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In recent years, cognitive scientists and commercial interests (e.g., Fit Brains, Lumosity)
have focused research attention and financial resources on cognitive tasks, especially
working memory tasks, to explore and exploit possible transfer effects to general
cognitive abilities, such as fluid intelligence.The increased research attention has produced
mixed findings, as well as contention about the disposition of the evidence base. To
address this contention, Au et al. (2014) recently conducted a meta-analysis of extant
controlled experimental studies of n-back task training transfer effects on measures of
fluid intelligence in healthy adults; the results of which showed a small training transfer
effect. Using several approaches, the current review evaluated and re-analyzed the meta-
analytic data for the presence of two different forms of small-study effects: (1) publication
bias in the presence of low power and; (2) low power in the absence of publication bias.The
results of these approaches showed no evidence of selection bias in the working memory
training literature, but did show evidence of small-study effects related to low power in
the absence of publication bias. While the effect size estimate identified by Au et al. (2014)
provided the most precise estimate to date, it should be interpreted in the context of a
uniformly low-powered base of evidence. The present work concludes with a brief set of
considerations for assessing the adequacy of a body of research findings for the application
of meta-analytic techniques.
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INTRODUCTION
The pursuit of evidence suggesting the malleability of cogni-
tive abilities has long been an interest in cognitive science,
and psychological science, more generally. One of the recent
forms of this pursuit has been studies examining working mem-
ory training transfer effects to fluid intelligence (e.g., Jaeggi
et al., 2008; Morrison and Chein, 2011; Thompson et al., 2013).
Due to its role in short-term memory capacity, resistance to
distraction, mental manipulation, attentional control, and main-
tenance of memory traces (Baddeley and Logie, 1999; Cowan,
1999; Unsworth and Engle, 2007), working memory capacity
is posited to act as an important lower-order substrate of the
higher-order cognitive abilities of abstract reasoning and prob-
lem solving (i.e., fluid intelligence). Fluid intelligence, in turn,
is associated with performance across a variety of consequen-
tial life domains (Nisbett et al., 2012). To the extent working
memory is closely linked with fluid intelligence, then the hypothe-
sized mechanism for improving fluid intelligence is via training
gains and concomitant transfer effects from working memory
tasks. Indeed, the studies collected in a recent meta-analysis
of working memory transfer effects to fluid intelligence were
screened for inclusion based on this design framework, using
a control condition for comparison with the training condition
(Au et al., 2014).

The meta-analytic review conducted by Au et al. (2014) focused
on studies using adaptive single or dual n-back working memory
tasks for training sessions with healthy adults (where inclusion cri-
teria also required training sessions to last for more than 1 week;
individual study session lengths were 18.5 min and longer). In
an adaptive single n-back task, individuals monitor audible or
visible stimuli (e.g., a letter, the location of a shape on a com-
puter screen) over a series of trials and indicate whether the
stimulus appearing in the current trial is the same as or dif-
ferent from that of n trials back. The adaptive component of
these tasks uses a post-block performance algorithm to increase
or decrease n for the next block of trials. Twenty-two unique
measures of fluid intelligence were used across the 24 indepen-
dent samples identified by Au et al. (2014) including the BOMAT,
WAIS, and Raven’s Advanced Progressive Matrices [a complete list
of fluid intelligence measures appears in supplemental Table 3 of
Au et al. (2014)]. Using random effects analyses and conversion
of standardized mean differences to Hedge’s gs, the overall effect
size across the 24 samples was g = 0.24 (SE = 0.069), indicat-
ing a small transfer effect of working memory training on fluid
intelligence. Although the test statistic for examining heterogene-
ity (I2) was quite small (6.92%) and non-significant, additional
moderation and meta-regression analyses were conducted as
well.
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In spite of what appears to be a straightforward meta-analytic
finding derived from an emergent literature, concerns regarding
the reliability of the effect are raised by the small reported aver-
age sizes of the control and treatment groups across the studies
(M = 19.29, SD = 8.74; and M = 19.96, SD = 8.13, respec-
tively), as well as the dearth of confidence intervals (4 out of 24)
that excluded zero in the reported forest plot [see Au et al. (2014)
Figure 3]. These features of the included studies are highly sugges-
tive of an under-powered base of literature – one that might hinder
attempts to meta-analytically refine a provisional effect size esti-
mate of the working memory training transfer effect. The present
review provides an evaluation and re-analysis of the meta-analytic
database in an attempt to account and control for small-study
effects, a problem found to be alarmingly prevalent across received
psychological findings (e.g., the ego depletion effect; Carter and
McCullough, 2014), as well as scientific disciplines more generally,
including neuroscience and biomedical research (Ioannidis, 2005;
Button et al., 2013). Specifically, small-study effects are defined as
the low reliability of research findings that is attributable to (1)
biased selection practices (e.g., publication bias) in small-sample
designs that favor statistically significant results and (2) unbiased
design practices and choices that result in very low-powered stud-
ies that produce both spurious significant and non-significant
effects.

In the current review, two forms of small-study effects will
be examined (cf. Button et al., 2013): (1) publication bias in the
presence of low power; and (2) low power in the absence of
publication bias. Small-study effects related to publication bias
in the presence of low power are characterized by an overrepre-
sentation of large and statistically significant effects compared to
smaller non-significant effects. This overrepresentation of large
and significant effects can result from bias in the selection of
data analyses (e.g., idiosyncratic and/or significance-serving data
inclusion/exclusion procedures) and/or bias in the selection of
outcomes that are reported (e.g., only communicating findings
for measures that showed significant effects). Small-study effects
related to low power in the absence of publication bias are charac-
terized by an under-powered base of literature for which there is
no evidence of a systematic pattern of selection bias, but for which
heavily inflated Type II error rates (likelihood of rejecting a truly
non-null effect) result in a limited number of possibly spurious,
but large effects, and a greater number of non-zero null effects
that are statistically indistinguishable from zero due to sampling
error and random error. In the current work, several approaches
are used to test for the absence or presence of these two forms of
small-study effects.

MATERIALS AND METHODS
Three sets of approaches were used to examine small-study effects
related to publication bias in the presence of low power using
the data reported by Au et al. (2014; their Figure 3; a forest
plot, provides the Hedge’s g effect size estimate and correspond-
ing SE for each sample). First, a contour-enhanced funnel plot
was created to visualize the distribution of effects that are sta-
tistically non-significant versus significant. A disproportionate
number of studies missing from the region of non-significance
serves as an indication of publication bias (Peters et al., 2008).

Second, a binomial test for a surplus of significant findings was
conducted (Ioannidis and Trikalinos, 2007). This test examines
whether the number of significant effects in a given set of stud-
ies is greater than the number of significant effects that should
be expected given the mean power of the studies. In the bino-
mial test, smaller p values indicate a scarcity of null findings
and a surplus of significant findings. Third, an elaboration of
Egger’s regression test was used as an additional test of the rela-
tionship between effect size and SE (explained in detail below;
Stanley and Doucouliagos, 2007, 2013).

To test for the possibility of small-study effects related to low
power in the absence of publication bias, three approaches were
used. First, a post hoc power estimate was calculated to examine the
average statistical power available in the 24 independent samples
to detect Hedge’s g = 0.24. This analysis used the mean treatment
(n = 19.96) and control (n = 19.29) cell sizes reported by Au et al.
(2014). For illustrative purposes, an additional power analysis was
conducted using the upper end of the range for treatment (n = 36)
and control (n = 43) groups (i.e., assuming the mean group size
was at the upper end of reported group sizes). Post hoc power
analyses of the primary studies from an extant meta-analysis can
be instructive with regard to the design of future primary studies.
A related set of retrospective and prospective meta-analytic power
analyses was conducted to test how power varied as a function of
assumptions related to effect size, sample sizes, amount of hetero-
geneity, and the number of studies in the meta-analytic database
(Hedges and Pigott, 2001). Valentine et al. (2010) advised that ret-
rospective meta-analytic power analyses are not informative when
they are based on the observed estimates of the modeling pro-
cedure (e.g., values from a random-effects model). Such power
analyses are circular in that they use values produced from a test
that, by definition, already rendered significant or non-significant
results. To avoid such circularity, the retrospective and prospective
power analyses were conducted using varying values of Hedge’s
g, group sample sizes, amounts of heterogeneity, and number
of studies. Consistent with the suggestions of Hedges and Pig-
ott (2001) and Valentine et al. (2010), we selected one conservative
estimate for the overall effect size from the lower bound of the
observed confidence interval from the random-effects model (i.e.,
Hedge’s g = 0.11). We also used the observed estimate (Hedge’s
g = 0.24) and the upper bound of the observed confidence inter-
val (Hedge’s g = 0.38). The retrospective power analyses were
conducted using a near approximation of the average group sizes
(rounded to n = 20), with small amounts of heterogeneity (where
τ2 = 0.33v via convention for low heterogeneity, where v is the
estimate of the common variance of effect sizes across studies;
Hedges and Pigott, 2001) as was observed in the random-effects
model. For the prospective power analyses, k was increased by
50% (i.e., k = 36), group sizes were varied in a twofold manner
(nstreatment,control = 20 versus 40), and the amounts of hetero-
geneity were varied (small versus large, τ2 = 0.33v and τ2 = 1v;
Hedges and Pigott, 2001). All meta-analytic power analyses were
conducted using equations provided by Hedges and Pigott (2001).

Second, two sets of positive predictive value (PPV) analyses
were conducted to examine (1) the probability that at least one
study effect among several study effects on the same research
question would reflect a true effect, and (2) the probability that
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an observed meta-analytic effect would reflect a true effect (i.e.,
a true positive result). For the probability that at least one study
effect among several study effects on the same research question
reflects a true finding, PPV and statistical power are positively cor-
related, where PPV = R(1 − β)/(R + 1 − [1 − α]n − Rβn)

(Ioannidis, 2005). In this equation, (1 − β) is statistical power
(where β is the Type II or false-negative error rate, i.e., erroneously
rejecting a truly non-null effect), R is the odds that an effect is
truly non-null based on an a priori judgment, α is the Type I (false
positive) error rate (e.g., p < 0.05), and n is the number of stud-
ies with similar statistical power performed on a given research
question (for this form of PPV analysis, n is interchangeable with
the meta-analytic notation, k). It should be noted that the PPV
calculation used here does not correct for estimates of bias (repre-
sented by the term u in other calculations of PPV) and therefore
can indicate small-study effects related to low power in the absence
of publication bias. Using a range of pre-study odds (i.e., 1 in 8, 1
in 4, and 1 in 2), the meta-analytic PPV analyses used the varying
assumptions described above for the retrospective and prospective
meta-analytic power analyses.

The third approach used to test for possible small-study effects
related to publication bias in the presence of low power and small-
study effects related to low power in the absence of publication
bias was a two-part conditional extension of Egger’s regression
test – precision-effect test/precision effect estimate with SE (PET-
PEESE; Stanley and Doucouliagos, 2007, 2013). PET-PEESE can
offer a more precise account of the impact of small-study effects
on the effect size estimate. In Egger’s regression test (Egger and
Sterne, 2005), funnel plot asymmetry (plotting effect sizes by their
corresponding SE) is evaluated formally using a weighted least
squares (WLS) regression model where the effect size is predicted
by the SE. A statistically significant slope coefficient in this regres-
sion (i.e., the predictive effect of the SE) indicates funnel plot
asymmetry.

The PET furthers the use of Egger’s regression to the interpre-
tation of the intercept coefficient as an estimate of the effect size
when the SE equals zero (hence, the use of “precision” to suggest a
completely precise study; Stanley, 2005). A conditional adjunct to
PET is the PEESE. In simulation research, Stanley and Doucoulia-
gos (2007) found that PET was overly conservative when the true
effect was non-zero. To compensate for this, the variance could
be used instead of the SE in the WLS regression model. Stanley
and Doucouliagos (2013) recommended the following conditional
decision framework regarding PET-PEESE: (1) If the intercept
coefficient for PET is statistically significant (i.e., non-zero), then
the intercept coefficient from PEESE will provide the estimate of
the overall effect; (2) If the intercept coefficient for PET is not
statistically significant (i.e., indistinguishable from zero), then the
intercept coefficient for PET should be retained as the estimate of
the overall effect.

Support for the conditional PET-PEESE approach is borne
out in simulation studies and re-analyses of extant meta-analytic
databases (Stanley, 2008; Turner et al., 2008; Moreno et al., 2009;
Carter and McCullough, 2014). Meta-analytic and simulation
research indicates these approaches can reproduce an effect size of
similar magnitude as conventional approaches under conditions
absent of small-study effects (Moreno et al., 2009; Stanley and

Doucouliagos, 2013). A strong and clever demonstration of
this compared trials of antidepressant drugs registered with the
U.S. Food and Drug Administration to peer-reviewed published
research using data from the same registered trials (Turner et al.,
2008). In this design, the analysis of data from the FDA registry
represented a bias-free estimate of efficacy, owing to the absence
of selection effects for inclusion in the registry. The results showed
the PET-PEESE adjustment produced an effect size for the peer-
reviewed published estimate that was nearly identical to that of
the putatively unbiased data of the FDA registry. It should be
noted that the rationale for regression-based approaches is not
specifically tied to publication bias (as is the case with trim and fill
analyses), but is broadly applicable to small-study effects, whatever
the source of those effects might be (Rücker et al., 2011).

Annotated R scripts for all reported analyses are included in the
Supplementary materials.

RESULTS
Figure 1 displays the contour-enhanced funnel plot for the 24
effects identified by Au et al. (2014). The gray area represents
statistical non-significance. The solid vertical line is the random-
effects estimate of the overall effect size. The solid angled lines
are the boundaries where 95% of the effects should reside in the
absence of statistical heterogeneity. As can be seen, the funnel
plot shows the vast majority of effects (20) are located in the area
of non-significance and that all the effects fall within or upon
the boundaries for statistical heterogeneity, which is indicative
of low statistical heterogeneity. Results from the binomial test
for a surplus of significant findings produced a moderate-sized
p value (p = 0.29). Finally, Table 1 displays the two slope terms
for the PET-PEESE analyses. Both sets of confidence intervals for
the slope terms included zero, indicating the absence of a mean-
ingful association between effect size and SE. Taken together, the
contour-enhanced funnel plot, the binomial test, and the slope
terms for the PET-PEESE analyses are not suggestive of small-
study effects related to publication bias in the presence of low
power.

Based on the post hoc power analyses for the reported effect
size (Hedge’s g = 0.24), the observed power for the mean reported
group sample sizes was very low (1 − β = 0.11). Even under the
hypothetical conditions of the upper ends of the ranges of group
sizes serving as the mean group sizes, power would still be quite

FIGURE 1 | Contour-enhanced funnel plot for effects identified by Au

et al. (2014).
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Table 1 | Results from fixed effects, random effects, PET, and PEESE models.

Conventional meta-analytic models WLS PET model WLS PEESE model

Fixed effects Random effects Q/I2 (heterogeneity) Intercept Slope Intercept Slope

0.24 (0.11, 0.37) 0.24 (0.11, 0.38) 24.69/6.8% 0.11 (−0.56, 0.78) 0.42 (−1.64, 2.48) 0.17 (−0.16, 0.49) 0.67 (−2.08, 3.42)

WLS, weighted least squares; PET, precision-effects test; PEESE, precision effect estimate with SE. Numbers in parentheses are 95% confidence intervals. Random
effects tests of heterogeneity, p > 0.05.

low (1 − β = 0.18). Figure 2 displays the results of the retrospec-
tive and prospective meta-analytic power analyses under varying
assumptions for effect sizes, group sizes, heterogeneity, and num-
ber of studies. For Hedge’s g = 0.11, the results showed that
even when adding 12 more studies (i.e., k = 36), retaining small
group sizes still resulted in an underpowered meta-analytic design
(1 − β = 0.44). Doubling the group sizes and employing large
heterogeneity improved the meta-analytic power estimate to 55%
for Hedge’s g = 0.11, with k = 36. The retrospective and prospec-
tive meta-analytic power analyses for Hedge’s g = 0.24 showed
approximately double the power of those observed for Hedge’s
g = 0.11, with a similar pattern of stepwise increases in power as
group size and number of studies increased. For Hedge’s g = 0.38,
perfect power estimates were observed under all conditions (i.e.,
1 − β = 1).

As an adjunct to the post hoc power analyses, PPV analyses were
first conducted using the two average power estimates for the pri-
mary studies. The initial analysis used the mean post hoc power
(1 − β = 0.11), α = 0.05, a very liberal (and unrealistic) R criterion
(pre-study odds) of one in two tested effects being truly non-null
[where R = 1/(2 − 1) = 1], and n = 24 (i.e., the number of samples
with similar power addressing the same research question). Under
these conditions, the PPV = 1(1 − 0.8924)/(1 + 1 − [1 −
0.05]24 − (1)0.8924) = 0.57; meaning that among 24 studies

FIGURE 2 | Meta-analytic power analyses under varying assumptions

for effect sizes, group sizes, heterogeneity, and number of studies.

with identical power, the probability that at least one discovered
study effect is true is slightly greater than 50%. Using the hypo-
thetical upper bound of power (1 − β = 0.18), the PPV increases
to 0.58. Under a somewhat less liberal reading of pre-study odds
of one in four [where R = 1/(4 − 1) = 0.33], the PPV for the mean
post hoc power (1 − β = 0.11) was 0.30; meaning that among
24 studies with identical power, the probability that at least one
discovered study effect is true is 30%. The PPV increased slightly
(PPV = 0.32) under the hypothetical condition of the high end of
post hoc power (1 − β = 0.18). Under a more conservative reading
of pre-study odds of one in eight [where R = 1/(8 − 1) = 0.14],
the PPV for the mean post hoc power (1 − β = 0.11) was 0.15;
meaning that among 24 studies with identical power, the proba-
bility that at least one discovered study effect is true is 15%. Again,
the PPV increased slightly (PPV = 0.17) under the hypothetical
condition of the high end of post hoc power (1 − β = 0.18).

Figure 3 displays the meta-analytic PPV estimates under vary-
ing assumptions for effect sizes, pre-study odds, group sizes,
heterogeneity, and number of studies. For Hedge’s g = 0.11 and
conservative pre-study odds (one in eight), prospective meta-
analytic PPV values were 0.55 and 0.60 across small versus large
amounts of heterogeneity and group sample sizes of 20 versus
40. For Hedge’s g = 0.24 and conservative pre-study odds (one
in eight), prospective meta-analytic PPV values (where k = 36)
were both 0.74 across small versus large amounts of heterogene-
ity and group sample sizes of 20 versus 40. For Hedge’s g = 0.38
and conservative pre-study odds (one in eight), prospective meta-
analytic PPV values (where k = 36) were both 0.95 across small
versus large amounts of heterogeneity and group sample sizes of
20 versus 40. Increases in study odds produced prospective meta-
analytic PPV values ranging from 0.74 to 0.95 across the three
effect size estimates.

Finally, Table 1 also displays the results of the fixed and random-
effects models, as well as the intercept terms for the PET and the
PEESE. The re-analysis of the random effects model using R pro-
duced the same estimate as that reported by Au et al. (2014; Hedges
g = 0.24, p < 0.05). Both the PET and PEESE analyses produced
effect size estimates that were smaller than the random effects
estimate and whose confidence intervals included zero. Adhering
to the conditional approach for interpreting and selecting PET
or PEESE effects suggested by Stanley and Doucouliagos (2013),
the PET estimate would be retained for analytic interpretation
purposes due to it being statistically indistinguishable from zero.
Below, we discuss why the PET-PEESE effects derived from the
current base of evidence should be considered tentative, at best,
and how these estimates would likely fluctuate as the literature
expands.
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FIGURE 3 | Meta-analytic positive predictive value (PPV) analyses under varying assumptions for effect sizes, pre-study odds, group sizes,

heterogeneity, and number of studies.

Table 2 | Recommendations for supplementary meta-analytic

planning metrics.

Additional tasks for evaluating literature suitability for meta-analytic

treatment

� Calculate post hoc power estimates for the primary studies.

� Conduct an a priori meta-analytic power analysis ( Valentine et al., 2010;

Hedges and Pigott, 2001).

� Assess the prevalence of direct replication attempts in the literature.

� Assess the prevalence of null findings in the published literature.

� Examine the discrepancy in the ratio of null-to-significant findings using

binomial tests (Ioannidis and Trikalinos, 2007).

� Examine and quantify design and measurement quality and

commensurability across studies (via expert coding rubric).

� Survey the prevalence of study and/or data registration of the primary

studies, especially for randomized trials and interventions.

DISCUSSION
The goal of the present review was to evaluate and re-analyze the
experimental evidence base for working memory training transfer
effects to fluid intelligence originally identified and meta-analyzed

by Au et al. (2014). Several analytic approaches were used to exam-
ine small-study effects related to publication bias in the presence
of low power and small-study effects related to low power in the
absence of publication bias. To summarize, there was no evidence
found for small-study effects related to publication bias. However,
there was evidence for small-study effects related to low power. The
implications of these results for understanding possible transfer
effects and meta-analytic planning, more generally, are discussed
below.

The results of the post hoc power analyses indicated the reported
studies suffer from a uniformly high rate of Type II errors, which
is intrinsically tied to small-study effects related to low power. In
broad terms, an observed power estimate of 11% suggests that in a
research domain such as working memory training transfer effects,
if 50 legitimately non-null effects could be detected, then approx-
imately five effects, at this level of power, will actually be detected.
Even under the hypothetical conditions of the uppers ends of the
ranges for the groups, power was still far below the conventional
benchmark for adequately powered studies (i.e., 1 −β= 0.80). The
prospective meta-analytic power analyses produced considerably
larger estimates under a variety of assumptions, but still produced
estimates below 1 − β= 0.80 for Hedge’s g = 0.11, especially under
the assumption that group sizes remain at n = 20 for an additional
12 studies (i.e., k = 36). Taken together, the post hoc power analyses
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of the primary studies and the meta-analytic power estimates are
suggestive of (1) a highly underpowered current base of evidence,
and (2) a base of evidence that, while likely to experience growth in
the coming years, might disrupt future meta-analytic efforts if the
true effect size is smaller than that observed by Au et al. (2014) and
sample sizes remain the same (on average). The effect of low power
in small studies extends beyond the ability to avoid erroneously
rejecting a truly non-null effect.

For those underpowered studies that do detect an effect, such
results can be characterized as a“winner’s curse”(Ioannidis, 2008).
The results of the PPV analyses provide some support for this
contention, showing that even under very liberal (and unrealis-
tic) assumptions about pre-study odds of one in two, the very
low observed power in the studies identified by Au et al. (2014)
indicated that among 24 studies of working memory training, the
probability of a single study among them showing a true effect
was slightly more than 50%. Given the exploratory nature of the
working memory training transfer effect paradigm, a more con-
servative rendering of pre-study odds of one in eight resulted in a
reduction of the PPV estimate to a 15% probability that a single
study among 24 studies would show a true effect. As described
above, the PPV analysis used here does not correct for potential
sources of bias (i.e., in this sense, it is a more liberal estimate).
However, it should be noted that, by design, the computation
for this PPV analysis includes a compounding correction (by
number of studies) for Type I error rates that produces a ceil-
ing for PPV estimates. This means that as the number of studies
increases, increases in power alone will not offset the multiple-
tests correction for Type I errors and, as a consequence, PPV
estimates will form an asymptotic function (cf. Ioannidis, 2005). A
complementary set of retrospective and prospective meta-analytic
PPV analyses produced larger estimates – especially for the con-
ditions associated with Hedge’s g = 0.24 and 0.38, where PPV
values topped out at 0.95 under multiple conditions. These PPV
results suggest there should be little concern going forward as to
the robustness of future meta-analytic efforts if the true effect is
Hedge’s g = 0.24 or larger. However, the prospective meta-analytic
PPV estimates were considerably lower for Hedge’s g = 0.11,
under conditions of low pre-study odds and the continued use
of n = 20 for treatment and control group sizes. The latter meta-
analytic PPV estimates suggest future meta-analytic efforts might
be undermined if the true effect is closer to the lower bound of
the current observed confidence interval identified by Au et al.
(2014). Taken together, these two sets of PPV analyses – when
tested using conservative assumptions – are suggestive of small-
study effects related to low power in the absence of publication
bias.

Under conditions of very low power, the only effects that can
be detected are large to very large effects; precisely the types of
effects that are unlikely to reflect true results for many research
questions. This is considered a “curse” because the detected effect
is, at the very least, artifactually inflated, and, at worst, entirely
spurious. Moreover, the winner’s curse can propagate a misguided
search for replication, where the continued use of small stud-
ies to reproduce or expand on the original effect is undermined
by the improper anchoring of the original effect size estimate as
the criterion for replication. Relatedly, and as is evidenced by the

range of effect sizes located by Au et al. (2014; Hedge’s g range,
−0.28 to 1.10), small studies are more likely to show a vibra-
tion of effects (Ioannidis, 2008), where inconsistencies in analytic
approaches and tests (removing versus retaining outliers, control-
ling for covariates), as well as measurement variation (e.g., varying
assessments of fluid intelligence), can have an undue effect on the
range of observed estimates compared to studies that use larger
samples. It should be noted though, that even with few convention-
ally significant effects, very wide confidence intervals, and some
vibration of the observed effects, there was still visual evidence of
small positive skew among the individual study effects depicted
in the forest plot presented by Au et al. (2014). In other words,
the approximate center of the vibration of effects was not zero
(or negative).

The results of the PET-PEESE analyses provided a tentative
quantification of the impact of small-study effects by produc-
ing an estimate of the working memory training transfer effect
that was smaller than the effect that was observed by Au et al.
(2014) and was not different from zero. Recent work suggests
these regression-based approaches provide the least biased esti-
mate of an underlying effect (e.g., Stanley, 2008; Moreno et al.,
2009; Rücker et al., 2011; Stanley and Doucouliagos, 2013; Carter
and McCullough, 2014). However, it should be emphasized that
the extent of the downward correction suggested by the PET-
PEESE intercepts (and the wide extent of the respective confidence
intervals) is computationally informed by the lack of an associa-
tion between the SE and effect sizes (i.e., the non-significant slope
terms describe above). This lack of an association between SE and
effect sizes is, in turn, related to the limited variability among
the SE (as indicated by the very low levels of heterogeneity across
the studies and seen in the horizontal banding of the SE depicted
in Figure 1). The lack of significant variability in SE is, in turn,
computationally linked to the uniformly small sample sizes of the
studies identified by Au et al. (2014). Given the present base of
evidence, the implication of these linkages is that the PET-PEESE
estimates are likely unstable. As the working memory training
literature expands, PET-PEESE estimates will likely show fluctu-
ations in response to greater variability in SE (ideally tied to the
employment of larger sample sizes).

Similarly, the random-effects model estimate and its confi-
dence interval might also show fluctuations. It is noteworthy
that the meta-analytic effect size estimates were identical across
the fixed-effects and random-effects models. Moreover, the confi-
dence intervals were nearly identical, indicating the weighting of
the random-effects model was entirely unaffected by the use of
the between-studies source of sampling error owing to the uni-
formly large amounts of within-studies sampling error across the
studies (i.e., the imprecision of the studies accounted for all of
the between-studies variability). Computationally, this resulted in
highly similar weighting across both the fixed-effects and random-
effects models (which is also easily inferred by calculating the
unweighted simple mean, Hedge’s g = 0.258, which only differs
slightly from the weighted estimates). Au et al. (2014) attributed
the lack of heterogeneity in the results to the intervention and
sample parameters (i.e., n-back training interventions deployed
among healthy young adults). The use of varying n-back training
tasks (e.g., single versus dual), measures of fluid intelligence, etc.,
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would seem at odds with such an explanation. Computationally,
the unusually low levels of heterogeneity are primarily related to
the imprecision of the collected studies, which, in turn, is tied to the
uniformly low power across the studies. The inclusion of greater
powered studies in the meta-analytic database would necessarily
improve heterogeneity and result in a widening of the confidence
interval for the random-effects model as compared to the confi-
dence interval for the fixed-effects model. As it is, the imprecision
in the collected studies had the ironic effect of reducing between-
studies variance to nil and rendering the random-effects model
a fixed-effects model, which, as suggested above, runs counter to
the apparent diversity of researchers, implementations, measures,
etc., used to examine the working memory training paradigm.
That being stated, the random-effects estimated identified by Au
et al. (2014) and reported herein does provide the most precise
estimate of the working memory training transfer effect to date.
However, it is also clear this estimate is derived from a uniformly
low-powered set of primary studies.

To a certain extent, it is challenging to offer more than com-
putation and coarse speculation regarding the sources of these
small-sample studies. One of the possible barriers to employing
adequately powered designs is the rapid formation of research
encampments following a novel, exploratory, provocative, and/or
preliminary research finding (cf. Ioannidis and Trikalinos, 2005).
While effect validation across researchers and laboratories is essen-
tial to reliable science, the process of cross-validation can be
conducted using a model of rapid deployment and dissemination,
which might include faithful attempts at reproducing materials,
methods, and procedures, but (following the lead of the initial
study) also grossly underpowered designs. There is some indica-
tion of this in the studies identified by Au et al. (2014). The data for
the 24 effects were collected in a short span (approximately 6 years)
by more than 10 research groups. The vast majority of the studies
appeared in peer reviewed publications; meaning the conduct of
the studies (including the acquisition of materials, human subjects
approval, staff training, recruitment, assessment, and training),
data entry and analyses, as well as manuscript preparation, sub-
mission, and revision all occurred during a constrained timeframe
(especially considering some researchers produced multiple pub-
lished studies of the training effect during this time). Assuming
improper anchoring of the initial effect size, most attempts at
reproducibility would continue to be substantially underpowered.
Whether it was due to anchoring, a model of rapid deployment
and dissemination, and/or impassivity regarding considerations
of statistical power, all of the studies reported by Au et al. (2014)
used underpowered designs. As others have examined elsewhere,
the early returns of meta-analytic efforts are often inflated or lack
credibility (Pereira and Ioannidis, 2011). It is often not until a
literature has matured that more credible meta-analytic estimates
can be produced.

As it specifically relates to the approach of Au et al. (2014), it
should be noted that additional moderator and meta-regression
analyses were reported, despite the absence of evidence for statisti-
cal heterogeneity. As can be seen in Table 1 and as was reported by
Au et al. (2014), the test for heterogeneity was non-significant and
did not reach conventional guidelines for low amounts of statistical
heterogeneity (i.e., I2 ∼ 25%; Higgins et al., 2003). Nevertheless,

given the various implementations of the training paradigm used
in the primary studies, Au et al. (2014) conducted these analyses
to examine possible differences in transfer effects. A potential out-
come of these analyses and related reporting is the dissemination of
the additional effects as both reliable and interpretable. Given the
findings of the present work, the additional moderator and meta-
regression results reported by Au et al. (2014) should be interpreted
with due caution and be considered especially provisional.

The potential benefit of the approaches reported herein is not
only critical evaluation, but also constructive guidance. One of the
contributions of the work of Au et al. (2014) is the collection of
studies in an emerging and contentious literature. As appears clear
now, this literature was at a somewhat limited stage of adequacy
in design methodology and measurement coherence to allow for
the application of meta-analytic methods. What is particularly
clear is that the primary studies were only adequately powered to
detect large or very large effects. Furthermore, comparisons across
these studies were somewhat hindered by the diversity of measures
used to assess fluid intelligence (although given the imprecision of
the studies, these seemingly non-trivial differences did not con-
tribute to statistical heterogeneity). Figure 2 displays scenarios
related to low power as the working memory training literature
accrues a larger base of primary studies. Specifically, if the true
effect is smaller than that estimated by Au et al. (2014), then future
meta-analytic efforts are likely to be underpowered, even with
a twofold increase in average group sizes and a 50% increase in
studies. Conversely, if the true effect is only slightly smaller (or
larger, of course) than that estimated by Au et al. (2014), then
future meta-analytic work will be more than sufficiently powered.
As a matter of conservative research practice, it seems advisable to
adopt greater-powered designs for primary studies of the working
memory training transfer effect in the case that the smaller esti-
mate proves closer to the center of the underlying distribution of
effects (assuming a random-effects model).

There is little question that the implementation of these train-
ing paradigms is time-consuming and costly. These logistical
considerations should provide even further impetus to pursue
high-powered designs that are directly comparable within and
across research labs. This would require a good deal of inter-
nal and external coordination, but would likely short-circuit the
‘volleying’ pattern of studies seen in many areas of research con-
tention. Only when well-powered studies using commensurate
designs, measures, and analyses are conducted will it be possible
to more precisely estimate and evaluate working memory training
as a viable mechanism for improving fluid intelligence. More-
over, high-powered designs will not only be required to evaluate
the robustness of the general transfer effect, but are especially
critical for more nuanced explorations of individual difference
and other potentially moderating factors of the transfer effect (cf.
Jaeggi et al., 2014).

Given the perceived definitive nature of meta-analyses, mist-
imed, or misapplied meta-analytic techniques are a serious
concern for all scientific disciplines. We close this review with
a list of literature features and statistical planning components
that warrant consideration while planning a meta-analysis. Aside
from the important meta-analytic considerations outlined by
others (cf. Schmidt, 2013), we recommend seven supplementary
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meta-analytic planning tasks in Table 2. Attending to these con-
siderations should aid researchers in making a determination as
to whether conducting a meta-analysis (versus a critical narrative
review) is constructive or whether the (in)adequacy of the litera-
ture would lead to unreliable or biased estimates that would further
obfuscate the existence or magnitude of an effect of interest.
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