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Reaction time (RT) is one of the most common types of measure used in experimental
psychology. Its distribution is not normal (Gaussian) but resembles a convolution of normal
and exponential distributions (Ex-Gaussian). One of the major assumptions in parametric
tests (such as ANOVAs) is that variables are normally distributed. Hence, it is acknowledged
by many that the normality assumption is not met.This paper presents different procedures
to normalize data sampled from an Ex-Gaussian distribution in such a way that they are
suitable for parametric tests based on the normality assumption. Using simulation studies,
various outlier elimination and transformation procedures were tested against the level of
normality they provide. The results suggest that the transformation methods are better
than elimination methods in normalizing positively skewed data and the more skewed the
distribution then the transformation methods are more effective in normalizing such data.
Specifically, transformation with parameter lambda 1 leads to the best results.−
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INTRODUCTION
Reaction times (RTs) have been a privileged measure of behavior
in experimental psychology allowing an estimation of the dura-
tion of cognitive processes and inference of the likely cognitive
process (see Donders et al., 1969). Hence, their understanding and
proper analysis is essential. It is known that reaction time data are
positively skewed, and therefore are not normally distributed. As
Olivier and Norberg (2010) argue, commonly used statistical tests
are not appropriate for the analysis of RT data since RTs are (in
most cases) non-normally distributed. Yet, most researchers rely
on parametric tests (primarily ANOVA) to analyze reaction times
data despite these tests assumptions are not met with RT data.
More specifically, they require variables to be normally distributed
within conditions and have homogeneous variances between con-
ditions in order to give unbiased results (e.g., Calkins, 1974;
Marmolejo-Ramos and González-Burgos, 2013). Even small viola-
tions of those assumptions can lead to biased results from the tests
(see Wilcox, 1998). To meet these conditions, many researchers
transform the data and/or search for maverick data points. The aim
of this paper is to compare various procedures that assist in nor-
malizing data via power transformations and outlier elimination
procedures.

REACTION TIME DISTRIBUTIONS AND METHODS TO DEAL WITH
OUTLIERS
Reaction time distributions are characterized by a positive skew.
Many explanations have been proposed to explain this near univer-
sal finding (with one exception; Hopkins and Kristofferson, 1980,
who found symmetrical RT distributions). The first explanation
from McGill (1963), argued that observable RTs are caused by two

processes operating in succession. The first is a central decision
mechanism whose distribution is highly skewed (exponential dis-
tribution). This mechanism is related to an accumulation of
information processes whose activation times have a rate of accu-
mulation τ ms−1. These assumptions are based on neurological
studies of single cell firing patterns (see e.g., Langlois et al., 2014)
showing that for a small threshold, the resulting distribution is
very skewed and well-described by an exponential distribution.
The second process is responsible for response selection and motor
execution. This second process is presumably affected by many fac-
tors and therefore (owing to the central limit theorem) results in a
normal distribution. The sum of these two sets of time has a distri-
bution described by a convolution of a Gaussian distribution and
an exponential distribution known as an Ex-Gaussian distribu-
tion. Hohle (1965), Ratcliff and Murdock (1976), Hockley (1984),
and Heathcote et al. (1991), among others, fitted this distribution
to RTs and found a generally good fit.

In other words, a simple cognitive task starts at the level of the
perceptual processes. Light travels to the retina (negligible time),
activating the cones and rods on the retinae and transducing the
signal through the visual brain areas (V1, V2, etc.). Following
perception and up to a semantically meaningful percept, there is
the decision process presumably occurring in the frontal lobes. A
decision is then followed by activations sent for response selection
and down to the motor areas and spinal cord triggering a muscular
response, which puts pressure on a response key. Overall, a sim-
ple decision involves a chain of signal transformation through a
dozen specialized brain areas each adding to the observed latency.
The total processing chain can be subdivided into three stages:
perception, decision and response selection, and motor response.
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Based on the assumption that the time taken by each brain area
adds up to the total response time observed by the apparatus, and
knowing that manipulating the difficulty of the decision without
altering the perceptibility of the stimuli and without altering the
motor response complexity can affect skew, it can be hypothesized
that (1) perception processes add up to a total perception time;
(2) response selection and motor response processes add up to a
total response time, and (3) the balance leads to a decision time.
Although the time taken by the perceptual processes are unknown,
owing to the Central limit theorem, if multiple processes with
unknown times are added to obtain a total time then the result-
ing perception time should be normally distributed. This same
principle applies to the response selection and motor response
stage.

In recent years, though, some authors have questioned the
additivity assumptions. Under an alternative view of the chain
of processing, the brain areas send activations continuously and
related areas react when a critical amount of activations have been
received. Hence, each area is not operating in isolation. Thus, vio-
lating the independence of operation of each sub-process implicit
in the additivity assumption. Theorems analogous to the Central
limit theorem suggest that the resulting perception time should be
log-normally distributed in this scenario (Ulrich and Miller, 1993;
Mouri, 2013). Finally, as the decision processes are based on just
a few sub-processes, asymptotic theorems cannot be invoked and
this stage should preserve its highly skewed characteristic at the
level of latency.

Other explanations have subsequently been proposed to explain
the skew in RTs. Ulrich and Miller (1993) suggested that
response times may be caused by a cascade of events (following
McClelland, 1979, cascade model). This model predicts a distri-
bution called the Log-Normal (also see West and Shlesinger, 1990)

whose shape is indistinguishable from the EGd (Chechile, per-
sonal communication). Raab (1962), followed by LaBerge (1962)
and Pike (1973), instead proposed a race model where brain signals
compete with each other to be the first to trigger a response (recent
documentation includes Rouder, 2000; Miller and Ulrich, 2003;
Cousineau, 2004). These models all suggest that the Weibull dis-
tribution should be the distribution of RTs (see also Schwarz, 2001
for a variation of this idea). The Weibull and Ex-Gaussian/Log-
Normal can be in principle distinguished, but this requires a lot of
RTs per conditions (more than 100), uncontaminated by practice
effects, fatigue effects, etc. Nevertheless, the true distribution of
RT may also (more likely) be none of the above.

In what follows, we assume that the EGd is a convenient way
to characterize RTs much like statisticians assume the normal dis-
tribution. Furthermore, the literature indicates that the EGd is
the distribution most broadly explored. A comprehensive char-
acterization of EGds can be found in Marmolejo-Ramos and
González-Burgos (2013). The parameters of an EGd are rep-
resented by a mean (μ), a SD (σ), and an exponential factor
(τ). The mean and the SD represent times from the normally
distributed stage of processing, whereas the exponential factor
represents times from the exponentially distributed stage of pro-
cessing (see McAuley et al., 2006). The mean of an EGd can be
inferred from its parameters, as well as its standard variation.
The EGd’s SD and exponential factor can be used to estimate
its third (skewness) and fourth (kurtosis) central moments (see
Figure 1).

It is a common practice in psychological research that measures
RT data to deal with observations which fall very far from a group’s
mean. Such observations are possibly the product of participants’
lack of attention (very long RTs) or overly fast guesswork (very fast
RTs). However, it may also be caused by random fluctuations in

FIGURE 1 | Empirical density functions (ECDF) of three Ex-Gaussian distributions (EGDs) with different parameters. Bottom right inset shows the
moments of the EGD. PDFs of these distributions can be seen in Figure 3 in Marmolejo-Ramos and González-Burgos (2013).
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internal thresholds. These outliers deeply affect the estimation
of the data’s central tendency (see Whelan, 2008; Baayen and
Milin, 2010; Cousineau and Chartier, 2010). Although for some
researchers, outliers are not influential in data sets (see Orr et al.,
1991; Lance et al., 1996), most psychologists (e.g., Judd et al., 1995)
and statisticians (e.g., Beckman and Cook, 1983) agree that out-
liers affect parameter estimation. Outliers are usually dealt with by
using pre-determined criteria; mainly via SD cut-offs (e.g., elim-
inating observations above and/or below 2 SD, see Cowles and
Davis, 1982) or data re-expressions (e.g., transforming the data
into logarithms, see Bland and Altman, 1996). Additionally, a
combination of these approaches has been proposed (e.g., trans-
forming the data and then removing outliers or vice versa, see
Marmolejo-Ramos and Matsunaga, 2009).

Under the 2 SD procedures, researchers remove observations
which fall ± 2 SD from a participant’s mean in a particular con-
dition (see Ratcliff, 1993; for an example of this application see
Bertels et al., 2010). This procedure trims long tails in RT dis-
tributions on a subject per condition basis, but at the cost of
leaving experimental conditions with an unequal number of trials.
Although SD cut-off leads to an underestimation of the popula-
tion’s RT, such a biased estimation appears to depend on sample
size (Perea, 1999). In addition, the cut-off values are symmetri-
cal about the mean but the data are not. Hence, it is more likely
that high outliers will be removed, resulting in a systematic bias to
reduce the observed mean. To minimize overestimation bias, some
researchers have proposed adjustments for a number of SD accord-
ing to sample size (see Van Selst and Jolicoeur, 1994; Thompson,
2006; see also Table 2 in Cousineau and Chartier, 2010). Neverthe-
less, in practice most researchers rarely adjust SD cut-off according
to sample size using a 2 SD, 2.5 SD, or even a 3 SD cut-off crite-
rion instead (for examples, of each see Havas et al., 2007; Bertels
et al., 2010; Otte et al., 2011; respectively, see Leys et al., 2013; for a
review).

The SD cut-off is the most commonly used procedure to deal
with outliers in RT research. However, advances in statistics sug-
gest the use of more robust methods to deal with outliers. One
such approach derives from multivariate outlier detection meth-
ods and is called the minimum covariance determinant (MCD)
method. This method aims to estimate the best subset of normally
distributed points in a data set which are clustered in an ellip-
soid with the smallest volume (or minimum covariance matrix).
The computations of the MCD rely on Mahalanobis distances and
robust estimators of multivariate location (see Rousseeuw and van
Driessen, 1999). Although the MCD method is primarily designed
to deal with multivariate data, it does not preclude it from being
applied to univariate data.

Another approach to deal with non-normality is data transfor-
mations. With this procedure all observations are retained but they
are re-expressed using a different, non-linear, scale that improves
normality of the data (see Osborne, 2002; Olivier and Norberg,
2010). RT data can be re-expressed into logarithms (for an example
of this application see Markman and Brendl, 2005), square-roots
(for an example see Moran and Schwartz, 1999), and inverse (for
an example see Moss et al., 1997). A well-known transformation
that achieves all these re-expressions is the Box–Cox transforma-
tion. In this transformation, the selection of a particular parameter

known as lambda, is accompanied by a (restricted) log-likelihood
statistic that signals the best parameter needed in order to achieve
the highest normality (see Olivier and Norberg, 2010). Thus, spe-
cific lambda parameters have been associated with the inverse
(lambda = −1), logarithmic (lambda = 0), and square-root
(lambda = 0.5) transformations and previous studies have sug-
gested that the inverse transformation has a strong normalization
effect (see Ratcliff, 1993).

A simulation study in which the normalization power of the
Box–Cox transformations and elimination procedures are tested
against a particular type of skewed distributions is yet to be
done. As to the Box–Cox method, it would be useful to see
how other transformation parameters could improve the nor-
mality of EGds. Thus, the intermediate parameters −0.5 – are
worth testing since it can be seen as a trade-off between an
inverse (i.e., −1) and a logarithmic (i.e., 0) transformation. The
present simulation study aims to test the power of these outlier
elimination and transformation methods to normalize EGds of
different parameters and sample sizes. The results will indicate
the most effective methods when dealing with positively skewed
distributions.

MATERIALS AND METHODS
VALIDATION OF AN ALTERNATIVE SIMULATION METHOD AND A
COMPREHENSIVE APPROACH TO THE ASSESSMENT OF NORMALITY IN
NON-NORMAL DISTRIBUTIONS
In order to determine how various outlier elimination and trans-
formation methods can improve the normality of data sampled
from EGds, it is necessary to first check the normality of the EGds
before applying these methods. A typical approach is to estimate
the power of normality tests against non-normal distributions.
Under this approach it is traditional to (i) Compute the Criti-
cal values (CVs) of one or more normality tests against a N(0,1)
of different sample sizes, and to (ii) Use those CVs as cut-off
points to reject normality in non-normal distributions of the same
sample sizes used in the simulations (see Marmolejo-Ramos and
González-Burgos, 2013, for a detailed explanation).

The power of a normality test relies on the number of times
the test correctly rejects normality. We note hereafter the propor-
tion of rejection of normality as PoR. A high PoR (e.g., a PoR
close to 1) signifies that the distribution being tested is highly
non-normal, whereas a low PoR indicates otherwise (e.g., a PoR
close to 0). On the other hand, all tests should show PoRs hov-
ering around 0.05 (as α = 0.05) when tested against a normally
distributed set of data regardless of the sample size (e.g., Romão
et al., 2010). Such a situation is to be expected since normality
tests should have a low probability of incorrectly rejecting the
hypothesis that a N(0,1) is normal, and that probability should be
close to the nominal level used in the study (the α level). In sum,
normality tests should have a low PoR, against normal distribu-
tions and have a high power, or a high PoR, against non-normal
distributions.

In a recent study, Marmolejo-Ramos and González-Burgos
(2013) studied the power of various normality tests against three
EGds and other non-normal distributions such as the Weibull (2,1)
and Log-Normal (0,1). Their results not only replicated the com-
prehensive results reported by Romão et al. (2010) regarding the
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Weibull and Log-Normal distributions, but also found that of all
the normality tests studied, the Shapiro–Wilk (SW) was the test
with the highest power against EGds. For instance, using the CVs
approach described above, these researchers found that the SW
test has a power of approximately 0.45 when dealing with EGds
with parameters μ = 300, σ = 20, and τ = 300 when the sample
size was 10. When the sample size was 10 and the parameters of
the EGds were μ = 400, σ = 20, and τ = 200 and μ = 500, σ = 20,
and τ = 100, the powers of the SW test were just below 0.45 and
between 0.35 and 0.40, respectively (see Figure 4, in their study for
more detailed results).

The present study features an alternative approach in
which the p-value associated with a normality test is
used. Marmolejo-Ramos and González-Burgos (2013, footnote 5)
argue that in simulation studies, p-values are not mandatorily
calculated as they are calculated in statistical packages. That is,
statistical packages rely on theoretical distributions, while simula-
tion studies rely on empirical distributions. The present study uses
the p-value associated with a normality test, as given in statistical
packages, to validate its usage as an alternative way to measure
the PoR given by a normality test for a certain distribution. The
PoR results obtained via the p-value are simply the proportion of
times a normality test gives p-values below, and is not equal to,
a chosen alpha level, e.g., α = 0.05, when tested against a cer-
tain distribution of a particular sample size. Thus, if the p-value
approach proposed herein is effective, it should be able to repli-
cate or approximate the results found by Marmolejo-Ramos and
González-Burgos (2013) regarding the power of SW test against
various EGds.

To validate the p-value approach, a simulation study was per-
formed to test the power of the SW against the same EGds
described above, when sample size was 10, and with an alpha
level of 0.05. Additionally, the present simulations implement
the method proposed by Marmolejo-Ramos and González-Burgos
(2013) consisting of iterating (i) each simulation (s) a set num-
ber of times and estimating measures of central tendency (a) and
dispersion (SD) across iterations. Thus, these parameters were:
i = 30, s = 20’000, and a = the Mean (and its ±1 SD). That
is, each run of 20’000 simulations was iterated 30 times and for
each vector containing 30 iterations, the mean PoR, the mean
p-value and their associated SDs were estimated. More impor-
tantly, the results of the iterations are amenable to formal statistical
analysis in order to determine the main effects of and inter-
actions between the variables included in the simulations. The
results indicate that the proposed p-value method does replicate
the results obtained by Marmolejo-Ramos and González-Burgos
(2013); PoR: MEGd1 = 0.427 (SD = 0.003), MEGd2 = 0.413
(SD = 0.003), and MEGd3 = 0.354 (SD = 0.003); p-value:
MEGd1 = 0.178 (SD = 0.001), MEGd2 = 0.188 (SD = 0.001), and
MEGd3 = 0.232 (SD = 0.001), as determined by the SW normality
test when n = 10.

As suggested above, it is essential to determine the status of
non-normal EGds before any outlier elimination or transforma-
tion method is applied. As is traditional in simulation studies
of normality tests (see Romão et al., 2010; Alizadeh Noughabi
and Arghami, 2011; Yap and Sim, 2011), the PoR of a par-
ticular normality test is computed for a certain distribution

of a certain sample size. Indeed, this is the usual means of
evaluating the normality of a data set, i.e., usually researchers
use the SW or the Kolmogorov–Smirnov test (KS) to determine
what the normality of a data set is (see Marmolejo-Ramos and
González-Burgos, 2013). However, as has been shown through
simulation studies of normality tests, some tests have higher
power than others in determining normality, and the type of
distribution being tested plays a role in this (Engmann and
Cousineau, 2011). Thus, relying on a sole normality test could
be problematic in that it is difficult to determine the parent
distribution of the data set in advance. Marmolejo-Ramos and
González-Burgos (2013) proposed a method that can assist in
ameliorating this issue. These researchers recommend fitting the
data with a set of potential parent distributions, and estimat-
ing which parent distribution gives the best fit. Once a parent
distribution is identified, it could be possible to select an appro-
priate fitting normality test that is powerful against the type of
distribution.

An alternative method in which the combined results of various
normality tests are used is proposed herein. There are approx-
imately 40 different types of normality tests (see Razali and
Wah, 2010) that can be categorized as regression/correlations,
empirical distribution functions, measure of moments, or a com-
bination of these (see Romão et al., 2010; Marmolejo-Ramos and
González-Burgos, 2013). New normality tests are still being pro-
posed (e.g., Akbilgiç and Howe, 2011; Harri and Coble, 2011; He
and Xu, 2013), which may lead to new categorizations. Thus, it
is seems rather inadvisable to rely solely on one test, especially
when considering that tests also differ based on the different
characteristics of the normal distribution on which they focus
(Romão et al., 2010). Therefore, a comprehensive assessment of
normality would require the combination of results given by
normality tests from different categories. That is, an average of
the p-values given by normality tests belonging to the categories
mentioned above should give an educated approximation of the
normality of a given distribution. Figure 2 shows the results
of applying a normality-tests-combination method to the three
EGds mentioned above when sample sizes are 10, 15, 20, 30,
and 50 via the Marmolejo-Ramos and González-Burgos’ simu-
lation method described above. The normality tests used were the
SW, Shapiro–Francia (SF; these are regression/correlation-based
tests), KS, Anderson–Darling (AD; these are empirical distri-
bution function-based tests), Doornik–Hansen (DH), and the
robust Jarque-Bera (rJB; these are measure of moments-based
tests; details in relation to these tests can be found in Romão et al.,
2010)1 .

This section aims to determine the degree of normality
achieved by the outlier elimination and transformation meth-
ods described above, on various EGds. The six normality tests

1All of these tests are implemented in R in the following packages: “stats” package
(SW test), “nortest” package (AD, KS, and SF tests), “lawstat” package (rJB test), and
“normwhn.test” package (DH test). Note that the p-values computed for the SW test
are based on the Royston method (Royston, 1982a,b, 1995), the version of the KS
test in the “nortest” package is the Lilliefors, the critical values used to compute the
rJB are obtained by an approximation to a χ2 distribution and with zero number of
Monte Carlo simulations for the empirical critical values, and the p-value registered
for the DH test was that labeled “sig.Ep” in the output.
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FIGURE 2 | Mean PoR (and ±1 SD) of a combined set of six normality tests for three EGds when n = 10, 15, 20, 30, and 50. The associated mean
p-values for each case, and their ±1 SDs (in parenthesis), are shown in italics and between brackets. p-values below 0.05 are bolded.

described above were used to provide a gage of the average level
of normality achieved by the outlier methods. The simulation
approach described above, which uses iterations of simula-
tions and estimation of an average, was used in the study. In
addition, the p-value approach described above was used to

determine the PoRs after the outlier methods were applied to the
EGds.

Three different sets of EGds were generated. The parameters
were those described above: μ = 300, σ = 20, and τ = 300 (EGd1),
μ = 400, σ = 20, and τ = 200 (EGd2), and μ = 500, σ = 20, and

FIGURE 3 | Key components of the simulation study. Specific details can
be found in the ‘Materials and Methods’ section. IV, independent variables
(BS, between-subjects factors; WS, within subjects factors; D, distributions;
n, sample sizes, OM, outlier methods), S, simulation (s, number of

simulations; i, number of iterations), DV, dependent variables [M
(SD) = means and standard deviations; 6NT , mean across six normality tests;
∀OM, for all outlier methods; ≡EM, only for elimination methods], and SA,
statistical analysis (ATS, ANOVA-type statistic).
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FIGURE 4 | Mean proportion of rejection (four top panels) and p-values (four bottom panels) of the outlier accommodation procedure via data

transformation. Lambda represents the parameter used to perform the transformation. Insets show the mean and SD estimates across distributions types
and sample sizes.

τ = 100 (EGd3). Each EGd was generated in four sample sizes:
15, 20, 30, and 502. These parameters represent actual RT data
and are taken from the 12 different EGds reported originally by
Miller (1989). The simulation was carried out using the method

2A pilot simulation showed that EGds of sample size 10 were in some cases trimmed
down to seven when the elimination methods were used. Because such a low sample
size affected the results of the AD and the DH tests, the sample size 10 was excluded
from the final simulation study.

proposed by Marmolejo-Ramos and González-Burgos (2013) and
with the following parameters: i = 30, s = 20’000, and a = the
Mean (and its ±1 SD). The mean p-value of the six normality
tests described earlier was computed for each s product of the
combination of EGd type, sample size, and outlier method. Across
simulations, the PoR was the proportion of times the average p-
values fell below, and were not equal to, an alpha level of 0.05.
Finally, the mean PoR and p-value were estimated for each vector
containing i.
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FIGURE 5 | Mean proportion of rejection (four top panels) and p-values (four bottom panels) of the outlier elimination procedures via the MCD and

SD methods. Insets show the mean and SD estimates across distributions types and sample sizes.

Thus, for each combination of EGd, sample size, and outlier
method, i number of PoR and p-value results were available. The
mean results of the PoRs and p-values were submitted to a 3 (types
of EGd = EGd1, EGd2, and EGd3) × 4 (sample sizes = 15, 20,
30, and 50) × 2 (outlier methods = transformation and elimi-
nation) ANOVA-type statistic (ATS; see Noguchi et al., 2012 for
details) in order to determine main effects and interactions. The
“type of EGds” was entered in the analysis as the between-subjects
factor, while the other factors were entered as the within-subjects
factors. The items for the outlier transformation method were the

four transformation parameters of the Box–Cox transformations
described above, i.e., −1, −0.5, 0, and 0.5 and the items for the out-
lier elimination method were the four methods discussed above,
i.e., the MCD, ± 2 SD, ± 2.5 SD, and ± 3 SD methods. Compar-
isons of two dependent groups were performed via the Yuen test
(Ty ; see Wilcox, 2012 for details).

In the particular case of the outlier elimination methods, the
proportion of data eliminated (PoE) was estimated in the same
way as the PoRs. That is, for each distribution to which an outlier
elimination method was applied, the proportion of observations
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Table 1 | Results of the ANOVA-type statistic (ATS).

DV Main effect Interaction

PoR F D(1.94,82.53) = 4165.33, p < 0.001 F D×O(1.96,∞) = 22335.40, p < 0.001

F O(1,∞) = 31857.81, p < 0.001 F S×O(2.72,∞) = 883.00, p < 0.001

F s(2.54,∞) = 78415.56, p < 0.001 F D×S (4.90,∞) = 525.59, p < 0.001

F D×O×S (5.17,∞) = 267.56, p < 0.001

pV F D(1.93,81.51) = 1681.45, p < 0.001 F D×O(1.96,∞) = 34226.12, p < 0.001

F O(1,∞) = 74198.60, p < 0.001 F S×O(2.85,∞) = 502.25, p < 0.001

F s(2.82,∞) = 82610.79, p < 0.001 F D×S(5.50,∞) = 498.73, p < 0.001

F D×O×S(5.57,∞) = 255.15, p < 0.001

PoE F D(1.96,83.66) = 4382.35, p < 0.001 F D×E(5.02,∞) = 165.09, p < 0.001

F E(2.66,∞) = 267304.12, p < 0.001 F S×E(6.15,∞) = 4529.77, p < 0.001

F s(2.82,∞) = 186.08, p < 0.001 F D×S(5.42,∞) = 12.11, p < 0.001

F D×E×S(11.18,∞) = 35.62, p < 0.001

DV, dependent variable; PoR, proportion of rejection data; pV, p-value data; PoE, proportion of elimination data; D, distribution type (EGd1, EGd2, and EGd3); O, outlier
method (elimination and transformation); S, sample size (15, 20, 30, and 50), and E, elimination method (MCD, ±2 SD, ±2.5 SD, and ±3 SD).

removed by a specific method was computed. Then, an average of
PoE was estimated for the total number of simulations and each
simulation run was iterated i times. Finally, the mean PoEs across
iterations were computed.

Also, for both outlier methods, the mean p-value is reported
in order to render more obvious the direct relationship between
PoR and p-values. That is, the higher the mean p-value, the lower
the PoR, and the lower the mean p-value, the higher the PoR.
That is, more chances of normality rejection are paired with mean
p-values, signaling non-normality. Figure 3 illustrates the key
features of the simulation study.

A NOTE ON THE CHARACTERISTICS OF THE PRESENT SIMULATIONS
All throughout this article the simulation method used in the
present study has been depicted so it is worthwhile emphasizing
the value of the simulation approach used herein. Canonical sim-
ulation studies on normality test report tables of a unique number
that represents the power of the test under study, i.e., the propor-
tion of times the test rejected normality (here PoR) at the alpha
level chosen. For instance, in an ideal simulation study in which
20’000 simulations are run, it is expected that in 1’000 of them
the assumption of normality is incorrectly rejected when tested
against a N(0,1), which in turn, gives a power of 0.05 (or a PoR
of 0.05). However, if such simulation is run a second, third, or
an x number of times, it is likely that the number of N(0,1) dis-
tributions flagged as non-normal, varies from 1000 every time.
Therefore, giving a PoR of approximately 0.05. Such variation in
the outcome can be due to several factors such as the type of RNG
used, the use of seeding in the simulations, the statistical package
used, and/or simply chance.

There is in fact another issue associated with the study of nor-
mality tests that can play a part in the simulation process. When
a normality test is used against a N(0,1), a distribution of x num-
ber of observations, i.e., the number of simulations, containing
the results of the test statistic is formed. CVs are then obtained
by calculating the key quantiles of the test statistic’s distribution

(e.g., the 95% quantile in positively skewed distributions when
alpha is 0.05). However, the CVs found are directly dependent
on the computation used to estimate the quantiles and there
are various computations involved [for instance, the R software
implements nine different quantile computations (see Hyndman
and Fan, 1996)].

RESULTS
PROPORTION OF REJECTION AND P -VALUES
The mean PoR and mean p-values corresponding to the trans-
formation of outliers via the Box–Cox transformation parameters
are shown in Figure 4. Figure 5 shows the mean PoR and mean
p-values for the case of elimination of outliers via the MCD and
the ±n SD methods.

The ATS analyses suggested significant main effects of distri-
bution type; sample size and outlier method and their two and
three way interactions in both the PoR and p-value analyses (see
Table 1). The effect sizes of the three way interactions are shown
in Figure 6.

As shown in the first row in Figure 6, the likelihood of the
rejection of normality increases as sample size (i.e., from 15 to
50) and distribution skewness increase (i.e., from EGd3 to EGd1).
This result is corroborated by the p-values analyses in that as sam-
ple size and distribution skewness increase, the p-values decrease
(second row in Figure 6). This is a phenomenon recognized in
research on the power of normality tests (see Marmolejo-Ramos
and González-Burgos, 2013) and is replicated here by the main
effects of sample size and distribution type (see Table 1). An inter-
esting result from the relative treatment effects plots, however,
is that while the likelihood of rejection of normality increases
from EGd3 to EGd1 in the case of elimination methods, an oppo-
site pattern occurs to the transformation methods. This result
indicates that transformation methods have greater normalization
power than elimination methods as the distribution becomes more
skewed. The relative treatment effects plots for the p-value data
corroborate this by showing that transformation methods lead
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FIGURE 6 | Relative treatment effect plot of the three way interaction between distribution type, sample size, and outlier method for the proportion

of rejection and p-value analyses.

to higher p-values than elimination methods as the distribution
becomes more skewed.

As Figures 4 and 6 indicate, the transformation methods seem
to lead to decreased normality rejection as compared with elim-
ination methods. The larger effects of the former methods over
the latter are summarized in Figure 6. As shown in Figure 4, the
transformation methods seem to be particularly useful when deal-
ing with highly skewed distributions (i.e., EGd1) in that, across
sample sizes, low PoRs, and high p-values were obtained for these
distributions after transformation. Specifically, the results indicate
that transformations with lambda −1 would seem to provide the
best results (see insets in Figure 4). These results are in agreement
with past research suggesting that the inverse transformation has
a strong normalization effect (see Ratcliff, 1993).

PROPORTION OF ELIMINATION
The mean PoE corresponding to the elimination of outliers via the
MCD and ±n SD methods is shown in Figure 7.

The ATS analyses suggested significant effects of distribution
type; sample size, and outlier elimination method and their two
and three way interactions in the PoE analyses (see Table 1). The
effect sizes of the three way interactions are shown in Figure 8.

Figure 5 reports the mean proportion of rejection achieved
by each method for each distribution in different sample sizes
and their associated p-values. The results suggest that the MCD
method seems to lead to lower PoR and higher p-values than the
SD methods. However, by comparing Figures 5 and 7, a trade-off
between the PoRs (and associated p-values) and the POE associ-
ated with each of these methods becomes clear. Thus, while the
MCD method leads to the lowest PoRs, it does have the high-
est POE. On the contrary, the ±3 SD method has low PoE but
at the cost of leading to a rather high proportion of normality
rejection.

As the relative treatment effect plot in Figure 8 indicates, for
all methods, the likelihood of eliminating more data increases as
the distribution becomes more skewed; i.e., from EGd 3 to EGd
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FIGURE 7 | Mean proportion of elimination of the outlier elimination procedures via the MCD and SD methods. Insets show the mean and SD
estimates across distributions types and sample sizes.

FIGURE 8 | Relative treatment effect plot of the three way interaction between distribution type, sample size, and outlier method for the proportion

of elimination analyses.

1. However, while the MCD and ±2 SD’s likelihood of rejecting
data appears to reduce as sample size increases, for the remaining
methods such a likelihood increases as sample size increases.

In summary, the key result is that the transformation methods
are more effective than the elimination methods at normalizing
positively skewed distributions. That is, the outlier method had

a main effect. Thus, indicating that across distributions types
and sample sizes the transformation methods led to lower PoR
(MPoR = 0.29, SD = 0.17) and higher p-values (Mp−value = 0.24,
SD = 0.09) than the elimination methods (MPoR = 0.42,
SD = 0.22; Mp−value = 0.16, SD = 0.09) [PoR: Ty (359) = −14.54,
p < 0.001; p-value: Ty (359) = 20.26, p < 0.001].
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DISCUSSION
The results of this simulation study suggest that the Box–Cox
transformation methods outperform the elimination methods
in normalizing positively skewed data and the more skewed the
distribution, the more effective the transformation methods in
normalizing such type of data. Various ideas need to be discussed
in relation to this finding.

The difference between transformations and elimination pro-
cedures is that transformations seek to stabilize variance and
skewness (see Bartlett, 1947) whereas the other procedures are
devised to eliminate extreme observations; as a by-product, both
methods help in improving normality. However, these meth-
ods ultimately aim to determine the best estimator of central
tendency. One could argue that these procedures simply dis-
tort the original data sets in order to render them suitable for
a parametric test. Although there are arguments in favor of
using parametric tests regardless (see Schmider et al., 2010), oth-
ers advocate the use of other statistical methods (e.g., Wilcox,
2012). For instance, Lachaud and Renaud (2011) indicate that
either the data should be filtered (e.g., via the ±n SD approach)
before analysis using general linear modeling (e.g., ANOVA,
quasi-F, and multilevel modeling) or analyzed using robust meth-
ods (e.g., ATS, bootstrap, and permutation methods). These
authors also give useful recommendations as to how to analyze
data when using general linear modeling approaches. Hence,
a combination of the methods studied here with robust tech-
niques could also be productive (Rashid et al., 2013, term this
approach ‘side-by-side analyses’). Some researchers have taken
these methods further. For instance, Ulrich and Maienborn
(2010) took the mean RT of correct trials for each subject in
each condition and compared the results with those obtained
when the median RT and the 10% trimmed mean of correct tri-
als for each subject in each condition were taken. That is, the
researchers compared the results of analysis using a 0 (arith-
metic mean), 10, and 50% (median) trimmed means. Finally,
they performed analyses on the means of the trimmed means.
Other researchers opt for taking the median RT of correct
trials for each subject in each condition and perform analy-
ses on the means of those medians (see for example Ansorge
et al., 2010; Rein and Markman, 2010). Trimmed means, and
other robust estimators of central tendency (e.g., Rosenberg
and Gasko, 1983; Wilcox and Keselman, 2003; Bickel and Früh-
wirth, 2006; Vélez and Correa, 2014), can therefore be seen as
non-invasive forms of data elimination in that outlying obser-
vations are temporarily canceled out in order to estimate an
average.

Applying the methods studied herein to data believed to be
non-normal, does not automatically guarantee that the data has
met parametric assumptions. That is, it is important to cor-
roborate, via graphical and formal tests, that these assumptions
have been reached. Although this is a well-known recommen-
dation, it is rare to find published papers reporting normality
or homogeneity tests in order to justify the use of paramet-
ric analyses. It is therefore important that whatever method is
used to filter data, formal normality, and homogeneity tests
are reported in order to substantiate the use of parametric
tests.

METHODOLOGICAL CONSIDERATIONS AND FUTURE STUDIES
Every research study has room for improvement and this study
is no exception. Admittedly, the estimation of PoR and p-values
used here is rather liberal and may have some degree of Type
I error attached to it. Thus, a replication study could estimate
CVs for each normality test employed via quantiles as is tradi-
tionally done (although see section 2.2) and p-values could be
combined via conservative methods such as the Stouffer method
(see Vélez et al., under review). Also, other normality tests that
are particularly robust to the distributions being studied could
be considered. Equally important, other distributions that are a
good fit for real data should be included in the simulation study.
For instance, in the case of RT, data distributions such as Weibull
and Log-Normal need to be studied. Another type of data com-
monly encountered in experimental research but less studied, is
that of discrete n-point Likert-type data. Distributions that fit this
type of data could be studied in the context of outliers and nor-
mality research as well. Yet, the studies suggested here should be
preceded by research demonstrating how well various potential
candidate distributions fit RT and Likert-type data (e.g., via AIC
measures) and showing which distributions seem to give the best
fits in both real and simulated RT and Likert-type data. Indeed,
there should be research aimed at grounding the parameters of
distributions fitting RT and Likert-type data into psychologi-
cal processes of interest (e.g., McAuley et al., 2006 explained the
parameters of the EGd in terms of cognitive processed tapped
via RTs). To the best of our knowledge such research is yet to be
done.

Although some of the most commonly employed outlier elim-
ination and transformation methods were addressed herein, other
methods should also be studied. For instance, data truncation and
outlier replacement are procedures also found in papers report-
ing experimental results in cognitive science (an example of data
truncation can be found in Bub and Masson, 2010; an example
of outlier replacement can be seen in Pylyshyn and Storm, 1988).
The performance of newer methods such as the Ueda (1996/2009),
van der Loo (2010), and ±2.5 MAD (Leys et al., 2013) should be
studied in the context of RT data.

Finally, it can be contended that in principle, the procedures
studied here should not only improve data’s normality but also
their homogeneity. Thus, future studies should test the effects of
the procedures studied here on the homogeneity of two or more
batches of data. Canonical tests such as the Levene and the Brown-
Forsythe test and recent robust versions of them (e.g., De Almeida
et al., 2008) should be used to verify this claim.

CONCLUSION
This paper sets out to offer an educated consensus on the recom-
mended approach in cases where data need to be treated in order
to submit to a parametric test. The results indicate that methods
that transform the data in order to accommodate outliers lead to
higher chances of normalization than methods that eliminate data
points. Although some of the most commonly used elimination
and transformation methods were studied herein, further meth-
ods need to be considered. Other distributions that can be used to
model reaction time and Likert-type data should also be addressed
in future studies.
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