541.82 1119.54 366.98 769.86 369.01 773.92 1115.98 2271.84

U4 275.87 587.64 419.63 875.16 274.94 585.78 358.00 751.90 1011.85 2063.59

I1 331.61 699.12 456.14 948.18 427.00 889.90 569.69 1175.28 586.19 1212.28

I2 444.62 925.14 610.14 1256.18 605.07 1246.04 726.03 1487.96 791.77 1623.42

I3 466.31 968.52 588.70 1213.30 585.75 1207.40 727.57 1491.04 786.34 1612.56

I4 307.18 650.26 645.95 1327.80 631.75 1299.40 817.53 1670.96 808.54 1656.97
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Table 4 | Parameters for the best fitting model for subjects in Experiment 1 and 2.

Subject Set Model -lnL BIC Dx Dy σx σy +A +B μr σr k

EXPERIMENT 1

U1 PS and DS ParallelST 255.26 546.41 1.35 1.59 0.76 0.19 5 3 6.38 0.36 38.71

U2 MSI and OP ParallelST 392.59 821.08 1.34 1.73 0.46 0.25 4 3 6.15 0.23 45.07

U3 MSI and DS Coactive 358.91 753.72 1.40 1.27 0.19 0.24 3 2 5.58 0.38 99.09

U4 MSI and DS Coactive 234.86 505.62 1.43 1.28 0.13 0.13 3 2 5.81 0.16 50.40

I1 PS and DS Coactive 231.62 499.14 1.18 0.50 4.17 2.98 4 3 6.13 0.14 37.60

I2 PS and DS Coactive 215.65 467.20 1.44 0.50 1.61 6.12 3 3 6.04 0.16 53.86

I3 PS and DS ParallelST 258.91 553.72 1.47 1.51 2.27 2.78 6 7 6.87 0.49 15.68

I4 MSI and DS Coactive 208.42 452.73 0.76 1.08 1.83 7.87 7 7 6.34 0.17 18.36

EXPERIMENT 2

U5 PS and DS Coactive 289.90 615.70 2.20 1.51 4.25 2.98 9 5 6.31 0.17 7.48

U6 PS and DS ParallelST 253.97 543.83 2.50 2.48 2.02 0.95 3 3 6.09 0.14 56.98

U7 MSI and DS ParallelST 244.73 525.37 1.68 1.57 1.89 1.57 8 8 5.97 0.02 9.48

U8 MSI and DS ParallelST 338.97 713.84 1.66 1.43 1.53 1.24 6 6 5.69 0.07 48.81

I5 MSI and OP ParallelST 304.50 644.89 1.66 1.59 2.88 2.89 5 6 6.19 0.09 18.44

I6 MSI and DS Coactive 290.12 616.13 1.46 1.16 1.35 0.46 5 4 5.96 0.14 47.22

I7 PS and DS ParallelST 261.63 559.17 2.50 2.50 1.98 1.37 5 5 5.93 0.06 46.72

I8 PS and DS ParallelST 299.58 635.06 2.50 2.38 1.52 0.99 6 5 6.24 0.18 26.94

For U2 and I5, Dx and Dy refer to Offset1 and Offest2, the slope of decision bound for dimension X and Y. The value of Offset1 and Offset2 are -2.21 and 97.45◦ ,

respectively, for U2, and -1.21 and 86.79◦ for I5.

DS, the coactive model was the best fitting model for participant
I1, I2, and I4 but the parallel self-terminating model was the best
model for I3.

Examining the best model across all model sets, participants
I1 (BIC = 499.14) and I2 (BIC = 467.20) demonstrated coactive
processing under the assumption of PS and DS. Under the same
assumptions, the parallel self-terminating model was the best
model for I3 (BIC = 553.72). Finally, I4 (BIC = 452.73) demon-
strated coactive processing under the assumptions of MSI and DS.
The predictions of the best fitting parameters are plotted against
individual RT distributions in Figure 6.

In each of the logical rule models there are two key compo-
nents which determine the types of predictions that are generated.
The first component is the architecture of the model. The sec-
ond component is the psychological representation of the stim-
uli, which can vary based on the nature of perceived similarity
between each of the stimuli. For the current set of stimuli, we fit-
ted a series of models by varying the assumption of perceptual
and decisional separability. It is clear that changing these assump-
tions affects the best model for each participant. A benefit of the
parametric approach taken here is that we are able to test these
different assumptions in a systematic fashion.

DISCUSSION
Experiment 1 highlighted two important findings. First, there
were individual differences in the processing of the face morph
dimensions. In the general, participants in the upright and
inverted conditions were best explained by either the coactive
or parallel self-terminating models. Specifically, two of four par-
ticipants processed the face morphs coactively in the upright
condition, and three of four participants showed coactivity in the
inverted condition.

Second, the best fitting model for each participant varied
with changes in the perceptual representation of the stimuli. In
the upright condition for example, the coactive model provided
the best fit for all participants when the perceptual representa-
tion was not assumed to conform to a 3 × 3 grid-layout (see
Figure 1) and when an orthogonal decision boundary was uti-
lized. However, a parallel self-terminating model best fitted these
participants when the model assumed an optimal (diagonal) cat-
egory boundary. This highlights the necessity of accounting for
not only architecture, but also the perceptual representation of
the stimuli.

A potential caveat on this interpretation is that the scal-
ing solution was obtained from averaged similarity ratings of
online participants. Given the individual differences in processing
architecture, it is highly possible that there are also individ-
ual differences in the psychological representation of the face
morphs shown in Figure 1. For example, averaging the simi-
larity data might result in greater symmetry than is observed
in any of the individual participants (Ashby et al., 1994); fur-
thermore, the results from the average data may exhibit proper-
ties which are not found in any of the individual participants.
Consequently, using a single scaling solution for the computa-
tional modeling of individual participant data may mask indi-
vidual differences in the MDS, and possibly also, in processing
architecture. A better method would be to fit an MDS model such
as INDSCAL, which allows for differential dimension weightings
for each observer (Carroll and Chang, 1970). However, this would
have still necessitated using an MDS solution collected from
observers different from those who completed our categoriza-
tion task. As an alternative, we conducted a second experiment
in which in which RT distributions and scaling solutions were
obtained for each participant. For this experiment, we also varied
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FIGURE 5 | Distribution predictions for each item using the best fitting model for each participant from Experiment 1, Upright condition (A, Subject

U1—Parallel self-terminating model; B, Subject U2—Parallel self-terminating model; C, Subject U3—Coactive model; D, Subject U4—Coactive model).

the stimulus parameters to further increase the generality of our
results.

EXPERIMENT 2
Experiment 2 replicated the upright and inverted conditions of
Experiment 1 with two important alterations. First, a different
stimulus space was created by swapping the positions of the two of
the base faces from the set used in Experiment 1. The result of this
change in base faces is that all of the stimuli except for EY, LL, and
EX are different in Experiment 2 than in Experiment 1 (though
similar because they are comprised of the same four base faces).
Second, each participant completed a session of similarity ratings
following their categorization sessions. Thus, participant-specific
scaling solutions were used in the computational modeling.

METHOD
Participants
Eight participants from the University of Melbourne commu-
nity with normal or corrected-to-normal vision were randomly
assigned into the upright condition and the inverted condi-
tion with four in each condition (labeled U5–U8 and I5-I8 for
the upright and inverted conditions, respectively). Participants

received $12 for each session plus an extra $3 bonus for accurate
performance (over 90% accuracy) during categorization sessions.

Apparatus and stimuli
The apparatus was identical to Experiment 1. The base faces used
to create the stimulus space were also identical to those used in
Experiment 1, however, the positions of base faces A and C were
swapped. This led to a morph sequence between faces A and D,
and B and C. This resulted in a different stimulus space, which
was nonetheless similar as it comprised the same base faces (see
Figure 7). The stimuli were presented at four degrees of visual
angle.

Procedure
The procedure was identical to the categorization sessions of
Experiment 1. Each participant completed five 1-h sessions on
consecutive or near consecutive days, and only the final four ses-
sions of categorization were used for analysis. In order to improve
overall performance accuracy, participants were first shown the
entire stimulus space with decision boundaries removed and were
instructed take some time to study these faces to improve their
performance during the experiment.
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FIGURE 6 | Distribution predictions for each item using the best fitting model for each participant from Experiment 1, Inverted condition (A, Subject

I1—Coactive model; B, Subject I2—Coactive model; C, Subject I3—Parallel self-terminating model; D, Subject I4—Coactive model).

FIGURE 7 | Comparison of stimulus spaces for Experiment 1 and 2.
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After completing the categorization sessions, participants were
asked to return for a subsequent 1 h session in which they rated
the similarity of the morphed faces used in the categorization task.
There were 36 unique combinations of these stimuli, which were
presented to participants 20 times each. On each of the 720 tri-
als, a fixation cross was presented for 500 ms, then one of the
combinations of faces was presented (i.e., two faces appeared on
the screen, one face in the center of the upper right quadrant
and the other in the center of the upper left quadrant of the
monitor) and participants were then asked to rate the faces on
the number pad using a scale of 1–8, where 1 was least similar
and 8 was most similar. The presentation order of each unique
pair was counterbalanced across the 20 repetitions. Comparisons
were randomized for each participant. Participants in the upright
condition made similarity judgments for upright faces, and par-
ticipants in the inverted condition made similarity judgments for
inverted faces.

RESULTS
For the categorization task, any trials with RTs less than
200 ms or greater than 3 SDs above the mean were removed
from the analysis. This resulted in the removal of less than
1% of trials. The mean RTs and error rates are shown in
Table 1, respectively. Overall, the error rates for the upright and
inverted conditions were lower in Experiment 2 compared to
Experiment 1, with comparable error rates between the upright
and inverted conditions in Experiment 2. This shows that accu-
racy was approximately equal between conditions for this exper-
iment. As seen in Experiment 1, error rates for stimulus LL in
Experiment 2 were generally higher than the remaining eight
stimuli.

Multidimensional scaling of similarity ratings
The scaling solutions for participants in the upright and inverted
conditions are presented in Figure 8. Overall, scaling solutions
for each participant in the upright condition adhered to the
general layout presented in Figure 1. However, participants U5
and U6 demonstrated greater deviations from the grid-layout
than U7 and U8. Moreover, the unconstrained solutions revealed
violations of perceptual separability for all four participants, as
values on the A–D morph dimension changes with each level
of the B,C morph dimension. A similar pattern of results was
observed for participants in the inverted condition. Participants
I6–I8 showed a perceptual representation in which items LL
and IX were lower on the B,C dimension than the corre-
sponding items at that level (i.e., IY and HL, and R and EX).
Participant I5, however, showed a pattern in which the items
were more dispersed along the B,C dimension than the A–D
dimension.

Similar to Experiment 1, unconstrained and constrained mod-
els assuming city-block and Euclidian distance between the esti-
mated coordinates were fitted for each participant. A summary
of the two sets of scaling solutions is provided in Table 2. For the
constrained scaling solutions, models that assumed a Euclidean
distance metric provided better fits of the scaling solution. A sim-
ilar pattern of results was observed for the unconstrained scaling
solutions. The only exception was that best fitting unconstrained

solutions for subjects U5, U6, and I5 assumed city-block distance
metric. Taken across all observers, the pattern suggests that these
face morphs are consistent with integrality in that most observer’s
scaling solutions are better fit by assuming a Euclidean metric.
The unconstrained model fit better but was typically less preferred
based on BIC due to the larger number of parameters. Hence,
based on the MDS modeling along we would conclude that for
seven of our observers, there was no violation of perceptual sepa-
rability. Nevertheless, we continued to utilize the unconstrained
solution when fitting the different architectures to capture the
assumption of MSI. As before, we also fit each of the models
assuming either PS or MSI and assuming either DS or optimal
category boundaries.

COMPUTATIONAL MODELING
The model fits for each subject in the upright and inverted condi-
tions are shown in Table 5 and the parameters of the best fitting
model are shown in Table 3.

Upright condition
Inspection of Table 5 reveals that the parallel self-terminating
model was the best fitting model for three participants in the
upright condition. For the set of models assuming MSI and DS,
the parallel model was the best model for U7 and U8, but the
coactive and serial models were the best models for U5 and U6
respectively. The parallel self-terminating model was the best fit-
ting model for U6–U8, when assuming both MSI and OP; the
coactive model was the best model for U5. For the models assum-
ing both PS and DS, the coactive model was the best model
for U5, U7, and U8, but the parallel model was the best model
for U6.

Individually, participant U5 demonstrated coactive processing
under all three different assumptions of perceptual representa-
tion, but the model that assumes PS and DS was the overall
best fitting model (BIC = 615.70). The parallel self-terminating
model best fitted U6 (BIC = 543.83) with the same assump-
tions of perceptual representation. The parallel self-terminating
model best fitted U7 (BIC = 525.37) and U8 (BIC = 713.84)
under the assumption of MSI and DS. The predictions of the best
fitting models are plotted against individual RT distributions in
Figure 9.

Inverted condition
The model fits of the inverted condition present a clear picture.
The parallel self-terminating model best fitted the data for par-
ticipants I5, I7, and I8 under all three different assumptions of
perceptual representations. Participant I5 (BIC = 644.89) was
best fitted with the assumption of MSI and OP, but participants
I7 (BIC = 559.17) and I8 (BIC = 635.06) were best fitted with
the assumption of PS and DS. For participant I6, the coactive
model with the assumption of MSI and DS was the overall best
fitting model (BIC = 616.13). The predictions of the best fit-
ting parameters are plotted against individual RT distributions in
Figure 10.

DISCUSSION
In sum, parallel self-terminating processing was observed for
three of the four participants in both the upright and inverted

Frontiers in Psychology | Quantitative Psychology and Measurement January 2015 | Volume 5 | Article 1531 | 16

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Blunden et al. Arbitrary integral dimensions

FIGURE 8 | (A,B) shows the individual multidimensional scaling solutions for the Upright and Inverted conditions in Experiment 2, respectively.

conditions of Experiment 2. This is in contrast to Experiment 1
in which a majority of participants demonstrated coactive pro-
cessing of upright and inverted face morphs dimensions. Taken
together with Experiment 1, and given the small number of
observers, our conclusion is that there are individual differences
in the manner in which the face morph dimensions are pro-
cessed. Regardless of whether the morphs are presented in an
upright or inverted fashion, processing may be coactive or par-
allel depending on the individual observer. Similar to Experiment

1, Experiment 2 showed that changing the assumption of the
underlying perceptual representations affects the best fitting
model.

GENERAL DISCUSSION
In this paper, we examined processing of purportedly inte-
gral, arbitrary morph dimensions, comparing both upright and
inverted face morphs. Our primary finding was that some indi-
viduals process the dimensions in a parallel self-terminating
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Table 5 | Model fits to subjects in Experiment 2 (model with the lowest BIC in each set is bolded; best overall model is bolded an italics).

Coactive Parallel exhaustive Parallel self-terminating Serial exhaustive Serial self-terminating

Subject -lnL BIC -lnL BIC -lnL BIC -lnL BIC -lnL BIC

PS AND DS

U5 289.90 615.70 492.62 1021.14 361.32 758.54 517.10 1070.09 409.43 858.75

U6 272.71 581.32 376.66 789.23 253.97 543.83 454.94 945.78 354.61 749.11

U7 264.74 565.39 495.81 1027.51 282.97 601.85 525.06 1086.02 402.50 844.89

U8 366.41 768.72 502.23 1040.37 368.20 772.31 491.54 1018.98 458.31 956.52

I5 472.66 981.22 657.95 1351.79 444.75 925.40 744.24 1524.38 492.54 1024.97

I6 290.34 616.58 737.07 1510.05 365.19 766.28 716.51 1468.91 533.73 1107.35

I7 412.70 861.30 518.87 1073.64 261.63 559.17 514.43 1064.76 376.34 792.58

I8 372.39 780.67 368.31 772.52 299.58 635.06 410.63 857.17 353.91 747.72

MSI AND DS

U5 367.95 771.80 552.57 1141.04 455.15 946.19 591.10 1210.13 447.10 934.10

U6 408.12 852.14 361.11 758.12 364.58 765.06 433.45 894.82 340.58 721.05

U7 294.90 625.71 531.11 1098.12 244.73 525.37 519.29 1066.50 286.60 613.10

U8 515.94 1067.78 538.03 1111.97 338.97 713.84 508.53 1044.99 406.77 853.43

I5 439.36 914.62 553.70 1143.29 320.56 677.02 602.31 1232.55 328.97 697.84

I6 290.12 616.13 737.84 1511.59 350.37 736.65 693.59 1415.10 468.98 977.84

I7 568.12 1172.14 610.76 1257.43 379.92 795.74 650.95 1329.82 474.17 988.22

I8 446.98 929.87 393.25 822.40 351.66 739.22 467.70 963.32 366.24 772.36

MSI AND OP

U5 409.46 854.82 731.59 1499.09 1055.75 2147.40 807.25 1650.41 482.32 1004.54

U6 496.00 1027.90 490.14 1016.19 477.51 990.92 570.76 1177.42 870.17 1780.23

U7 395.85 827.60 488.78 1013.45 309.05 654.01 550.07 1136.03 1000.76 2041.40

U8 507.92 1051.75 590.52 1216.93 356.71 749.31 568.15 1172.21 1288.88 2617.65

I5 455.77 947.44 512.42 1060.74 304.50 644.89 596.91 1229.73 1202.71 2445.32

I6 720.69 1477.27 860.90 1757.70 662.16 1360.23 865.15 1766.20 1588.40 3216.69

I7 860.90 1757.70 803.03 1641.97 801.66 1639.22 837.51 1710.93 1108.51 2256.90

I8 833.26 1702.42 784.05 1603.99 759.12 1554.14 827.49 1690.87 1385.56 2811.00

fashion and others process the dimensions coactively for both
upright and inverted face morphs.

A strength of the present study is the comparison of the model
fits under different assumptions of the underlying perceptual
representation. The scaling solutions from both experiments
reveal deviations from the 3 × 3 grid-layout outline in Figure 1.
Experiment 1 showed that the preferred model varied based on
the underlying representational assumption. For example, the
coactive model was the best fitting model in the upright condition
for all participants when perceptual integrality and decisional sep-
arability were assumed; however, once the model assumed either
optimal responding or mean shift integrality, the parallel model
was superior in terms of BIC. A clear benefit of the parametric
approach taken here that we are able to tease apart differences in
representation from differences in architecture.

Overall, more participants used a coactive strategy in
Experiment 1 compared to Experiment 2. There are two possible
reasons for this difference. Firstly, participants may have per-
ceived the face morphs differently since the visual angle and the
face morph dimensions were altered between experiments (i.e.,
the position of two base faces were swapped). Secondly, model
fitting for Experiment 1 utilized the averaged scaling solution
of independent participants, but model fitting for Experiment 2

utilized individual scaling solutions after categorization training.
In general, there is high variability in the perceptual represen-
tation of these face morphs between individuals and thus the
average scaling solution may not have adequately represented the
perceptual representation of each participant in Experiment 1.

IMPLICATIONS FOR PREVIOUS RESEARCH
The finding of individual differences in processing face morph
stimuli implies that previous studies employing these stimuli on
the assumption that they are processed in an integral fashion
need to be interpreted with caution. On the one hand, the stim-
uli clearly satisfy one of the empirical operational definitions
of integrality in that for most observers, the best fitting scal-
ing metric was Euclidean. On the other hand, only half of the
observers required assuming a violation of perceptual separabil-
ity. Furthermore, only half of the observers were best fit by a
coactive processing architecture, and of those, only two observers
from Experiment 2, where individual scaling solutions were used,
were found to be coactive. Consequently, the evidence that the
face morph stimuli provide consistent and converging evidence
of coactive processing is rather weak.

In their study of perceptual differentiation, Goldstone and
Steyvers (2001) found that the face morph dimensions were
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FIGURE 9 | Distribution predictions for each item using the best

fitting model for each participant from Experiment 2, Upright

condition (A, Subject U5—Coactive model; B, Subject

U6—Parallel self-terminating model; C, Subject U7—Parallel

self-terminating model; D, Subject U8—Parallel self-terminating

model).

independently analyzable after training on a boundary orthogo-
nal to the stimulus dimensions. Goldstone and Steyvers acknowl-
edge the possibility that because of the grid-like arrangement of
the stimuli, participants may have realized that there was a con-
sistent dimensional structure. Indeed, in their Experiment 3, they
utilized a stimulus space which did not have a grid-like struc-
ture (i.e., the face morphs were arranged in a circle), yet they
still found evidence for differentiation. Consequently, it would
seem prudent to limit our conclusions of individual differences
to the case in which the face morphs are aligned to a grid mak-
ing potentially making the dimensional structure particularly
identifiable.

An alternative interpretation of our result would be to assume
that differentiation is not precluded by training a category bound-
ary on both stimulus dimensions, and that our observation that
some observers processed the dimensions independent (in a par-
allel, self-terminating fashion) is evidence of that differentiation.
In support of this idea, the MDS solution from Experiment 1,
which was the only data collected prior to category learning (con-
cerns about averaging notwithstanding; Ashby et al., 1994), is best
fit by a Euclidean distance metric suggesting integrality. However,

we note that a Euclidean metric was also found for most of our
observers in Experiment 2 after extensive category learning. It is
clear from the present results that individuals differ with regard
to how they represent and process the face morphs used in the
present study. Whether this results from a difference in the time
course of differentiation and learning (i.e., across sessions) is left
for future research. Nonetheless, we note that the MDS solu-
tions found in Experiment 2 were found using data collected after
extensive category learning. These solutions all indicate that a
constrained solution (i.e., which exhibits perceptual separability
as defined by GRT) provides a better account of the similarity
data. This result is in line with the hypothesis that the stimulus
dimensions were differentiated after category learning.

Finally, a further caveat on the implications of the present
research is that we tested a relatively small number of individuals.
This is a consequence of the experimental design which necessi-
tates collecting large numbers of observations from each observer.
Nevertheless, we can clearly rule out a large number of models
including all serial models and all exhaustive models. This leaves
coactivity and parallel self-termination as the remaining candi-
date processing models for the present face morph stimuli. That
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FIGURE 10 | Distribution predictions for each item using the best

fitting model for each participant from Experiment 2, Inverted

condition (A, Subject I5—Parallel self-terminating model; B,

Subject I6—Coactive model; C, Subject I7—Parallel

self-terminating model; D, Subject I8—Parallel self-terminating

model).

we found, essentially, the same sorts of individual differences in
both experiments suggests that the individual differences are real
and not due to small idiosyncratic differences between subjects.

IMPLICATIONS OF THEORETICAL NOTIONS OF INTEGRALITY
Here we have shown that stimuli which were previously thought
to be integral on the basis of one empirical test of integrality, do
not necessarily meet all other tests of integrality (cf. Cheng and
Pachella, 1984). The face morph dimensions used in this exper-
iment had been previously shown to result in an interference
effect when variation on an irrelevant dimension was introduced
suggesting integrality. In the current study, the scaling solutions
demonstrated clear violations of perceptual separability (Ashby
and Townsend, 1986; Ashby and Maddox, 1991; Maddox, 1992;
Maddox and Ashby, 1996) and the Euclidean metric was pre-
ferred for most observers, but for observers in Experiment 2 a
constrained solution was preferred after taking the complexity of
the solution into account. Taken in conjunction with the RT data,
however, there was a good deal of variation in whether perceptual
separability was violated or not. Little et al.’s (2013) experiments
using Munsell color stimuli suggest a theoretical definition of

integrality in terms of coactive processing. For the present stim-
uli, however, we also did not find consistently coactive processing
suggesting that the face morphs used here do have some iden-
tifiable structure which can be processed in an independent
fashion.

Yet, one may question why additional theoretical definitions of
integrality are necessary. GRT offers a theoretical definition of
perceptual representation, which rigorously defines violations
of perceptual independence, perceptual separability and deci-
sional separability, so is there any need to posit coactivity as a
theoretical representation for integrality? As a background con-
sideration, it is worthwhile to note that GRT does not predict
RTs without additional mechanisms, and aside from the logi-
cal rule models presented here, only the distance-from-boundary
hypothesis has been applied to explain some of the empirically
observable definitions of integrality (Ashby and Maddox, 1991;
Maddox, 1992). Though, as previously discussed, the distance-
from-boundary hypothesis makes untenable predictions for the
speed of the fastest RTs when perceptual variability is increased
(Nosofsky and Palmeri, 1997). Consequently, we feel that GRT
provides a representational-level theory of integrality, but does
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not extend adequately to understanding how integral dimensions
are processed. Though we highlight recent advances in develop-
ing a non-parametric dynamic GRT, which extends the concepts
defined within GRT to a class of parallel processing models
(Townsend et al., 2012); these models have not yet been applied
to differentiating separable and integral dimensioned stimuli. By
contrast, the logical rule models approach are a process-level the-
ory of integrality but one which offers a way to simultaneously
consider both the perceptual representation and the underlying
processing architecture.

There are two somewhat orthogonal ideas that might be
considered when addressing the question of whether aligning
integrality with coactivity is necessary. The first is that defining
integrality as coactivity might confound integrality at the per-
ceptual and decisional stages. For instance, one could imagine
that perceptual separable dimensions might be pooled together
at a decisional stage. While this is a conceptually possible, we
do not consider this to be very plausible in the present case.
This hypothesis would capture ideas present in many two-stage,
salience-based models of visual search (Neisser, 1967; Wolfe et al.,
1989; Wolfe, 1994; Found and Muller, 1996) that an initially inde-
pendent parallel stage selects out information for later processing
by an apparently coactive system. In the present case, however, the
stimuli are presented until a response is generated; consequently,
the early system is likely completely saturated. In this case, the
GRT representations likely do not capture the early, salience-
based perceptual qualities of the stimulus dimensions, but rather
capture something like the relative similarity between each of the
stimuli (Ashby and Perrin, 1988). Under extended display condi-
tions, representations of the dimensions that are independent and
driven by the marginal representation of the dimensions are not
likely to exhibit patterns of effects which are the empirical hall-
marks of integrality. The present approach allows one to test these
assumptions parametrically by varying both the representation
and the architecture thereby separating perceptual and decisional
separability from the architecture used to generate the RTs.

A second issue arising from consideration of the mechanisms
used to generate the RTs is that to the extent that integrality
is aligned with the notion of holism and to what extent coac-
tivity captures what is typically meant by that latter concept.
For instance, in a task similar to the task used here, Fifić and
Townsend (2010) examined the processing of secondary holistic
features (e.g., the distance between the eyes or the between the lips
and the nose) which are thought to be part of the underlying con-
figural advantage underlying face perception. In that study, under
conditions conducive to holistic processing, observers were found
to demonstrate coactivation. Strong definitions of holistic pro-
cessing seem commensurate with the theoretical notions implied
by coactivity; the same is true when ideas of holistic processing
are applied to dimensional integrality.

Fifić and Townsend’s (2010) finding of coactivation using faces
with secondary-level facial feature differences stands in contrast
to the relative lack of consistent coactivation in the present exper-
iments using face morphs. One possibility is that, like Fifić and
Townsend’s study, coactivation would develop over time with
repeated presentation of the stimuli as the individual morph
dimensions are unitized into a holistic representation. Although

this is possible, it is the opposite of the direction of perceptual
learning assumed by Goldstone and Steyver’s (2001) in which
the face morph dimensions became more separable with train-
ing. A key difference in that study was that the training only
utilized discriminations along a single dimension, whereas here,
both dimensions are relevant. Nonetheless, we find mixed evi-
dence of coactivation when both dimensions are relevant. This
also did not vary based on whether faces were presented in an
upright or inverted fashion. We tentatively suggest that the morph
dimensions we use here do not contain the sort of individual
identification information that seems to drive superior face iden-
tification performance but instead contain dimensional structure
which can be utilized by some observers. This clearly renders
overarching inferences based on averaged data problematic. We
argue that without factorial manipulations to tease apart how
dimensional information is integrated for each observer, general
conclusions may be misleading.

Finally, although the logical rules framework that we adopt
here combines many existing approaches to studying integrality
and separability, it is worth considering whether some deeper
theoretical insight can be used to understand the variety of
converging operations. Three converging operations are worth
considering: the MDS metric (Attneave, 1950; Torgenson, 1958;
Shepard, 1964, 1987; Nosofsky, 1992), the efficiency of selective
attention (Nosofsky, 1987), and Garner’s (1974) facilitation and
interference results. When coupled with our modeling results, the
finding that a Euclidean metric persists after extensive category
learning suggests the distance metric is an unreliable indicator of
integrality (Grau and Kemler-Nelson, 1988). This suggests that a
target for future research is to determine how different process-
ing architectures predict the types of proximity measures which
are used to derive the scaling solutions. For instance, one ques-
tion of interest is whether serial and parallel processing models,
which compare dimensions independently necessarily always lead
to solutions with city-block distance metrics. A second question
is whether coactivity always leads to solutions with Euclidean dis-
tance metrics. At present, these relations are intuitive, but the
strength of this relationship is unclear.

With regard to the efficiency of selective attention, in the log-
ical rules models, there are at least two possible ways by which
selective attention might influence processing. One mechanism
is to increase the processing rate of attended dimensions and
decrease the rate of less attended dimensions (see for example,
Nosofsky and Palmeri, 1997; Ashby and Perrin, 1988). A second
possibility is that selective attention might be linked to selec-
tive, fixed-order serial processing. That is, dimensions which are
learned to be relevant for categorization or are more salient might
be selected to be processed before (or to the exclusion of, in a
self-terminating model) less relevant or less salient dimensions. In
support of this idea, Lamberts (1995; 1998; 2000; see also Cohen
and Nosofsky, 2003) showed that for separable-dimensioned
stimuli, attributes vary in their temporal order within the deci-
sion process with more salient dimensions processed before other
dimensions. These results are consistent with the logical rules
account of serial processing of separable dimensioned stimuli (see
Fifić et al., 2010), and by contrast, support the idea that integral
dimensions should be process coactively (Little et al., 2013).
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As noted in the introduction, Garner’s (1974; Garner and
Felfoldy, 1970) tasks do not allow one to differentiate between
different processing architectures. The reason for this is that these
tasks involve categorization using a single relevant dimension.
Under these conditions, there is no difference in the processing
rate predicted using the joint bivariate distributional represen-
tation and the marginal distribution representation. Likewise,
there is only one processing channel (i.e., the relevant dimen-
sion). Hence, separable dimensions, which show no facilitation
(i.e., with correlated variation) or interference (i.e., with irrele-
vant variation) might be processed either in a serial, a parallel,
or a coactive fashion. On the other hand, the signature inte-
gral result of facilitation and interference could indicate either
coactivity or some form of parallel processing. To explain, we
consider coactivity to be likely for integral dimensions, but a
change in architecture alone cannot predict Garner’s results for
integral dimensions. As discussed in Little et al. (2013, p. 817),
other representational mechanisms would need to vary to predict
facilitation and interference. For instance, one might expect opti-
mal responding (i.e., a diagonal decision bound; Maddox, 1992)
with correlated variation or an increase in perceptual variabil-
ity (Maddox, 1992; Nosofsky and Palmeri, 1997) with irrelevant
variation. However, the latter interference result could also be
predicted via other mechanism; for instance, parallel processing
with increased response caution could cause a slowing of RTs with
irrelevant dimensional variation. We offer the method we employ
in the present paper, which combines both processing and rep-
resentational assumptions, as a framework for addressing these
complex issues.
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