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Previous studies have shown enhanced memory performance resulting from extensive
action video game playing. The mechanisms underlying the cognitive benefit were
investigated in the current study. We presented two types of retro-cues, with variable
intervals to memory array (Task 1) or test array (Task 2), during the retention interval in
a change detection task. In Task 1, action video game players demonstrated steady
performance while non-action video game players showed decreased performance as
cues occurred later, indicating their performance difference increased as the cue-to-
memory-array intervals became longer. In Task 2, both participant groups increased
their performance at similar rates as cues presented later, implying the performance
difference in two groups were irrespective of the test-array-to-cue intervals. These
findings suggested that memory benefit from game plays is not attributable to the higher
ability of overcoming interference from the test array, but to the interactions between
the two processes of protection from decay and resistance from interference, or from
alternative hypotheses. Implications for future studies were discussed.

Keywords: change detection, action video game, partial-report procedure, memory decay, retro-cue

Introduction

Video games are ubiquitous among today’s generation. A great body of literature has revealed
that action video game players (AVGPs), relative to non-video game players (NVGPs), reap broad
cognitive benefits from extensive action video game playing. These benefits included visual acuity
(Green and Bavelier, 2007; Granic et al., 2014), attention flexibility (Green and Bavelier, 2003),
stimulus-response mapping (Clark et al., 1987; Castel et al., 2005), encoding speed (Wilms et al.,
2013), and executive functioning (Strobach et al., 2012). Extensive experience playing action video
games can even affect memory for the stimuli presented in a very short period (e.g., iconic memory
and visual working memory), resulting in better accuracy (Boot et al., 2008; Blacker and Curby,
2013), higher precision (Sungur and Boduroglu, 2012), and more efficient strategy in retrieving
information (Clark et al., 2011). In the current study, we focused on the mechanisms underlying
such improved memory performance.

There was a preliminary study on the mechanisms for memory advantage in AVGPs over
NVGPs, through the change detection paradigm (Blacker and Curby, 2013). In the paradigm, a
memory array of several objects presented briefly, followed by a short retention interval and then
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a test array. Observers need to report whether objects in the test
array are identical to those in the memory array. The paradigm
has been extensively adopted to estimate memory capacity for the
fast presented stimuli (Luck and Vogel, 1997; Luria et al., 2010;
Blacker et al., 2014; Qi et al., 2014). In Blacker and Curby’s (2013)
study, they manipulated the presentation time of memory array
(168 ms vs. 1018ms). Their results showed that this manipulation
did not affect the performance difference between AVGPs and
NVGPs, indicating that encoding duration was not a possible
factor on the advantage of AVGPs over NVGPs.

In line with this study, we would examine retained
information after encoding, by presenting cues during the
retention interval (i.e., retro-cue) in the change detection task
(Appelbaum et al., 2013). In this partial-report procedure, a retro-
cue indicates the to-be-compared item in the memory array.
Observers need to judge whether it is matched to the one in the
test array, without consideration of other un-cued items. Previous
studies have revealed that the partial-report procedure compared
with the whole-report procedure can detect higher memory
performance (Landman et al., 2003; Makovski et al., 2008). This
was explained that in the whole-report procedure there would be
interference from similar items in the memory array (Luria et al.,
2010) or on previous trials (namely proactive interference; Lin
and Luck, 2012), while it is not in the partial-report procedure.

Growing evidence indicated that time-related decay might
be the most likely source of forgetting on the change detection
task (Barrouillet et al., 2007; Matsukura et al., 2007; Portrat
et al., 2008; Barrouillet and Camos, 2012). For example, recall
performance decreased in longer retention intervals (Zhang and
Luck, 2009; Woodman et al., 2012; Morey and Bieler, 2013). One
previous study, with the arrangement of variable delays of cue
to memory array, revealed that detection accuracy decreased as
the delay became longer (Becker et al., 2000). There are other
possibilities than the decay hypothesis, such as the interference
hypothesis, for the decreased performance in change detection
task. Some studies have demonstrated that retained information
after encoding could be interfered by the subsequent new stimuli
(Landman et al., 2003; Makovski et al., 2008). For example, a
recent study with the adjustment of delays of test array to cue
found that the shorter delay indicating larger interference was
associated with the decreased memory accuracy (Pertzov et al.,
2013).

Based on these hypotheses, we proposed that the memory
advantage in AVGPs over NVGPs might be from their
higher abilities of protecting information against decay and/or
interference. These were examined through two partial-report
procedures that were originally used in former studies. One was
the normal retro-cue procedure (Task 1), with the arrangement
of variable delays of cue to memory array and of constant
interval between memory array and test array (Landman et al.,
2003; Matsukura et al., 2007; Makovski et al., 2008). The other
was to vary delays of test array to cue (Task 2), while keeping
the delay of cue to memory array constant (Becker et al.,
2000; Pertzov et al., 2013). Note that the present study was
not aimed to explore the mechanisms for retro-cue effects
in the change detection task. Rather, we were interested in
whether the memory advantage of AVGPs over NVGPs could

be explained by the decay hypothesis and/or the interference
hypothesis.

Materials and Methods

Participants
Thirty-nine male undergraduate and graduate students from East
China Normal University, with normal or corrected-to-normal
vision, were recruited. Following previous studies (Green and
Bavelier, 2003, 2006, 2007; Blacker and Curby, 2013), AVGPs
(n = 21, age = 20.1 ± 2.7 years) had played action video
games at least 4 days per week over the past 6 months, with a
minimum of 1 h per day. The games included Counter-Strike,
Call of Duty, Assassin’s Creed, Resident Evil, Cross Fire, Left 4
Dead, NBA2K13, Soul Sacrifice, andDragon Nest. NVGPs (n= 18,
age = 20.8 ± 2.4 years) had little action video-game plays in the
past half year. Written informed consents were attained from all
participants and they were compensated for their participation.
This study was approved by the Institutional Review Board of
East China Normal University.

Stimuli and Procedures
Stimuli were presented on a 17-inch LCDmonitor (SONY, 96 dpi,
refresh rate: 60 Hz). The distance between participants and the
screen was about 50 cm. There were two tasks (Task 1 and Task
2) × 5 blocks × 36 trials. The order of two tasks was counter-
balanced among participants. Trials in a block and blocks in a task
were randomly arranged. Twelve practice trials were provided
to familiarize participants with the experimental procedures.
Feedbacks were presented in practice but not in formal trials. The
procedure of performing a trial was described as follows.

Task 1: Varying the Delay of Cue to the Offset of
Memory Array
Participants were instructed to detect whether there is a change
between the memory array and the test array in a change
detection task. Each trial began with a 1000-ms central fixation
(black, 0.4◦ diameter), followed by a memory array (presented
for 100 ms) of six different-colored squares (1.6◦ × 1.6◦). The
squares equally spaced around a clock face (diameter: 8.6◦). Each
color of squares was randomly selected, without replacement,
from a set of seven colors (i.e., black, white, red, yellow, blue,
green, and purple). After the offset of the memory array, it was
the retention interval (900 ms) with a cue inserted. The cue was
a black grid appeared at one of the six positions in the memory
array, indicating the location to be tested with 100% validity.
Half trials were with the change, and half were not. The cue-
to-memory-array delay was varied from 100 to 900 ms, with a
step of 200 ms (see Figure 1A). After the retention interval, a test
array was presented. Participants clicked the square with a mouse
if they thought there was a change. Otherwise, they pressed the
space bar. After the response, one trial ended.

Task 2: Varying the Delay of the Onset of Test Array to
Cue
Task 2 was similar to Task 1, except that the cue was always
presented 100 ms after the offset of memory array and the delays
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FIGURE 1 | The partial-report procedure of two tasks. (A) Task 1:
variable cue-to-memory-array delays. (B) Task 2: variable test-array-to-cue
delays.

of the onset of test array to cue varied from 0 to 800 ms with a
step of 200 ms (see Figure 1B).

Data Collection and Analysis
The dependent variable was the accuracy of memory
performance, indicated by the ratio of correct responses to
the total number of trials tested in each condition, and the
independent variables were participant groups (AVGPs vs.
NVGPs) and delays in the two tasks. We excluded one AVGP’s
data in Task 1 due to software malfunction during experiment.
Analyses of variance (ANOVAs), regression models, and t-tests
were conducted to investigate the differential time courses of
memory retention between two groups.

Results

Table 1 described the accuracy of performance at the five delays
in Task 1 and Task 2. The main interests were the performance

TABLE 1 | The accuracy of memory performance in two groups (M ± SD).

Action video game
players (AVGPs)

Non-action video game
players (NVGPs)

Task 1: The delay of cue to memory array at:

100 ms 0.87 ± 0.09 0.84 ± 0.09

300 ms 0.90 ± 0.07 0.79 ± 0.09

500 ms 0.87 ± 0.10 0.80 ± 0.08

700 ms 0.85 ± 0.10 0.74 ± 0.09

900 ms 0.85 ± 0.10 0.76 ± 0.08

Task 2: The delay of test array to cue at:

0 ms 0.84 ± 0.11 0.72 ± 0.12

200 ms 0.84 ± 0.08 0.73 ± 0.11

400 ms 0.88 ± 0.09 0.76 ± 0.09

600 ms 0.88 ± 0.07 0.79 ± 0.09

800 ms 0.88 ± 0.08 0.77 ± 0.11

differences between two groups (AVGPs vs. NVGPs) and
the moderating effect of experimental manipulation (i.e., the
arranged delays).

In Task 1, a mixed-design ANOVA was conducted with a
between-subject factor of group (AVGPs vs. NVGPs) and a
within-subject factor of cue-to-memory-array delay. The results
revealed the significant main effects of group, F(1,36) = 13.43,
p < 0.01, η2p = 0.27, with AVGPs performed better than
NVGPs, and delay, F(4,144) = 6.47, p < 0.001, η2

p = 0.15.
The interaction between group and delay was also significant,
F(4,144) = 2.77, p < 0.05, η2

p = 0.07, indicating that the
performance differences in AVGPs vs. NVGPs were modulated
by the lapse of time.

To better understand the overall trend of time-based
performance, accuracy slopes were estimated by linear
regressions of accuracy across delays (Pertzov et al., 2013).
The decreasing rate was significant from zero in NVGPs,
β = −0.34, p < 0.001, but not in AVGPs, β = −0.13, p > 0.05.
These results indicated that retained visual information in
memory markedly deteriorated in NVGPs but not in AVGPs.
To observe when the memory advantage of AVGPs occurred,
we conducted a series of t-tests at all five delay conditions. The
results showed significant differences of performance between
AVGPs and NVGPs at delays longer than 100 ms, all ts > 2.48,
ps < 0.05, ds > 0.81, but not for the shortest delay (100 ms), t
(36) = 0.92, p > 0.05, d = 0.30 (see Figure 2).

In Task 2, a mixed-design ANOVA was performed with a
between-subject factor of group (AVGPs vs. NVGPs) and a
within-subject factor of test-array-to-cue delay. Consistent with
the results in Task 1, there were significant main effects for
group, F (1,37) = 23.81, p < 0.001, η2

p = 0.39, and delay,
F(4,144) = 5.40, p = 0.001, η2

p = 0.13. However, the interaction
was not significant. Furthermore, the analyses of accuracy
slopes revealed that the memory performance of both AVGPs
and NVGPs increased as delays increased (i.e., interference
decreased) at similar rates (NVGPs: β = 0.21, p < 0.05; AVGPs:
β = 0.21, p < 0.05). Subsequent t-tests results suggested that
differences between both groups were marked at all conditions
of delay, ps < 0.01 (see Figure 3). These results implied that
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FIGURE 2 | The accuracy of memory performance (means and SE)
across cue-to-memory-array delays for action video game players
(AVGPs) and non-action video game players (NVGPs) in Task 1. Group
differences were demonstrated at five delays except for the 100 ms condition.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

FIGURE 3 | The accuracy of memory performance (means and SE)
across test-array-to-cue delays in Task 2. Group differences were
observed in all delays. ∗∗p < 0.01, ∗∗∗p < 0.001.

the performance difference between two groups could not be
influenced by the amount of interference.

Discussion

Previous studies have demonstrated that extensive exposure to
action video game playing can enhance memory performance,
and the enhancement was not attributed to the length of time
period for encoding (Clark et al., 2011; Blacker and Curby, 2013;
Blacker et al., 2014). In line with those studies, the present study
explored the mechanisms underlying the memory advantage in
AVGPs over NVGPs through the partial-report procedure of a
change detection paradigm. We arranged retro-cues during the

retention interval, to examine the time course of information
retained in memory and the possible influence from the following
test array.

In Task 1, the interval between the offset of the memory array
and the onset of the test array was fixed at 900 ms while cue-
to-memory-array intervals varied from 100 to 900 ms, which
involves the processing periods for iconic memory (<500 ms;
e.g., Griffin and Nobre, 2003; Persuh et al., 2012; Clarke and
Mack, 2014) and visual working memory (500–1000 ms; e.g.,
Luck and Vogel, 1997; Luck and Hollingworth, 2008). We first
observed the memory advantage in AVGPs for all conditions
except the shortest interval (i.e., 100 ms). In Task 2, the cue-
to-memory-array interval was fixed at 100 ms, when iconic
memory occurs. Meanwhile, the test-array-to-cue interval was
variable from 0to 800 ms. And in this situation, the memory
advantage in AVGPs maintained at all conditions. Similar to
our findings, previous studies demonstrated that AVGPs had
bettermemory performance in other experimental tasks assessing
iconic memory and working memory, such as the N-back tasks
(Boot et al., 2008; Colzato et al., 2013), the enumeration task
(Green and Bavelier, 2006), the temporal order recall task (Green
and Bavelier, 2006; West et al., 2008), the franker task (Cain
et al., 2012), and the multiple identity tracking task or color wheel
task (Sungur and Boduroglu, 2012). All these findings indicated
the benefits from playing action video games for the memory of
briefly presented stimuli.

It was notable that the amount of information maintained in
retention interval changed with time in this study. As the interval
became longer in Task 1, NVGPs showed decreased performance.
The decreasing trend was similar to the finding in a previous
study (Becker et al., 2000). In that study, the interval between a
memory array and a test array was short (281 ms) and the retro-
cue appeared at variable delays from the memory array (from
16, 82, 149, 215, to 281 ms). Participants’ accuracy decreased
gradually as the delay increased. Different from the performance
of NVGPs in the current study and in Becker et al.’s (2000) study,
AVGPs in the present study showed stable performance across all
delays, indicating that their memory was not affected by the time
lapse.

However, it is difficult to dissociate the causes of these effects.
As the cue-to-memory-array interval and the test-array-to-cue
interval were both varied in Task 1, both the memory decay
across time and the interference from the test array could
potentially account for the observed effects. The performance
difference between AVGPs and NVGPs could be explained by
both decay hypothesis and interference hypothesis. However, the
later hypothesis could not account for our results in Task 2. Here,
both AVGPs and NVGPs increased their performance as the
test-array-to-cue interval became longer. More specifically, the
performance difference between groups was stable, irrespective
of test-array-to-cue interval (Appelbaum et al., 2013). Therefore,
we proposed that the performance advantage in AVGPs relative to
NVGPs could not be attributed to their better ability to overcome
interference from the test array in our current settings. This
proposal did not mean that the decay hypothesis would be a
better theory. We thus test the decay hypothesis alone with an
additional tentative experiment.
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We recruited additional 17 participants to examine the
situation when only the cue-to-memory-array interval was
manipulated (see Supplemental Materials). The experimental
task was similar to task 1 with following exceptions: (1) a
mask stimulus inserted after the offset of memory array and
presented for 100 ms; (2) a fixed interval from the test array
to cue (160 ms); (3) variable intervals of cue to mask (from
0 to −800 ms, with the step of 160 ms). The experimental
arrangement allowed us to examine how the retained information
in memory changed with time while the interference from
subsequent stimuli kept constant. The preliminary results showed
a significant main effect of group. However, neither delay nor
the interaction was significant. This indicated that performance
advantage in AVGPs was not affected by the lapse of time when
the test-array-to-cue interval kept fixed. Altogether, either decay
hypothesis or interference hypothesis alone could not account
for the AVGPs advantage, but the interaction between them
might do, when both the cue-to-memory-array and the test-
array-to-cue intervals were manipulated simultaneously (as in
Task 1). It could also be possible that alternative hypotheses
affected both decay and interference. Therefore, the investigation
of potential mechanism for the better memory performance in
AVGPs compared with NVGPs should be carefully explored in
future studies, with focus on iconic memory or working memory,
respectively.

Conclusion

The present study explored potential mechanisms for the
previously observed memory benefit from playing games. Our

findings suggested that enhanced memory in AVGPs compared
with NVGPs could not be from overcoming interference from
following stimuli. There might be other possibilities than
memory decay or interference hypothesis. There might be other
possibilities than memory decay or interference hypothesis that
needed to be explored in the future, such as encoding speed
(Wilms et al., 2013), visual sensitivity (Appelbaum et al., 2013),
attention (Boot et al., 2008), strategy (Clark et al., 2011),
or executive control (Boot et al., 2008). Additionally, given
that expert-novice comparison could not interpret the causal
role of experiences in cognitive benefits, carefully controlled
intervention studies are would be critical (Green and Bavelier,
2012; Bejjanki et al., 2014). Whether the benefits can be
generalized to other domains, such as academic achievement, can
also be explored in the future.
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