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We analyze in this paper the data collected in a set of experiments investigating

how people combine natural concepts. We study the mutual influence of conceptual

conjunction and negation by measuring the membership weights of a list of exemplars

with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction

Fruits And Vegetables, but also their conjunction when one or both concepts are

negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not

Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on

conceptual combinations, revealing systematic deviations from classical (fuzzy set)

logic and probability theory. And, more important, our results give further considerable

evidence to the validity of our quantum-theoretic framework for the combination of

two concepts. Indeed, the representation of conceptual negation naturally arises from

the general assumptions of our two-sector Fock space model, and this representation

faithfully agrees with the collected data. In addition, we find a new significant and a priori

unexpected deviation from classicality, which can exactly be explained by assuming

that human reasoning is the superposition of an “emergent reasoning” and a “logical

reasoning,” and that these two processes are represented in a Fock space algebraic

structure.

Keywords: cognition, concept theory, quantum structures, fock space, conceptual emergence, concept formation

1. Introduction

Substantial evidence of presence of quantum structures in processes connected with human
behavior and cognition has been put forward in the last decade. More specifically, such quantum
structures were identified in situations of decision making and in the structure of language (see
e.g., Aerts, 2009; Khrennikov, 2010; Busemeyer and Bruza, 2012; Aerts et al., 2013b; Haven and
Khrennikov, 2013; Pothos and Busemeyer, 2013; Wang et al., 2014). The success of this quantum
modeling is interpreted as due to “descriptive effectiveness of the mathematical apparatus of
quantum theory as formal instrument to model cognitive dynamics and structures in situations
where classical set-based approaches are problematical.” In particular, the mathematics of quantum
theory in Hilbert space has proved very successful in modeling combinations of two concepts
(Aerts, 2009; Aerts and Sozzo, 2001, 2014; Aerts and Gabora, 2005a,b; Aerts et al., 2013a,b; Sozzo,
2014, 2015).

The “combination problem,” that is, the question of how the representation of the combination
of two or more natural concepts can be connected to the representation of the component
concepts, has been studied experimentally and within classical concept theories in great
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detail in the last 30 years. The main experimental challenges to
traditional modeling approaches to concepts combinations are
sketched in the following1.

(i) The “Guppy effect” in concept conjunction, also known as
the “Pet-Fish problem” (Osherson and Smith, 1981, 1982).
If one measures the typicality of specific exemplars with
respect to the concepts Pet and Fish and their conjunction
Pet-Fish, then one systematically finds exemplars such as
Guppy that are very typical examples of Pet-Fish, while
neither being typical examples of Pet nor of Fish.

(ii) The deviation from classical (fuzzy) set-theoretic
membership weights of exemplars with respect to pairs of
concepts and their conjunction or disjunction (Hampton,
1988a,b). If one measures the membership weight of an
exemplar with respect to a pair of concepts and their
conjunction (disjunction), then one experimentally finds
that there is an abundance of cases where the membership
weight of the exemplar with respect to the conjunction
(disjunction) is greater (less) than themembership weight of
the exemplar with respect to at least one of the component
concepts.

(iii) The existence of “borderline contradictions” in sentences
expressing vague properties (Bonini et al., 1999; Alxatib
and Pelletier, 2011). Roughly speaking, a borderline
contradiction is a sentence of the form P(x) ∧ ¬P(x),
for a vague predicate P and a borderline case x, e.g., the
sentence “John is tall and John is not tall.” If one investigates
how people estimate the truth value of such a sentence, a
significant number of them will find it as true, in particular
for borderline cases.

What one typically finds in the above situations is a failure of
set-theoretic approaches (classical set, fuzzy set, Kolmogorovian
probability) to supply satisfactory theoretic models for the
experimentally observed patterns. Indeed, all traditional
approaches to concept theory [mainly, “prototype theory”
(Rosch, 1973, 1978, 1983), “exemplar theory” (Nosofsky,
1988, 1992), and “theory theory” (Murphy and Medin, 1985;
Rumelhart and Norman, 1988)] and concept representation
[mainly, “extensional” membership-based (Zadeh, 1982; Rips,
1995) and “intensional” attribute-based (Hampton, 1988b;
Minsky, 1975; Hampton, 1997)] have structural difficulties to
cope with the experimental data exactly where the “graded,”
or “vague” nature of these data abundantly violates (fuzzy)
set-theoretic structures (Osherson and Smith, 1982; Zadeh,
1982), indicating that this violation of set-theoretic structures is

1One typically gains insight into how people combine concepts by gathering

data on “typicalities” or “membership weights.” To obtain data on “typicalities,”

participants are given a concept, and a list of instances or exemplars, and asked

to pick which exemplar they consider most typical of the concept. A membership

weight is instead obtained by asking people to estimate the membership of specific

exemplars with respect to a concept. This estimation can, e.g., be quantified by

using 7-point (Likert) scale and then converted into a relative frequency and

then into a probability called the “membership weight.” We have worked on both

typicality measurements, as in the analysis of the Guppy effect, and membership

weights measurements, as in the analysis of Hampton’s experiments and in the

present paper.

the core of the problem. This situation is experienced as one of
the major problems in the domain of traditional concept theories
and an obstacle for progress (Komatsu, 1992; Fodor, 1994; Kamp
and Partee, 1995; Rips, 1995; Hampton, 1997; Osherson and
Smith, 1997).

Important results in concept research and modeling have
been obtained in the last decade within the approach of
quantum cognition in which our research group has substantially
contributed.We cannot report in detail the results attained in our
approach, for obvious reasons of space limits. We limit ourselves
to summarize the fundamentals and attach relevant bibliographic
sources in the following.

(a) The structural aspects of the approach rest on the results of
older research on the foundations of quantum theory (Aerts,
1999), the origins of quantum probability (Aerts, 1986;
Pitowsky, 1989) and the identification of typically quantum
aspects outside the microscopic domain of quantum physics
(Aerts and Aerts, 1995; Aerts et al., 2000). A first major
step was taken in considering a concept as an “entity
in a specific state changing under the influence of a
context,” rather than as a “container of instantiations,” like
in most the traditional approaches to concepts. This led
to the development of a “State Context Property” (SCoP)
formalism for the description of any conceptual entity in
terms of its states, contexts and properties. In a cognitive
process, such as a typicality estimation, the cognitive context
changes the state of the conceptual entity, exactly as in a
micro physics process the measurement context changes
the state of the quantum particle that is measured. In this
perspective, the state pGuppy of the concept Pet (Fish) scores a
low typicality in absence of any context, while it scores a high
typicality when the concept Pet (Fish) is under the context
Fish (Pet). This insight was made concrete by means of an
explicit quantum representation of the Guppy effect situation
(Aerts and Gabora, 2005a,b).

(b) Continuing in this direction the mathematical formalism of
quantum theory was employed to model the overextension
and underextension of membership weights measured in
Hampton (1988a,b). More specifically, the overextension for
conjunctions of concepts measured in Hampton (1988a)
was described as an effect of quantum interference and
superposition (Aerts, 2009; Aerts et al., 2013b). The existence
of superposed quantum states allows for the description of
quantum interference, i.e., the deviation from the classically
expected pattern, in the two-slit experiment with quantum
particles. Analogously, the representation of the conjunction
of two concepts by means of a superposed quantum state
allows for the modeling of overextension as an expression
of quantum interference, i.e., deviation from the classically
expected behavior. Quantum interference and superposition
also play a primary role in the description of both
overextension and underextension for disjunctions of two
concepts (Hampton, 1988b). Successively, a two-sector Fock
space structure enabled a complete representation of data on
conjunctions and disjunctions of two concepts (Aerts, 2009;
Aerts et al., 2013b).
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(c) This quantum-theoretic framework was successfully applied
to describe more complex situations, such as borderline
vagueness (Sozzo, 2014) and the effects of negation
on conceptual conjunction (Sozzo, 2015). In addition,
specific conceptual combinations experimentally revealed
the presence of further genuine quantum effects, namely,
entanglement (Aerts et al., 2013a,b; Aerts and Sozzo,
2001, 2014) and quantum-type indistinguishability (Aerts
et al., 2015c). Finally, other phenomena related to concept
combination, such as “Ellsberg and Machina decision
making paradoxes” (Ellsberg, 1961; Machina, 2009) were
successfully modeled in the same quantum-conceptual
framework (Aerts et al., 2012, 2014).

There has been very little research on how people interpret
and combine negated concepts. In a seminal study, Hampton
(1997) considered in a set of experiments both conjunctions
of the form Games Which Are Also Sports and conjunctions of
the form Games Which Are Not Sports. His work confirmed
overextension in both types of conjunctions, also showing a
violation of Boolean classical logical rules for the negation,
which has recently been confirmed by ourselves (Sozzo, 2015).
In the present paper we extend the collection of data in Sozzo
(2015) with the aim of further exploring the use of negation
in conceptual combinations and, more generally, the underlying
logical structures being at work in human thought in the course
of cognitive processes (Aerts et al., 2015a). Let us first put
forward a specific comment with respect to the “negation of a
concept.” From the perspective of prototype theory, for quite
some concepts the negation of a concept can be considered
as a “singular concept,” since it does not have a well defined
prototype. In fact, while it is plain to determine the non-
membership of, e.g., Fruit, this does not seem to lead to the
determination involving a similarity with some prototype of Not
Fruit. Some authors maintain, for this reason, that single negated
concepts have little meaning and that conceptual negations can
be evaluated only in conjunctions of the form Fruits Which
Are Not Vegetables (Hampton, 1997). We agree that there is an
asymmetry between the way people estimate the membership of
an exemplar, e.g., Apple, with respect to a positive concept, e.g.,
Fruits, and the way people estimate the membership of the same
exemplar with respect to its negative counterpart, e.g.,Not Fruits.
Notwithstanding this, we believe it is meaningful to explicitly
introduce the concept Not Fruits in our research. First of all,
because we do not confine our concept modeling to prototype
theory, on the contrary, our approach is more general, the basic
structure of prototype theory can be recovered if we limit the
concepts to be in their ground states (Aerts and Gabora, 2005a,b).
Secondly, we will see that the quantum modeling elaborated in
the present paper sheds light exactly on this problem, namely,
the “negated concept” only appears as a full concept in “one
part of the representation,” while is treated as “non-membership
with respect to the positive concept” in the other part. Hence,
quantum-conceptual framework copes with this problem in a
natural way.
Let us proceed by steps, summarizing the major findings in this
paper, as follows.

In Section 2 we illustrate design and procedure of the four
cognitive experiments we performed. In the first experiment, we
tested the membership weights of four sets of exemplars with
respect to four pairs (A,B) of concepts and their conjunction
“A and B.” In the second experiment, we tested the membership
weights of the same four sets of exemplars with respect to
the same four pairs (A,B) of concepts, but negating the
second concept, hence actually considering A, B′ and the
conjunction “A and B′.” In the third experiment, we tested
the membership weights obtained considering A′, B and the
conjunction “A′ and B.” Finally, in the fourth experiment, we
considered the membership weights obtained by negating both
concepts, hence actually considering A′, B′ and the conjunction
“A′ and B′.”

We investigate the representability of the collected data,
reported in Appendix A3, in a “single classical Kolmogorovian
probability space” (Kolmogorov, 1933). Basic notions and results
on probability measures and classical modeling are briefly
reviewed in Appendix A1. We prove theorems providing
necessary and sufficient conditions for the modeling of the
conceptual conjunctions “A and B,” “A and B′,” “A′ and B,”
and “A′ and B′” in such a single classical Kolmogorovian
framework. Then, we observe that the data significantly violate
our theorems. More specifically, our analysis of classicality for
the presence of conjunction and negation together leads to five
classicality conditions that should be simultaneously satisfied by
the data to fit into one classical probability framework together.
When we analyze the deviations of our data with respect to
these five conditions we also find a very strong, stable and
systematic pattern of violation, i.e., the deviation has the same
numerical values even over different pairs of concepts. That
the violation is numerically the same independently of the
considered pair of concepts indicates that we have identified a
non-classical mechanism in human thought which is linked to
the depth of concept formation itself, independent of the specific
meaning for a specific pair of concepts and a specific set of
considered exemplars. This was for ourselves a first surprising
and unexpected finding, and we have recently devoted an article
to investigate it in depth (Aerts et al., 2015b).

A second major and equally unexpected finding was that
the numerical size of the “deviation of classicality pattern”
can exactly be predicted in our quantum-theoretic model
in two-sector Fock space. And, more, it can be explained
by assuming that human reasoning is the superposition of
two simultaneous processes, a “logical reasoning” and a
“conceptual,” or “emergent,” “reasoning.” Logical reasoning
combines cognitive entities (concepts, combinations of concepts,
propositions, etc.) by applying the rules of logic, though generally
in a probabilistic way. Emergent reasoning instead enables
formation of combined cognitive entities as newly emerging
entities (new concepts, new propositions, etc.), carrying new
meaning, linked to the meaning of the component cognitive
entities, but with a connection not defined by the algebra of
logic. Emergent reasoning can be modeled in first sector of
Fock space and, at variance with widespread beliefs, is dominant
in our approach. Logical reasoning can be modeled in second
sector of Fock space, hence one expects that classical logical rules
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hold in this sector, like we explicitly prove here for conceptual
conjunctions and negations (see also Aerts et al., 2015b).

Our quantum-theoretic model in two-sector Fock space
for conceptual negations and conjunctions is elaborated in
Section 3. It naturally extends the model in Aerts (2009) and
follows the general lines traced in Sozzo (2014, 2015). It is
however important to notice that the simultaneous modeling
of conjunction and negation requires the introduction of two
new conceptual steps which were not needed in the modeling
of conjunction pairs: (i) the introduction of entangled states
in second sector of Fock space, which enables formalizing the
situation where probabilities in second sector can be formed by
a “product procedure,” even if they are not independent—this
is an aspect of the Fock space model we had not understood
in our earlier modeling, hence we could consider it a further
new surprising finding of the investigation presented in this
paper; (ii) the handling of “negation” in second sector by “logical
inversion,” similarly like we handled conjunction in second sector
by “product,” more concretely, an experiment with “negation”
with respect to a concept is treated by “negating logically”
an experiment on the concept itself. This is also the way in
which our Fock space model naturally copes with the general
non-prototypicality of a negated concept, as already mentioned
above.

We see in Section 4 that a large amount of data can
be faithfully represented in our two-sector Fock space, and
construct an explicit representation for some relevant cases that
are classically problematical. A complete representation of the
data is provided in the Supplementary Material attached to
this paper. As we can see the findings presented in this paper
provide strong and independent confirmations to our quantum-
theoretic framework, and we devote Section 5 to comment on our
results and extensively discuss novelties and corroboration of our
approach. Technical appendices A4 and A5 complete the paper.

2. Description of Experiments and
Classicality Analysis

James Hampton identified in his cognitive tests systematic
deviations from classical (fuzzy) set predictions for membership
weights of exemplars with respect to conjunctions and
disjunctions of two concepts, and named these deviations
“overextensions” and “underextensions” (Hampton, 1988a,b).
Cases of “double overextension” were also observed. More
explicitly, if the membership weight of an exemplar x with
respect to the conjunction “A and B” of two concepts A and B
is higher than the membership weight of x with respect to one
concept (both concepts), we say that the membership weight of
x is “overextended” (“double overextended”) with respect to the
conjunction (by abuse of language, we say that x is overextended
(double overextended) with respect to the conjunction, in this
case). If the membership weight of an exemplar x with respect
to the disjunction “A or B” of two concepts A and B is less
than the membership weight of x with respect to one concept
(both concepts), we say that the membership weight of x is
“underextended” (“double underextended”) with respect to the
disjunction (by abuse of language, we say that x is underextended

(double underextended) with respect to the disjunction, in this
case).

Similar effects were identified by Hampton in his experiments
on conjunction and negation of two concepts (Hampton, 1997).
The analysis in Aerts (2009) revealed further deviations from
classicality in Hampton’s experiments, due to the impossibility
to generally represent the collected data in a classical probability
framework satisfying the axioms of Kolmogorov. In Sozzo (2015)
we moved along this direction and performed an experiment in
which we tested both conjunctions of the form “A and B” and
conjunctions of the form “A and B′,” for specific pairs (A,B) of
natural concepts. We showed that very similar deviations from
classicality are observed in our experiment too.

In the present paper we aim to generalize the results in Sozzo
(2015), providing an extensive analysis of conceptual conjunction
and negation and investigating their reciprocal influences. To this
end we complete the experiment in Sozzo (2015) by performing a
more general cognitive test, as described in the following sections.

2.1. Participants and Design
The participants to our experimental study—40 persons, chosen
among our colleagues and friends—were asked to fill in a
questionnaire in which they had to estimate the membership
of four different sets of exemplars with respect to four different
pairs (A,B) of natural concepts, and their conjunctions “A and
B,” “A and B′,” “A′ and B,” and “A′ and B′,” where A′ and B′

denote the negations of the concepts A and B, respectively. We
devised a “within-subjects design” for our experiments, hence
all participants were exposed to every treatment or condition.
The participants were presented with a preliminary text where
we made explicit, by means of suitable examples, what one
usually means by “membership of an exemplar with respect to
a specific conceptual category.” Further, we chose participants
with different backgrounds, not only academics, to avoid issues
connected with “selection biases.”

We considered four pairs of natural concepts, namely (Home
Furnishing, Furniture), (Spices,Herbs), (Pets, Farmyard Animals),
and (Fruits, Vegetables). For each pair, we considered 24
exemplars and measured their membership with respect to these
pairs of concepts and the conjunctions of these pairs mentioned
above.

Conceptual membership was estimated by using a “7-point
scale.” The participants were asked to choose a number from
the set +3,+2,+1, 0,−1,−2,−3, where the positive numbers
+1,+2, and+3 meant that they considered “the exemplar to be a
member of the concept”—+3 indicated a strongmembership,+1
a relatively weak membership. The negative numbers −1, −2,
and −3 meant that the participant considered “the exemplar
to not be a member of the concept”—−3 indicated a strong
non-membership,−1 a relatively weak non-membership.

Although we explicitly measured the “amount of
membership” on a 7-point scale, for the scopes of this paper, we
only need the data of a sub-experiment, namely the one tested
for “membership” or “non-membership”—our plan is to use the
“amount of membership data” for a following study leading to a
graphical representation of the data, as we did with Hampton’s
data for the disjunction in earlier work (Aerts et al., 2013a,b).
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A second reason for this specific form of the experiments is
that we wanted to stay as close as possible to the disjunction
experiments by Hampton (1988b), since we plan to investigate
later the connections of our conjunction data with Hampton’s
disjunction data, for example to investigate the way in which the
“de Morgan laws” take form in our modeling of the data. This
is why we performed the full experiment measuring “amount of
membership” and also testing simultaneously for “membership
or non-membership,” while it is only the latter sub-experiment
that we use in the investigation presented in this article. The
data of this sub-experiment give rise to relative frequencies for
testing membership or not membership, which means that we
can interpret them as probabilities in the limit of large numbers.
More concretely, µ(A and B) is the large number limit of the
relative frequency for x to be a member of “A and B” in the
performed experiment. We get to this by converting the values
collected on the 7-point scale by associating a value +1 to each
positive value on the 7-point scale, −1 to each negative number,
and 0.5 to each 0 on the same 7-point scale.

2.2. Procedure and Materials
This experimental study was carried out in accordance with the
recommendations of the “University of Leicester Code of Practice
and Research Code of Conduct, Research Ethics Committee
of the School of Management” with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. For each pair (A,B)
of natural concepts, the 40 participants were involved in four
subsequent experiments, eAB, eAB′ , eA′B, and eA′B′ , corresponding
to the conjunctions “A and B,” “A and B′,” “A′ and B,” and
“A′ and B′,” respectively. More specifically, the four sequential
experiments can be illustrated as follows.

For the conceptual pair (Home Furnishing, Furniture), we
firstly asked the 40 participants to estimate the membership of
the first set of 24 exemplars with respect to the concepts Home
Furnishing, Furniture, and their conjunction Home Furnishing
And Furniture. Then, we asked the same 40 participants to
estimate the membership of the same set of 24 exemplars
with respect to the concept Home Furnishing, the negation Not
Furniture of the concept Furniture, and their conjunction Home
Furnishing And Not Furniture. Subsequently, we asked the 40
participants to estimate the membership of the 24 exemplars
with respect to the negation Not Home Furnishing of the concept
Home Furnishing, the concept Furniture, and their conjunction
Not Home Furnishing And Furniture. Finally, we asked the 40
participants to estimate the membership of the 24 exemplars with
respect to the negations Not Home Furnishing, Not Furniture,
and their conjunction Not Home Furnishing And Not Furniture.
The corresponding membership weights are reported in
Table A1.

For the conceptual pair (Spices, Herbs), we firstly asked
the 40 participants to estimate the membership of the second
set of 24 exemplars with respect to the concepts Spices,
Herbs, and their conjunction Spices And Herbs. Then, we
asked the same 40 participants to estimate the membership
of the same set of 24 exemplars with respect to the concept
Spices, the negation Not Herbs of the concept Herbs, and their

conjunction Spices And Not Herbs. Subsequently, we asked
the 40 participants to estimate the membership of the 24
exemplars with respect to the negation Not Spices of the concept
Spices, the concept Herbs, and their conjunction Not Spices And
Herbs. Finally, we asked the 40 participants to estimate the
membership of the 24 exemplars with respect to the negations
Not Spices, Not Herbs, and their conjunction Not Spices And Not
Herbs. The corresponding membership weights are reported in
Table A2.

For the conceptual pair (Pets, Farmyard Animals), we firstly
asked the 40 participants to estimate the membership of the
third set of 24 exemplars with respect to the concepts Pets,
Farmyard Animals, and their conjunction Pets And Farmyard
Animals. Then, we asked the same 40 participants to estimate the
membership of the same set of 24 exemplars with respect to the
concept Pets, the negation Not Farmyard Animals of the concept
Farmyard Animals, and their conjunction Pets AndNot Farmyard
Animals. Subsequently, we asked the 40 participants to estimate
the membership of the 24 exemplars with respect to the negation
Not Pets of the concept Pets, the concept Farmyard Animals, and
their conjunction Not Pets And Farmyard Animals. Finally, we
asked the 40 participants to estimate the membership of the 24
exemplars with respect to the negations Not Pets, Not Farmyard
Animals, and their conjunction Not Pets And Not Farmyard
Animals. The corresponding membership weights are reported
in Table A3.

For the conceptual pair (Fruits, Vegetables), we firstly asked
the 40 participants to estimate the membership of the third set
of 24 exemplars with respect to the concepts Fruits, Vegetables,
and their conjunction Fruits And Vegetables. Then, we asked
the same 40 participants to estimate the membership of the
same set of 24 exemplars with respect to the concept Fruits,
the negation Not Vegetables of the concept Vegetables, and
their conjunction Fruits And Not Vegetables. Subsequently, we
asked the 40 participants to estimate the membership of the 24
exemplars with respect to the negation Not Fruits of the concept
Fruits, the concept Vegetables, and their conjunction Not Fruits
And Vegetables. Finally, we asked the 40 participants to estimate
the membership of the 24 exemplars with respect to the negations
Not Fruits, Not Vegetables, and their conjunction Not Fruits
And Not Vegetables. The corresponding membership weights are
reported in Table A4.

2.3. Methodology
A first inspection of tables Tables A1–A4 already reveals that
some exemplars present overextension with respect to all
conjunctions “A and B,” “A and B′,” “A′ and B,” “A′ and B′.” This is
the case, e.g., for the exemplar Lamp with respect to the concepts
Home Furnishing and Furniture (Table A1), the exemplar Salt
with respect to Spices and Herbs (Table A2), the exemplar
Goldfish with respect to Pets and Farmyard Animals (Table A3),
and the exemplar Mustard with respect to Fruits and Vegetables
(Table A4). Hence, manifest deviations from classicality occurred
in our experiments. When we say “deviations from classicality,”
we actually mean that the collected data behave in such a way that
they cannot generally be modeled by using the usual connectives
of classical (fuzzy set) logic for conceptual conjunctions, neither
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the rules of classical probability for their membership weights. In
order to systematically identify such deviations from classicality
we need however a characterization of the representability of
these data in a classical probability space. To this end we derive
in the following step by step conditions that will give us an
overall picture of the classicality of conceptual conjunctions and
negations. Finally, we arrive to a set of five conditions, formulated
in Theorem 3 as a set of necessary and sufficient conditions of
classicality for a pair of concepts, its negations and conjunctions
to be representable within a classical Kolmogorovian probability
model. Symbols and notions are introduced in Appendix A1.
Let us mention that to our knowledge the “necessary and
sufficient conditions for probabilities µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) to
be represented within in classical Kolmogorovian probability
model, have not yet been systematically derived, and hence
are not known in the literature. However, the “necessary and
sufficient conditions for probabilities µ(A), µ(B) and µ(A and B)
to be represented within in classical Kolmogorovian probability
model have been systematically studied (Pitowsky, 1989), their
direct derivation can for example be found in Aerts (2009),
theorem 1 of Section 1.3. We will start our investigation of
the classicality condition by making use of the conditions that
could be derived for µ(A), µ(B), and µ(A and B) and applying
them additionally to µ(A′), µ(B′), and µ(A′ and B′), and to
add some intermediate conditions connecting µ(A), µ(B), and
µ(A and B) and µ(A′), µ(B′), and µ(A′ and B′), to also imply
classicality for the mixed situations such as µ(A), µ(B′), and
µ(A and B′). We can prove the following theorems (see also
Appendix A4).

Theorem 1. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, the negations “not A,”
“not B,” the conjunctions “A and B,” “A and B′,” “A′ and B,” and
“A′ and B′” are classical conjunction data i.e., can be represented
in a classical Kolmogorovian probability model, if and only if they
satisfy the following conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (1)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (2)

0 ≤ µ(A′ and B′) ≤ µ(A′) ≤ 1 (3)

0 ≤ µ(A′ and B′) ≤ µ(B′) ≤ 1 (4)

µ(A)− µ(A and B) = µ(B′)− µ(A′ and B′) (5)

= µ(A and B′)

µ(B)− µ(A and B) = µ(A′)− µ(A′ and B′) (6)

= µ(A′ and B)

1− µ(A)− µ(B)+ µ(A and B) = µ(A′ and B′) (7)

1− µ(A′)− µ(B′)+ µ(A′ and B′) = µ(A and B) (8)

Theorem 2. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the

conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
classical conjunction data if and only if they satisfy the following
conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (9)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (10)

µ(A)− µ(A and B) = µ(B′)− µ(A′ and B′) (11)

= µ(A and B′)

µ(B)− µ(A and B) = µ(A′)− µ(A′ and B′) (12)

= µ(A′ and B)

0 ≤ 1− µ(A)− µ(B)+ µ(A and B) = µ(A′ and B′) (13)

The classicality requirements in Theorems 1 and 2 are not
symmetric with respect to the exchange of A with A′ and B with
B′. Thus, we can look for equivalent and more symmetric sets
of requirements. These include validity of the “marginal law”
of classical probability. We see this in Theorem 3, whose proof
preliminarily requires the following lemma.

Lemma 1. The four equalities defined in Equations (5) and (6)
are equivalent with the following four equalities expressing the
marginal law for all elements to be satisfied.

µ(A) = µ(A and B)+ µ(A and B′) (14)

µ(B) = µ(A and B)+ µ(A′ and B) (15)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (16)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (17)

Theorem 3. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
classical conjunction data if and only if they satisfy the following
conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (18)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (19)

µ(A) = µ(A and B)+ µ(A and B′) (20)

µ(B) = µ(A and B)+ µ(A′ and B) (21)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (22)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (23)

0 ≤ 1− µ(A and B)− µ(A and B′)− µ(A′ and B) (24)

= µ(A′ and B′)

The conditions above can be further simplified by observing that
the membership weights we collected in our experiments are
large number limits of relative frequencies, thus all measured
quantities are already contained in the interval [0, 1]. Therefore,
we have

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), (25)

µ(A′ and B), µ(A′ and B′) ∈ [0, 1]
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Now, when Equation (25) is satisfied, we have that from
Equations (21) and (22) follows that

µ(A and B) ≤ µ(A)

µ(A and B) ≤ µ(B)

This entails that Equations (18) and (19) are satisfied, when
Equations (21) and (22) are. Hence, we can amazingly enough
formulate Theorem 3 a new, with only five conditions to be
satisfied—four conditions expressing the marginal law.

Theorem 3
′
. If the membership weights µ(A), µ(B), µ(A′), µ(B′),

µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
all contained in the interval [0, 1], they are classical conjunction
data if and only if they satisfy the following conditions.

µ(A) = µ(A and B)+ µ(A and B′) (26)

µ(B) = µ(A and B)+ µ(A′ and B) (27)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (28)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (29)

µ(A and B) + µ(A and B′)+ µ(A′ and B) (30)

+ µ(A′ and B′) = 1

Equations (26–30) express classicality conditions in their most
symmetric form. A more traditional way to quantify deviations
from classical conjunction in real data is resorting to the
following parameters.

1AB = µ(A and B)−min{µ(A), µ(B)} (31)

1AB′ = µ(A and B′)−min{µ(A), µ(B′)} (32)

1A′B = µ(A′ and B)−min{µ(A′), µ(B)} (33)

1A′B′ = µ(A′ and B′)−min{µ(A′), µ(B′)} (34)

In fact, the quantities 1AB, 1AB′ , 1A′B, and 1A′B′ typically
measure overextension with respect to the conjunctions “A and
B,” “A and B′,” “A′ and B,” and “A′ and B′,” respectively (Hampton,
1988a). However, overextension-type deviations are generally not
the only way in which membership for conjunction of concepts
can deviate from classicality. Let us now introduce the following
quantities:

kAB = 1− µ(A)− µ(B)+ µ(A and B) (35)

kAB′ = 1− µ(A)− µ(B′)+ µ(A and B′) (36)

kA′B = 1− µ(A′)− µ(B)+ µ(A′ and B) (37)

kA′B′ = 1− µ(A′)− µ(B′)+ µ(A′ and B′) (38)

The quantities kAB, kAB′ , kA′B, and kA′B′ have been named
“Kolmogorovian conjunction factors” and studied in detail in
Aerts (2009). The Kolmogorovian factors measure a deviation
that can be understood as of “opposite type” than the deviation
measured by the overextension. Namely, the condition for kAB is

violated when both µ(A) and µ(B) are “too large” compared with
µ(A and B). Finally, we introduce a new type of quantities that
measure the deviations of classicality as expressed by Equations
(27–30), hence essentially deviations from the marginal law of
classical probability:2

IABA′B′ = 1− µ(A and B)− µ(A and B′)− µ(A′ and B) (39)

− µ(A′ and B′)

IA = µ(A)− µ(A and B)− µ(A and B′) (40)

IB = µ(B)− µ(A and B)− µ(A′ and B) (41)

IA′ = µ(A′)− µ(A′ and B′)− µ(A′ and B) (42)

IB′ = µ(B′)− µ(A′ and B′)− µ(A and B′) (43)

Finally, Theorem 3′ can be reformulated by means of the
introduced parameters as follows.

Theorem 3
′′
. If the membership weightsµ(A), µ(B), µ(A′), µ(B′),

µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of
an exemplar x with respect to concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′,” are
all contained in the interval [0, 1], they are classical conjunction
data if and only if

IABA′B′ = IA = IB = IA′ = IB′ = 0 (44)

2.4. Results
Let us now come back to our experiments. Theorems 1–3 are
manisfestly violated in several cases, and we report in Appendix
A3 the relevant conditions that should hold in a classical setting.
Since the conditions kAB > 0, kAB′ > 0, kA′B > 0, and
kA′B′ > 0 are always satisfied, they are not explicitly inserted in
Tables A1–A4. On the contrary, 1XY , IX , IY , X = A,A′,Y =
B,B′, and IABA′B′ are systematically violated. This means that
deviations from a classical probability model in our experimental
data are due to both overextension in the conjunctions and
violations of classicality in the negations. We consider some
relevant cases in the following.

The exemplar Apple scores µ(A) = 1 with respect to the
concept Fruits, µ(B) = 0.23 with respect to the concept
Vegetables, andµ(A and B) = 0.6 with respect to the conjunction
Fruits And Vegetables, hence it has 1AB = 0.38 (Table A4). The
exemplar Prize Bull scores µ(A) = 0.13 with respect to Pets,
µ(B) = 0.76 with respect to the concept Farmyard Animals,
and µ(A and B) = 0.43 with respect to the conjunction Pets
And Farmyard Animals, hence it has 1AB = 0.29 (Table A3).
The membership weight of Chili Pepper with respect to Spices is
0.98, with respect to Herbs is 0.53, while its membership weight
with respect to the conjunction Spices And Herbs is 0.8, hence
1AB = 0.27, thus giving rise to overextension (Table A2). Even
stronger deviations are observed in the combination Fruits And
Vegetables. For example, the exemplar Broccoli scores 0.09 with
respect to Fruits, 1 with respect to Vegetables, and 0.59 with

2Remark that, if we set IAA′ = 1−µ(A)−µ(A′) and IBB′ = 1−µ(B)−µ(B′), we
have IAA′ = IABA′B′ − IA − IA′ and IBB′ = IABA′B′ − IB − IB′ , which means that the

parameters IAA′ and IBB′ used in Sozzo (2015) can be derived from the parameters

IABA′B′ , IA, IB, IA′ , If the membership weights and IB′ .
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respect to Fruits And Vegetables (1AB = 0.49). A similar pattern
is observed for Parsley, which scores 0.02 with respect to Fruits,
0.78 with respect to Vegetables and 0.45 with respect to Fruits
And Vegetables (1AB = 0.43, Table A4).

Overextension is present when one concept is negated. More
explicitly:

(i) in the conjunction “A and B′.” Indeed, the membership
weights of Shelves with respect to Home Furnishing, Not
Furniture, and Home Furnishing And Not Furniture is 0.85, 0.13,
and 0.39, respectively, for a 1AB′ = 0.26 (Table A1). Then,
Pepper scores 0.99 with respect to Spices, 0.58 with respect to
Not Herbs, and 0.9 with respect to Spices and Not Herbs, for a
1AB′ = 0.32 (Table A2). Finally, Doberman Guard Dog gives
0.88 and 0.27 with respect to Pets and Not Farmyard Animals,
respectively, while it scores 0.55 with respect to Pets And Not
Farmyard Animals, hence it scores1AB′ = 0.28 (Table A3).

(ii) in the conjunction “A′ and B.” Indeed, the membership
weights of Desk with respect to Not Home Furnishing, Furniture
and Not Home Furnishing And Furniture is 0.31, 0.95, and
0.75, respectively, for a 1A′B = 0.44 (Table A1). The exemplar
Oregano scores 0.21 with respect to Not Spices, 0.86 with respect
to Herbs, and 0.5 with respect to Not Spices and Herbs, for a
1A′B = 0.29 (Table A2). Finally, again Doberman Guard Dog
gives 0.14 and 0.76 with respect to Not Pets and Farmyard
Animals, respectively, while it scores 0.45 with respect toNot Pets
And Farmyard Animals, hence it scores1A′B = 0.45 (Table A3).

When two concepts are negated—“A′ and B′”—we have, for
example, µ(A′) = 0.12, µ(B′) = 0.81 and µ(A′ and B′) = 0.43
for Goldfish, with respect to Not Pets and Not Farmyard Animals,
hence 1A′B′ = 0.31, in this case (Table A3). More, the exemplar
Garlic scoresµ(A′) = 0.88 with respect toNot Fruits andµ(B′) =
0.24 with respect to Not Vegetables, and µ(A′ and B′) = 0.45
with respect to Not Fruits And Not Vegetables, for a1A′B′ = 0.21
(Table A4).

Double overextension is also present in various cases. For
example, the membership weight of Olive with respect to Fruits
And Vegetables is 0.65, which is greater than both 0.53 and
0.63, i.e., the membership weights of Olive with respect to Fruits
and Vegetables, respectively (Table A4). Furthermore, Prize Bull
scores 0.13 with respect to Pets and 0.26 with respect to Not
Farmyard Animals, but its membership weight with respect to
Pets And Not Farmayard Animals is 0.28 (Table A3). Also, Door
Bell gives 0.32 with respect toNot Home Furnishing and 0.33 with
respect to Furniture, while it gives 0.34 with respect to Not Home
Furnishing And Furniture.

Significant deviations from classicality are also due to
conceptual negation, in the form of violation of the marginal
law of classical probability theory. By again referring to
Tables A1–A4, we have that the exemplar Field Mouse has IABA′B′

in Equation (40) equal to −0.46 (Table A3), while the exemplar
Doberman Guard Dog has IABA′B′ = −1.03 (Table A3). Both
exemplars thus violate Equation (30). Analogously, Chili Pepper
has IA in Equation (40) equal to −0.73 (Table A2), hence it
violates Equation (26), while Pumpkin has IB′ in Equation (43)
equal to−0.13 (Table A4), hence it violates Equation (29).

We performed a statistical analysis of the data, estimating the
probability that the experimentally identified deviations from

classicality would be due to chance. We specifically considered
the classicality conditions Equations (26–30) with the aim to
prove that the deviations IX , X = A,A′, IY , Y = B,B′ and
IABA′B′ in Equations (40–43) were statistically significant. We
firstly performed a “two-tail t-test for paired two samples for
means” to test deviations from the marginal law of classical
probability, that is, we tested violations of Equations (26–
29) by comparing µ(X) with respect to

∑

Y=B,B′ µ(X,Y),
X = A,A′, and µ(Y) with respect to

∑

X=A,A′ µ(X and Y),
Y = B,B′. Then, we performed a “two-tail t-test for one
sample for means” to test

∑

X=A,A′
∑

Y=B,B′ µ(Xand Y) with
respect to 1. The corresponding p-values for df = 37 are
reported in Tables A5A–E. Due to the high number of multiple
comparisons—24 null hypotheses were tested for each pair (X,Y)
of concepts—we applied a “Bonferroni correction procedure”
to avoid the so-called “family-wise error rate” (FWER). Hence,
we compared the obtained p-values with the reference value
0.05/24 ≈ 0.002. We found p-values systematically much
lower than this reference value, for all exemplars and pairs
of concepts, which makes it possible to conclude that the
experimentally tested deviations from classicality are not due
to chance.

In addition, our data analysis reveals a new, fundamental and
a priori unexpected deviation from classicality. The numerical
values of IA, IB, IA′ , IB′ , and IABA′B′ in Equations (40–43)
are reported in Aerts et al. (2015b). They are such that the
corresponding pattern of violation exhibits specific features:

(i) it cannot be explained by means of traditional classical
probabilistic approaches, since we should have IA = IB =
IA′ = IB′ = IABA′B′ = 0, in that case (see Theorem 3′′).

(ii) it is “highly stable,” in the sense that the functions IA, IB, IA′ ,
IB′ , and IABA′B′ are very likely between -1 and 0;

(iii) is is “systematic,” in the sense that the values of IA, IB,
IA′ , IB′ , and IABA′B′ are approximately the same across all
exemplars;

(iv) it is “regular,” in the sense that the functions IA, IB, IA′ , IB′ ,
and IABA′B′ do not depend on the pair of concepts that are
considered.

Observations (i–iv) were for us a clue that IA, IB, IA′ , IB′ , and
IABA′B′ are constant functions across all exemplars and pairs of
concepts. This is indeed the case, as we have proved in Aerts et al.
(2015b) by means of a “linear regression statistical analysis.” This
pattern is so unexpectedly stable, systematic and regular, being
independent of exemplars, concepts and conceptual connectives,
that it constitutes for us a fundamental new finding. We believe
that this deviation from classicality occurs at a deeper level than
the known deviations due to overextension and underextension,
and that it expresses a fundamental mechanism of concept
formation.

These results could already be considered as crucial for
claiming that the violation of classicality occurs at a deep
structural conceptual level, but this is not the end of the story.We
will see in Section 5 that the stability of this violation can exactly
be explained in a quantum-theoretic framework in two-sector
Fock space elaborated by ourselves. Hence, we devote Sections
3 and 4 to expose this modeling framework (the essentials of the
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formalism we apply are reviewed in Appendix A2, and we refer
to it for symbols and notation).

3. Quantum Modeling Conceptual
Conjunctions and Negations

In Aerts (2009) we proved that a big amount of the experimental
data collected in Hampton (1988a,b) on conjunctions and
disjunctions of two concepts can be modeled by using the
mathematical formalism of quantum theory. A two-sector Fock
space then provided an optimal algebraic setting for this
modeling. In Sozzo (2014) we proved that this quantum-theoretic
framework was suitable tomodel the data collected in Alxatib and
Pelletier (2011) on conjunctions of the form “A and A′,” and in
Sozzo (2015) we were able to prove that also the experimental
data collected on conjunctions of the form “A and B” and
“A and B′,” for specific pairs (A,B) of concepts can be represented
by using the same quantum mathematics. However, a complete
modeling of data on both conjunctions and negations requires
performing new experiments, where the conceptual conjunctions
“A and B” and “A and B′” are tested together with the conceptual
conjunctions “A′ and B” and “A′ and B′.” The complete collection
of these experiments has been discussed in Section 2. As
anticipated in Section 1, we undertake this modeling task here.
It is natural to observe that the modeling in Aerts (2009) needs
a suitable generalization, since conceptual negation should be
taken into account as well. But, we will see later in this section that
such a generalization is completely compatible with the original
model, because it rests on the assumption that (probabilistic
versions of) logical rules hold only in second sector of Fock space.
By introducing this quite natural assumption, we were able to
model conceptual conjunctions and disjunctions in Fock space.
We show now that conceptual conjunctions and negations can
be modeled in Fock space by introducing the same assumption.

To model conceptual negations we also need a new theoretical
step which was not necessary in our previous formulations,
namely, the introduction of “entangled states” in second sector
of Fock space to formalize situations where the membership
weights are not independent. This introduction, together with
the application of quantum logical rules in second sector of
Fock space, are compatible with previous formulations, but they
make our generalization in this paper highly non-obvious. We
will extensively discuss the novelties of the present modeling in
the next sections. Let us first proceed with our mathematical
construction.

Let us denote by µ(A), µ(B), µ(A′), µ(B′), µ(A and B),
µ(A and B′), µ(A′ and B), and µ(A′ and B′) the membership
weights of a given exemplar x with respect to the concepts A, B,
the negations A′, B′ and the conjunctions “A and B,” “A and B′,”
“A′ and B,” and “A′ and B′,” respectively.

The decisionmeasurement testing whether a specific exemplar
x is a member or not a member of a concept A is represented by
the spectral decomposition of the identity consisting of the two
orthogonal projection operators M (generally depending on x,
we omit such dependence, for the sake of brevity) and 1 − M
defined in a complex Hilbert space H. The concepts A and B are

represented by orthogonal unit vectors |A〉 and |B〉, respectively,
ofH. Hence we have

〈A|A〉 = 〈B|B〉 = 1 〈A|B〉 = 0 (45)

By using standard rules for quantum probabilities (see Appendix
A2), we have the following

µ(A) = 〈A|M|A〉 µ(B) = 〈B|M|B〉 (46)

where µ(A) and µ(B) are the measured membership weights
of x with respect to the concepts A and B, respectively, in the
performed experiment.

The conceptual negationsA′ and B′ are represented by another
pair of orthogonal unit vectors |A′〉 and |B′〉, respectively, such
that the set {|A〉, |B〉, |A′〉, |B′〉}, is an orthonormal set. Hence we
have

µ(A′) = 〈A′|M|A′〉 µ(B′) = 〈B′|M|B′〉 (47)

where µ(A′) and µ(B′) are the measured membership weights of
x with respect to the negations A′ and B′ of the concepts A and B,
respectively, in the performed experiment.

3.1. The First Sector Analysis
Let us first analyze the situation where we look for a modeling
solution in the Hilbert space H —which for our complete
quantum model in Fock space will be the first sector of this Fock
space, as we will show in detail later. In the Hilbert space H,
the concepts “A and B,” “A and B′,” “A′ and B,” and “A′ and
B′” are respectively represented by the superposition vectors3
1√
2
(|A〉+|B〉), 1√

2
(|A〉+|B′〉), 1√

2
(|A′〉+|B〉), and 1√

2
(|A′〉+|B′〉).

Let us analyze in detail the aspects of this situation with the
aim of resulting in a view on the possible solutions. Geometric
considerations induce to observe that, if we look for a solution
in the complex Hilbert space C

8, we will find the most general
type of solution. Indeed, since we consider four orthonormal
vectors |A〉, |A′〉, |B〉, and |B′〉, our Hilbert space will contain a
four dimensional subspace generated by these vectors. Further we
have two orthogonal projection operatorsM and 1−M, that work
on this four dimensional subspace. The image of a projection
operator has dimension not bigger than the definition domain
of it, which means that the image of M of the four dimensional
subspace is at maximum equal to four, and this is also the case for
the image of 1 − M of the four dimensional subspace. Since M
and 1−M are orthogonal, this can give rise to a eight dimensional
subspace, but not more. It means that we can incorporate all what
we need in an eight dimensional complex Hilbert space. This is
the reason that we look for our representation starting with C

8,
knowing that the choice of a Hilbert space with more than eight
dimensions would not add degrees of freedom that can give rise
to additional solutions to those that can be found in C

8. Hence,
we explicitly use this Hilbert space in what follows reminding,
however, that our results hold in any higher dimensional Hilbert

3We introduce in this model a superposition vector with equal weights on the two

vectors. The general case of a weighted superposition can be considered in future

investigation, and it is an interesting line of research in itself, as the interpretation

of the weights is not trivial.

Frontiers in Psychology | www.frontiersin.org 9 September 2015 | Volume 6 | Article 1447

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Aerts et al. Quantum structure in human thought

space. Let {|1〉 = (1, . . . , 0), |2〉 = (0, 1, . . . , 0), . . . , |8〉 =
(0, 0, . . . , 1)} denote the canonical base of C

8. We construct
a representation in C

8 where M projects on the subspace C
4

generated by the last four vectors of this canonical base, and1−M
on the subspace C

4 generator by the first four vectors of it. If we
set

|A〉 = eiφA (a1, a2, a3, a4, a5, a6, a7, a8) (48)

|A′〉 = eiφA′ (a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6, a

′
7, a

′
8) (49)

|B〉 = eiφB (b1, b2, b3, b4, b5, b6, b7, b8) (50)

|B′〉 = eiφB′ (b′1, b
′
2, b

′
3, b

′
4, b

′
5, b

′
6, b

′
7, b

′
8) (51)

then Equations (46) and (47) become

µ(A) = 〈A|M|A〉 = a25 + a26 + a27 + a28 (52)

1− µ(A) = 〈A|1−M|A〉 = a21 + a22 + a23 + a24 (53)

µ(A′) = 〈A′|M|A′〉 = a′25 + a′26 + a′27 + a′28 (54)

1− µ(A′) = 〈A′|1−M|A′〉 = a′21 + a′22 + a′23 + a′24 (55)

µ(B) = 〈B|M|B〉 = b25 + b26 + b27 + b28 (56)

1− µ(B) = 〈B|1−M|B〉 = b21 + b22 + b23 + b24 (57)

µ(B′) = 〈B′|M|B′〉 = b′25 + b′26 + b′27 + b′28 (58)

1− µ(B′) = 〈B′|1−M|B′〉 = b′21 + b′22 + b′23 + b′24 (59)

and the orthogonality conditions become

0 = 〈A|A′〉 = a1a
′
1 + a2a

′
2 + a3a

′
3 + a4a

′
4 + a5a

′
5

+ a6a
′
6 + a7a

′
7 + a8a

′
8 (60)

0 = 〈B|B′〉 = b1b
′
1 + b2b

′
2 + b3b

′
3 + b4b

′
4 + b5b

′
5

+ b6b
′
6 + b7b

′
7 + b8b

′
8 (61)

0 = 〈A|B〉 = a1b1 + a2b2 + a3b3 + a4b4 + a5b5

+ a6b6 + a7b7 + a8b8 (62)

0 = 〈A|B′〉 = a1b
′
1 + a2b

′
2 + a3b

′
3 + a4b

′
4 + a5b

′
5

+ a6b
′
6 + a7b

′
7 + a8b

′
8 (63)

0 = 〈A′|B〉 = a′1b1 + a′2b2 + a′3b3 + a′4b4 + a′5b5

+ a′6b6 + a′7b7 + a′8b8 (64)

0 = 〈A′|B′〉 = a′1b
′
1 + a′2b

′
2 + a′3b

′
3 + a′4b

′
4 + a′5b

′
5

+ a′6b
′
6 + a′7b

′
7 + a′8b

′
8 (65)

A solution of Equations (52–65) gives us a configuration of the
four orthonormal vectors |A〉, |A′〉, |B〉, and |B′〉 in C

8, such
that self-adjoint operator formed by the spectral decomposition
of the two orthogonal projections M and 1 − M give rise
to the values µ(A), 1 − µ(A), µ(A′), 1 − µ(A′), µ(B), 1 −
µ(B), and µ(B′), 1 − µ(B′), corresponding to the measured
data.

By using standard rules for quantum probabilities we
have that the membership weights for the conjunctions
corresponding to the measured data should satisfy the following
equations:

µ(A and B) =
1
√
2
(〈A| + 〈B|)M

1
√
2
(|A〉 + |B〉)

=
1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉 (66)

µ(A and B′) =
1
√
2
(〈A| + 〈B′|)M

1
√
2
(|A〉 + |B′〉)

=
1

2
(µ(A)+ µ(B′))+ℜ〈A|M|B′〉 (67)

µ(A′ and B) =
1
√
2
(〈A′| + 〈B|)M

1
√
2
(|A′〉 + |B〉)

=
1

2
(µ(A′)+ µ(B))+ℜ〈A′|M|B〉 (68)

µ(A′ and B′) =
1
√
2
(〈A′| + 〈B′|)M

1
√
2
(|A′〉 + |B′〉)

=
1

2
(µ(A′)+ µ(B′))+ℜ〈A′|M|B′〉 (69)

Hence, in C
8 these equations become

µ(A and B) =
1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉

=
1

2
(µ(A)+ µ(B))+ (a5b5 + a6b6 + a7b7 + a8b8)

cos(φB − φA) (70)

µ(A and B′) =
1

2
(µ(A)+ µ(B′))+ℜ〈A|M|B′〉

=
1

2
(µ(A)+ µ(B′))+ (a5b

′
5 + a6b

′
6 + a7b

′
7 + a8b

′
8)

cos(φB′ − φA) (71)

µ(A′ and B) =
1

2
(µ(A′)+ µ(B))+ℜ〈A′|M|B〉

=
1

2
(µ(A′)+ µ(B))+ (a′5b5 + a′6b6 + a′7b7 + a′8b8)

cos(φB − φA′ ) (72)

µ(A′ and B′) =
1

2
(µ(A′)+ µ(B′))+ℜ〈A′|M|B′〉

=
1

2
(µ(A′)+ µ(B′))+ (a′5b

′
5 + a′6b

′
6 + a′7b

′
7 + a′8b

′
8)

cos(φB′ − φA′ ) (73)

The conditions that should be satisfied by experimental data in

order to represent them in C
8 are reported in Appendix A5. By

analogy with what we found in Aerts (2009) and Sozzo (2014, 2015),

we however expect that our experimental data in Appendix A3

cannot be generally modeled in the complex Hilbert space C
8, or

first sector of Fock space, but a second sectorC
8⊗C

8 of Fock space

is also needed. Consider for example a simple case that applies for

classical logics µ(A) = 1, µ(B) = 0 and µ(A and B) = 0. This case

is consistent with the minimum conjunction rule (Zadeh, 1982)

but not with our first sector of Fock space (Hilbert space) model.

We will see that this type of cases is compatible with second sector

of Fock space, and show that a framework that encompasses both

“logical” and “emergent” reasoning about membership in these

situations requires the general properties of a Fock space. To make

our description complete however, we first have to introduce a new,

conceptually relevant, ingredient.
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3.2. Introducing Entanglement in Conceptual
Combinations
In Aerts (2009) and Sozzo (2014, 2015) we successfully modeled

conjunctions of the form “A and B” in a Fock space constructed

as the direct sum of an individual Hilbert space H, or “first

sector of Fock space,” and a tensor product Hilbert space H ⊗ H,

or “second sector of Fock space.” The concepts A and B were

respectively represented by the unit vectors |A〉 and |B〉 ofH, while

the conjunction “A and B” was represented by the unit vector
1√
2
(|A〉 + |B〉) in first sector, and by the tensor product vector

|A〉 ⊗ |B〉 in second sector. The decision measurement of a person

who estimates whether a given exemplar x is a member of “A and

B” was represented by the orthogonal projection operatorM in first

sector, and by the tensor product projection operator M ⊗ M in

second sector. The conjunction “A and B” was represented by a unit

vector of the formψ(A,B) = meiθ |A〉⊗ |B〉+neiρ 1√
2
(|A〉+ |B〉) in

the Fock spaceH⊕ (H⊗H), while the decision measurement was

represented by the orthogonal projection operator M ⊕ (M ⊗ M)

in the same Fock space. By using quantum probabilistic rules, one

could then write the membership weight of x with respect to “A

and B” as µ(A and B) = 〈ψ(A,B)|(M ⊗ M) ⊕ M|ψ(A,B)〉 =
m2µ(A)µ(B) + n2( 12 (µ(A) + µ(B)) + ℜ〈A|M|B〉). This treatment

needs now to be generalized to the decision measurement of the

concepts A, B, the negations A′, B′ and the conjunctions “A and B,”

“A and B′, “A′ and B,” and “A′ and B′.” The first sector situation has

already been analysed in Section 3.1 where we have also constructed

an explicit representation in the complex Hilbert spaceC
8. Here we

analyse the second sector situation, but we allow for the possibility

of representing concepts by entangled states too.

Is it possible to introduce some “type of entanglement” in second

sectorC
8⊗C

8? This question is interesting, since it is reasonable to

believe that the outcomes of experiments for A are not independent

of the outcomes of experiments for B. For example, in case a specific

exemplar x is strongly a member of Fruits, this will influence the

strength of membership of Vegetables, and viceversa, because the

meanings of Fruits and Vegetables are not independent. And this

apparently occurs for all human concepts. Suppose we combined,

for example, Fruits with Not Fruits, then one would expect to exist,

for any exemplar, a substantial amount of anti-correlation between

it being a member of Fruits and it being a member of Not Fruits.

How can we express the general situation, where anti-correlation,

as well as correlation, are possible to be increased or decreased by

parameters? In the foregoing modeling (Aerts, 2009; Aerts et al.,

2013b) we chose the simplest representation for the situation in

second sector, namely the product state |A〉 ⊗ |B〉, which leads to a

situation of complete independence between A and B, for whatever

exemplar tested. Let us investigate what would be a situation for a

general entangled state, and how a two-sector Fock space already

incorporates this possibility.

Suppose that the concept “A and B” is not represented by the

product state vector |A〉 ⊗ |B〉 in second sector of Fock space

C
8⊗C

8, but by a general entangled state vector |C〉 of C8⊗C
8. We

remind thatC
8 is the concrete Hilbert space we have constructed in

Section 3.1. In the canonical base {|i〉}i= 1,...,8 of C
8, we have

|C〉 =
8

∑

i,j= 1

cije
iγij |i〉 ⊗ |j〉 (74)

and

1 = 〈C|C〉 =
8

∑

i,j= 1

c2ij (75)

We now express the effect, as described in second sector, of

the experiments where participants were asked to decide for

membership (or non-membership) of a specific exemplar with

respect to the concepts A and B, as follows. Membership with

respect to A, as a yes-no measurement, is represented by the

orthogonal projection operators M ⊗ 1, (1 − M) ⊗ 1, as spectral

family of the corresponding self-adjoint operator. Hence in second

sector, tests on concept A, are described in the first component of

the tensor product Hilbert space C
8 ⊗ C

8, which forms second

sector. In an analogous way, tests on concept B, are described in

the second component of the tensor product, by the orthogonal

projection operators 1 ⊗ M, 1 ⊗ (1 − M), as spectral family of

the corresponding self-adjoint operator. Remark that we do not

introduce in any way the concepts A′ and B′ for the second sector

description, and also not conjunction of A and B with them, at

least the aspect of these conjunctions that represent new emergent

concepts. The concept A′ and B′ are indeed “emergent entities”

because the negation on a concept to give rise to a new concept,

namely the negation concept.

Also the experimental data collected on A′, B′ and combinations

of them with A and B do not appear in second sector. All

emergence is indeed modeled in first sector. This means that

also the conjunction of A and B as a new emergent concept

does not appear in second sector, it only appears in first sector

modeled there by the superposition. All non-emergent equivalents

of these are described by the tensor product of the two self-adjoint

operators corresponding to the yes-no experiments with respect

to membership performed on concepts A and consequently on

concept B, exactly as in our real life experiment that gave rise to our

data on A and B. This means that the orthogonal projectors of the

spectral family of this tensor product self-adjoint operator describe

all cases of non-emergence. This family consists of {M ⊗ M,M ⊗
(1−M), (1−M)⊗M, (1−M)⊗ (1−M)}. Let us express this on
a general entangled state vector |C〉. We have

µ(A) = 〈C|M ⊗ 1|C〉 =
8

∑

i= 5

8
∑

j= 1

c2ij (76)

µ(B) = 〈C|1⊗M|C〉 =
8

∑

i= 1

8
∑

j= 5

c2ij (77)

1− µ(A) = 〈C|(1−M)⊗ 1|C〉 =
4

∑

i= 1

8
∑

j= 1

c2ij (78)

1− µ(B) = 〈C|1⊗ (1−M)|C〉 =
8

∑

i= 1

4
∑

j= 1

c2ij (79)

And further we have

〈C|M ⊗M|C〉 =
8

∑

i= 5

8
∑

j= 5

c2ij (80)
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〈C|M ⊗ (1−M)|C〉 =
8

∑

i= 5

4
∑

j= 1

c2ij (81)

〈C|(1−M)⊗M|C〉 =
4

∑

i= 1

8
∑

j= 5

c2ij (82)

〈C|(1−M)⊗ (1−M)|C〉 =
4

∑

i= 1

4
∑

j= 1

c2ij (83)

The values of 〈C|M ⊗ M|C〉, 〈C|M ⊗ (1 − M)|C〉, 〈C|(1 − M) ⊗
M|C〉, and 〈C|(1 − M) ⊗ (1 − M)|C〉 will respectively represent

the amounts that within our Fock space model second sector

contributes to the values of µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′). We can prove that the second sector theoretical

values, allowing the state to be a general entangled state in ourC
8⊗

C
8 Hilbert space model, reach exactly the values to be found for

the case the classicality conditions Equations (26–30) in Theorem

3′ are satisfied. More explicitly, the following theorem holds (see

Appendix A4 for its proof).

Theorem 4. If the experimentally collected membership weights

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′) can be represented in second sector of Fock

space for a given choice of the entangled state vector |C〉 and the

decision measurement projection operator M, then the membership

weights satisfy Equations (26–30), hence they are classical data.

Viceversa, if µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′),
µ(A′ and B), and µ(A′ and B′) satisfy Equations (26–30), hence they
are classical data, then an entangled state vector |C〉 and a decision

measurement projection operator M can always be found such that

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′) can be represented in second sector of Fock space.

Theorem 4 implies that the tensor product Hilbert space model

(second sector of Fock space) has exactly the same generality as

the most general classical conditions for conjunction and negation.

More specifically, given any data that satisfy the five classicality

conditions of Theorem 3′, we can construct an entangled state

such that in second sector “exactly” these classicality conditions are

satisfied. Moreover, it clarifies that entangled states in our general

Fock space modeling of data on conceptual conjunction and

negation play a fundamental unexpected role in the combination

of human concepts. The fact that classical logical rules are satisfied,

in a probabilistic form, in second sector of Fock space provides an

important confirmation to our two-sector quantum framework, as

we will see in Section 5.

3.3. A complete modeling in Fock space
In Section 3.1 we have considered the situation of first sector of

Fock space, representing the starting concepts A and B by the state

vectors |A〉 and |B〉, respectively, of a Hilbert space H. Then, we

have introduced the state vectors |A′〉 and |B′〉, which represent

the conceptual negations “not A” and “not B,” respectively. Since

first sector of Fock space describes “emergence,” the state vectors

|A′〉 and |B′〉 can be interpreted as representing the newly emergent

concepts “not A” and “not B,” respectively, compatibly with the

core of the approach we developed in our quantum modeling of

combinations of concepts. We have also seen in Section 3.1 that

also the newly emergent concept “A and B,” or one of the other

conjunction combinations, “A and B′,” “A′ and B,” and “A′ and B′,”
are directly represented in this first sector of Fock space by state

vectors, more specifically by the superposition state vectors of the

corresponding state vectors, namely 1√
2
(|A〉+ |B〉), 1√

2
(|A〉+ |B′〉),

1√
2
(|A′〉 + |B〉) and 1√

2
(|A′〉 + |B′〉), respectively.

Following Aerts (2009) and Sozzo (2014, 2015), we should also

take into account the logical aspects of conceptual conjunctions and

negations in second sector of Fock space, mathematically formed by

the tensor product of the Hilbert spaceH of first sector. In previous

papers we had represented the state of the concept A and B in

second sector by the product vector |A〉⊗|B〉 of this tensor product
H ⊗ H. However, this leads inevitably to the probability for the

conjunctionµ(A and B) to be equal to the productµ(A)µ(B), as we

have seen in Section 3.2. In classical probability theory this means

that the probabilities are probabilistically independent. Now, quite

obviously, since the concepts A and B are related by their meaning,

these probabilities are not probabilistically independent. Suppose

that B is the negation A′, like in the borderline effect (Sozzo,

2014). Then, we obviously would have an anti-correlation between

µ(A) and µ(B). But, even in this not simple case, any meaning

connection between A and B would give rise to probabilities

that are not independent. On the other hand, we have seen in

Section 3.2 that we can model any type of classical probabilistic

dependence by introducing the proper entangled state for the

concept representation of A and of B in second sector. This means

that we should not in principle use |A〉 ⊗ |B〉 to represent the

concepts in second sector, but a properly chosen entangled state.

Let us denote, following our analysis in Section 3.2, such a

general entangled state in C
8 by means of

|C〉 =
8

∑

i,j= 1

cije
γij |i〉 ⊗ |j〉 (84)

where |i〉 and |j〉 are the canonical base vectors of C
8.

The state vector representing the concept “A and B” in its

totality, hence its first sector part, describing emergent human

thought, i.e., the formation of the new concept “A and B,” and its

second sector part, describing quantum logical human thought,

i.e., the conjunctive connective structure “A and B,” is then the

following

ψ(A,B) = mABe
iθ |C〉 +

nABe
iρ

√
2

(|A〉 + |B〉) (85)

with m2
AB + n2AB = 1. It is indeed the superposition of two vectors,

one vector given by 1√
2
(|A〉 + |B〉) in first sector of Fock space,

accounting for the emergent part of human thought with respect

to the conjunction, and a second vector given by |C〉 in second

sector of Fock space, accounting for the quantum logical part of

human thought with respect to the conjunction. By using Equations

(84) and (85), we then get the following general expression for the

membership weight of the conjunction

µ(A and B) = 〈ψ(A,B)|(M ⊗M ⊕M)|ψ(A,B)〉
= m2

AB(〈C|)M ⊗M|(|C〉)
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+
n2AB
2

(〈A| + 〈B|)M(|A〉 + |B〉)

= m2
AB

8
∑

i,j= 5

c2ij +
n2AB
2

(〈A|M|A〉 + 〈B|M|B〉

+ 〈A|M|B〉 + 〈B|M|A〉)

= m2
AB

8
∑

i,j= 5

c2ij + n2AB(
1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉)

= m2
AB

8
∑

i,j= 5

c2ij + n2AB(
1

2
(µ(A)+ µ(B))

+ (a5b5 + a6b6 + a7b7 + a8b8) cos(φB − φA)) (86)

where we have used Equation (70) in the last line of Equation (86).

What is the procedure corresponding to emergent and quantum

logical parts of human thought when we also take into account

negations, i.e., when we consider the conjunctions “A and B′,”
“A′ and B,” and “A′ and B′”? As for first sector of Fock space,

we have already made it explicit in Section 3.1. Indeed, the new

emergent concepts “A′” and “B′” are described by the state vectors

|A′〉 and |B′〉, and the respective conjunctions, i.e., their emergent

aspects as a new concept, each time by means of the corresponding

superposition state vector. This is the way the emergence of

negation and conjunction are jointly modeled in first sector of Fock

space—new state vectors model the new emergent concepts due

to negation, and the emergent conjunctions are modeled by the

respective superpositions.

In second sector of Fock space, we however have a specific

situation to solve. Namely, exactly as we did for the conjunction,

we need to identify what is the quantum logical structure related

with negation, independent of its provoking the emergence of a

new concept, i.e., the negation of the original concept. In second

sector of Fock space we indeed only express the quantum logical

reasoning in human thought and not the emergent reasoning. For

the conjunction “A and B” we did this by means of the entangled

state |C〉. Let us reflect about the negation, for example, with respect

to the concept B. Tomake things clear let us introduce the following

two expressions. We are in the experimental situation where the

membership of an exemplar x, or the non-membership of this

exemplar, is to be decided about, by a person participating in the

experiment. The concept B can be involved, and the concept B′ can
be involved.

Expression 1. The considered exemplar x is a member of the

concept B′.

Expression 2. The considered exemplar x is “not” a member of the

concept B.

Our theoretic proposal is that:

(1) the first expression describes what happens in a human mind

when emergent thought is dominant with respect to a concept

B, its negation B′ and an exemplar x. Indeed, the focus is

on “membership” of this exemplar x with respect to the new

emergent concept “B′”;
(2) the second expression describes what happens in a human

mind when quantum logical thought is dominant with respect

to a concept B, its negation B′ and an exemplar x. Indeed, the

focus is on “non-membership” of this exemplar x with respect

to the old existing concept B.

Expressions (1) and (2) are two structurally speaking subtle deeply

different possibilities of reasoning related to a concept and its

negation.

Our third theoretic proposal is that:

(3) human thought, when confronted with this situation, follows

a dynamics described by a quantum superposition of the two

modes (1) and (2).

We will see in the following that the mathematical structure of Fock

space enables modeling this in an impecable way.

Indeed, expression (1) will be modeled in first sector of our Fock

space, and it is mathematically realised by makingM work on |B′〉.
Expression (2) will instead be modeled in second sector of Fock

space, and it is mathematically realised bymaking 1⊗(1−M) work

on |C〉. In the complete Fock space, direct sum of its first and second

sectors, mathematically a superposition of the whole dynamics can

be realised, by considering the superposition state which we already

specified in Equation (85), and consider different structures of the

projection operator on the whole of Fock space. More specifically,

(M ⊗ M) ⊕ M for “A and B,” (M ⊗ (1 − M)) ⊕ M for “A and

B′,” ((1 − M) ⊗ M) ⊕ M for “A′ and B,” and ((1 − M) ⊗ (1 −
M)) ⊕ M for “A′ and B′.” However, for each of the combinations

the vector representing the combination in second sector of Fock

space will be |C〉. So, no vector appears in second sector of Fock

space, since the negation is expressed quantum logically here, hence

by M becoming 1 − M. While in first sector of Fock space, the

negation is expressed emergently, hence by |A〉 becoming |A′〉 and
|B〉 becoming |B′〉, andM remainingM, since the focus in this first

sector of Fock space, with emergent reasoning of human thought,

is always on “membership,” while in second sector, with quantum

logical reasoning, the focus of negation is on “non-membership,”

described by 1−M.

The above conceptual analysis makes it possible for us to write

the complete Fock space formulas for the other combinations.More

specifically, if we represent the concept “A and B′” by the unit vector

ψ(A,B′) = mAB′e
iθ |C〉 +

nAB′e
iρ

√
2

(|A〉 + |B′〉) (87)

with m2
AB′ + n2AB′ = 1, then, by using Equations (84) and (87), we

get

µ(A and B′) = 〈ψ(A,B′)|M ⊗ (1−M)⊕M|ψ(A,B′)〉
= m2

AB′ (〈C|)M ⊗ (1−M)|(|C〉)

+
n2AB′

2
(〈A| + 〈B′|)M(|A〉 + |B′〉)

= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij +
n2AB′

2
(〈A|M|A〉 + 〈B′|M|B′〉

+〈A|M|B′〉 + 〈B′|M|A〉)

= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij + n2AB′

(

1

2
(µ(A)+ µ(B′))

+ℜ〈A|M|B′〉
)
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= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij + n2AB′ (
1

2
(µ(A)+ µ(B′))

+(a5b
′
5 + a6b

′
6 + a7b

′
7 + a8b

′
8) cos(φB′ − φA))

(88)

where we have used Equation (71) in the last line of Equation (88).

Analogously, if we represent the concept “A′ and B” by the unit

vector

ψ(A′,B) = mA′Be
iθ |C〉 +

nA′Be
iρ

√
2

(|A′〉 + |B〉) (89)

with m2
A′B + n2A′B = 1, then, by using Equations (84) and (89), we

get

µ(A′ and B) = 〈ψ(A′,B)|(1−M)⊗M ⊕M|ψ(A′,B)〉
= m2

A′B(〈C|)(1−M)⊗M|(|C〉)

+
n2A′B

2
(〈A′| + 〈B|)M(|A′〉 + |B〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij +
n2A′B

2
(〈A′|M|A′〉 + 〈B|M|B〉

+ 〈A′|M|B〉 + 〈B|M|A′〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij + n2A′B(
1

2
(µ(A′)+ µ(B))

+ ℜ〈A′|M|B〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij + n2A′B(
1

2
(µ(A′)+ µ(B))

+ (a′5b5 + a′6b6 + a′7b7 + a′8b8) cos(φB − φA′ ))

(90)

where we have used Equation (72) in the last line of Equation (90).

Finally, if we represent the concept “A′ and B′” by the unit vector

ψ(A′,B′) = mA′B′e
iθ |C〉 +

nA′B′e
iρ

√
2

(|A′〉 + |B′〉) (91)

withm2
A′B′ + n2A′B′ = 1, then, by using Equations (84) and (91), we

get

µ(A′ and B′) = 〈ψ(A′,B′)|(1−M)⊗ (1−M)⊕M|ψ(A′,B′)〉
= m2

A′B′ (〈C|)(1−M)⊗ (1−M)|(|C〉)

+
n2A′B′

2
(〈A′| + 〈B′|)M(|A′〉 + |B′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij +
n2A′B′

2
(〈A′|M|A′〉

+ 〈B′|M|B′〉 + 〈A′|M|B′〉 + 〈B′|M|A′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij + n2A′B′ (
1

2
(µ(A)+ µ(B′))

+ ℜ〈A′|M|B′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij + n2A′B′ (
1

2
(µ(A′)+ µ(B′))

+ (a′5b
′
5 + a′6b

′
6 + a′7b

′
7 + a′8b

′
8) cos(φB′ − φA′ ))

(92)

where we have used Equation (73) in the last line of Equation (92).

Equations (86), (88), (90), and (92) contain the probabilistic

expressions for simultaneously representing experimental data on

conjunctions and negations of two concepts in a quantum-theoretic

framework. These equations express themembership weights of the

conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” in
terms of the memership weights of A, B, A′, and B′, for suitable
values of the following modeling parameters:4

(i) the angles φB − φA, φB′ − φA, φB − φA′ and φB′ − φA′ ,

(ii) the pairs of convex coefficients (mAB, nAB), (mAB′ , nAB′ ),

(mA′B, nA′B) and (mA′B′ , nA′B′ ),

(iii) the normalized coefficients c211, . . . , c
2
88.

As we can see our two-sector Fock space framework is able to cope

with conceptual negation in a very natural way. In fact, the latter

negation is modeled by using the general assumption that emergent

aspects of a concept are represented in first sector of Fock space,

while logical aspects of a concept are represented in second sector.

This will be made explicit in Section 5. It is however important

to stress that, for a given experiment eXY , with X = A,A′, Y =
B,B′ described in Section 2, there is no guarantee that sets of

these parameters can be found such that Equations (86–92) are

simultaneously satisfied. For this reason, we provide in Appendix

A5 the conditions that should be satisfied by the experimental data

µ(A), µ(B), . . . , µ(A′ and B), µ(A′ and B) such that these sets exist.

The conclusion we draw from the analysis above is that finding

solutions for a given set of experimental data in our quantum-

theoretic modeling it is highly non-obvious, which makes the

results in the next section even more significant.

4. Representation of experimental data in
Fock space

Most of these data in Tables A1–A4, are compatible with the

intervals in Equations (A26), (A29), (A32), and (A35). Hence,

almost all our data can be successfully modeled by using the

quantum probabilistic equations in Equations (86), (88), (90), and

(92). Let us consider some interesting cases, distinguishing them

by: (i) situations with double overextension, (ii) situations with

complete overextension, (iii) situations requiring both sectors of

Fock space and/or entanglement, (iv) partially classical situations.

Complete modeling is presented in the Supplementary Material

attached to this article.

(i) Let us start with exemplars that are double overextended.

Olive, with respect to (Fruits, Vegetables) (double

overextension with respect to Fruits And Vegetables). Olive

scored µ(A) = 0.53 with respect to Fruits, µ(B) = 0.63

4We remind that n2XY = 1−m2
XY ,X = A,A′,Y = B,B′. In addition, only the sums

∑8
i,j= 5 c

2
ij,

∑8
i= 5

∑4
j= 1 c

2
ij,

∑4
i= 1

∑8
j= 5 c

2
ij, and

∑8
i,j= 5 c

2
ij appear in Equations

(86), (88), (90), and (92), respectively.
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with respect to Vegetables, µ(A′) = 0.47 with respect to

Not Fruits, µ(B′) = 0.44 with respect to Not Vegetables,

µ(A and B) = 0.65 with respect to Fruits And Vegetables,

µ(A and B′) = 0.34 with respect to Fruits And Not Vegetables,

µ(A′ and B) = 0.51 with respect to Not Fruits And Vegetables,

and µ(A′ and B′) = 0.36 with respect to Not Fruits And

Not Vegetables. If one first looks for a representation of

Olive in the Hilbert space C
8, then the concepts Fruits and

Vegetables are represented by the unit vectors |A〉 = eiφA

(−0.02, −0.47, 0.5, −0.02, −0.07, −0.31, −0.18, −0.63) and

|B〉 = eiφB (0.04, 0.02, −0.6, 0.03, −0.26, 0.35, −0.39, −0.53),

respectively, and their negations Not Fruits and Not

Vegetables by the unit vectors |A′〉 = eiφA′ (0.06,−0.47,−0.55,

0.03, −0.02, −0.64, −0.06, 0.25), and |B′〉 = eiφB′ (−0.03,

0.75,−0.01,−0.01,−0.08,−0.6,−0.18,−0.19), respectively.

The interference angles φAB = φB − φA = 57.31◦, φAB′ =
φB′ − φA = 95.32◦, φA′B = φB − φA′ = 103.43◦ and φA′B′ =
φB′ − φA′ = 85.56◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.442,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.582,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.662 and

∑4
i,j= 1 c

2
ij = 0.182, and convex weights mAB = 0.42, nAB =

0.91, mAB′ = 0.1, nAB′ = 0, mA′B = 0.78, nA′B = 0.63,

mA′B′ = 0.52, and nA′B′ = 0.86.

Prize Bull, with respect to (Pets, Farmyard Animals)

(double overextension with respect to Pets And Not Farmyard

Animals). Prize Bull scored µ(A) = 0.13 with respect to Pets,

µ(B) = 0.76 with respect to Farmyard Animals, µ(A′) =
0.88 with respect to Not Pets, µ(B′) = 0.26 with respect to

Not Farmyard Animals, µ(A and B) = 0.43 with respect

to Pets And Farmyard Animals, µ(A and B′) = 0.28 with

respect to Pets And Not Farmyard Animals, µ(A′ and B) =
0.83 with respect to Not Pets And Farmyard Animals, and

µ(A′ and B′) = 0.34 with respect to Not Pets And Not

Farmyard Animals. If one first looks for a representation of

Prize Bull in the Hilbert space C
8, then the concepts Pets

and Farmyard Animals, and their negations Not Pets and Not

Farmyard Animals are respectively represented by the unit

vectors |A〉 = eiφA (0.07, −0.39, −0.84,0.03, −0.06, −0.35,

0.04, −0.01) and |B〉 = eiφB (0.03, 0.21, −0.44, 0.01, 0.01,

0.81, −0.2, −0.25), and |A′〉 = eiφA′ (0.01, 0.29, −0.19, 0,

0.11, 0.06, −0.2, 0.91) and |B′〉 = eiφB′ (0.01, 0.84, −0.19,

0,−0.17,−0.41,−0.01, −0.26).

The interference angles φAB = φB − φA = 105.71◦, φAB′ =
φB′ − φA = 40.23◦, φA′BE = φB − φA′ = 111.25◦ and φA′B′ =
φB′ − φA′ = 52.51◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.242,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.272,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.842, and

∑4
i,j= 1 c

2
ij = 0.412, and convex weights mAB = 0.46, nAB =

0.89, mAB′ = 0.41, nAB′ = 0.91, mA′B = 0.54, nA′B = 0.84,

mA′B′ = 0.52, and nA′B′ = 0.85.

Door Bell, with respect to (Home Furnishing, Furniture)

(double overextension with respect to Not Home Furnishing

And Furniture). Door Bell scored µ(A) = 0.75 with respect

to Home Furnishing, µ(B) = 0.33 with respect to Furniture,

µ(A′) = 0.32 with respect to Not Home Furnishing, µ(B′) =
0.79 with respect to Not Furniture, µ(A and B) = 0.5 with

respect to Home Furnnishing And Furniture, µ(A and B′) =
0.64 with respect to Home Furnishing And Not Furniture,

µ(A′ and B) = 0.34 with respect to Not Home Furnishing

And Furniture, and µ(A′ and B′) = 0.51 with respect

to Not Home Furnishing And Not Furniture. If one first

looks for a representation of Door Bell in the Hilbert space

C
8, then the concepts Home Furnishing and Furniture, and

their negations Not Home Furnishing and Not Furniture are

respectively represented by the unit vectors |A〉 = eiφA (0,0.33,

0.37, −0.05, 0.04, −0.29, 0, 0.81) and |B〉 = eiφB (−0.14,

0.77, 0.17, −0.16, 0.24, −0.19, 0.07, −0.48), and |A′〉 = eiφA′

(0.21, −0.43, 0.66, 0.13, 0.22, −0.39, 0.22, −0.27) and |B′〉 =
eiφB′ (−0.08,−0.03,−0.45,−0.02,−0.17,−0.52, 0.7, 0.04).

The interference angles φAB = φB − φA = 102.81◦,
φAB′ = φB′ − φA = 117.67◦, φA′B = φB − φA′ = 67.37◦

and φA′B′ = φB′ − φA′ = 77.65◦ complete the Hilbert space

representation in C
8. A complete modeling in the Fock space

C
8 ⊕ (C8 ⊗ C

8) satisfying Equations (86), (88), (90), and (92)

is given by an entangled state characterized by
∑8

i,j= 5 c
2
ij =

0.352,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.792,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.462 and

∑4
i,j= 1 c

2
ij = 0.22, and convex weights mAB = 0.48, nAB =

0.88, mAB′ = 0.91, nAB′ = 0.41, mA′B = 0.65, nA′B = 0.76,

mA′B′ = 0.43, and nA′B′ = 0.9.

(ii) Let us now come to the exemplars that present complete

overextension, that is, exemplars that are overextended in all

experiments.

Goldfish, with respect to (Pets, Farmyard Animals)

(big overextension in all experiments, but also double

overextension with respect to Not Pets And Farmyard

Animals). Goldfish scored µ(A) = 0.93 with respect to Pets,

µ(B) = 0.17 with respect to Farmyard Animals, µ(A′) =
0.12 with respect to Not Pets, µ(B′) = 0.81 with respect to

Not Farmyard Animals, µ(A and B) = 0.43 with respect

to Pets And Farmyard Animals, µ(A and B′) = 0.91 with

respect to Pets And Not Farmyard Animals, µ(A′ and B) =
0.18 with respect to Not Pets And Farmyard Animals, and

µ(A′ and B′) = 0.43 with respect to Not Pets And Not

Farmyard Animals. If one first looks for a representation

of Goldfish in the Hilbert space C
8, then the concepts Pets

and Farmyard Animals, and their negations Not Pets and

Not Farmyard Animals are respectively represented by the

unit vectors |A〉 = eiφA (−0.05, 0.16, −0.21, −0.01, −0.71,

0.22, 0.33, 0.51) and |B〉 = eiφB (−0.24, 0.26, −0.84, −0.07,

0.38, −0.11, −0.01, 0.12), and |A′〉 = eiφA′ (0.18, 0.85, 0.35,

0.09, 0.2, −0.12, −0.03, 0.25) and |B′〉 = eiφB′ (0.01, −0.41,

0.14,−0.01, 0.27,−0.32,−0.13, 0.79).
The interference angles φAB = φB − φA = 78.9◦, φAB′ =

φB′ − φA = 43.15◦, φA′B = φB − φA′ = 54.74◦ and φA′B′ =
φB′ − φA′ = 77.94◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.352,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.92,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.222 and

∑4
i,j= 1 c

2
ij = 0.172, and convex weights mAB = 0.45, nAB =
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0.89, mAB′ = 0.45, nAB′ = 0.9, mA′B = 0.48, nA′B = 0.88,

mA′B′ = 0.45, and nA′B′ = 0.89.

Parsley, with respect to (Spices, Herbs) (overextension in

all experiments). Parsley scored µ(A) = 0.54 with respect

to Spices, µ(B) = 0.9 with respect to Herbs, µ(A′) = 0.54

with respect to Not Spices, µ(B′) = 0.09 with respect to

Not Herbs, µ(A and B) = 0.68 with respect to Spices And

Herbs, µ(A and B′) = 0.26 with respect to Spices And

Not Herbs, µ(A′ and B) = 0.73 with respect to Not Spices

And Herbs, and µ(A′ and B′) = 0.18 with respect to Not

Spices And Not Herbs. If one first looks for a representation

of Parsley in the Hilbert space C
8, then the concepts Spices

and Herbs, and their negations Not Spices and Not Herbs are

respectively represented by the unit vectors |A〉 = eiφA (0,

0.25, −0.63, −0.02, −0.02, 0.5, −0.06, 0.54) and |B〉 = eiφB

(0, 0.02, −0.32, −0.01, 0.09, −0.84, −0.23, 0.37), and |A′〉 =
eiφA′ (0, 0.17, 0.66, 0.02, −0.17, 0.01,0.14, 0.7) |B′〉 = eiφB′

(0,−0.95,−0.06,−0.01,−0.04, 0.11, 0.02, 0.27).

The interference angles φAB = φB − φA = 97.66◦, φAB′ =
φB′ − φA = 84.49◦, φA′B = φB − φA′ = 68.25◦ and φA′B′ =
φB′ −φA′ = 113.49◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕
(C8 ⊗ C

8) satisfying Equations (86), (88), (90), and (92) is

given by an entangled state characterized by
∑8

i,j= 5 c
2
ij =

0.662,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.322,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.682 and

∑4
i,j= 1 c

2
ij = 0, and convex weights mAB = 0.48, nAB = 0.88,

mAB′ = 0.55, nAB′ = 0.84, mA′B = 0.46, nA′B = 0.89,

mA′B′ = 0.5, and nA′B′ = 0.87.

(iii) Let us then illustrate some relevant exemplars that either

cannot be modeled in a pure Hilbert space framework, or

cannot be represented by product states in second sector of

Fock space.

Raisin, with respect to (Fruits, Vegetables). Raisin scored

µ(A) = 0.88 with respect to Fruits, µ(B) = 0.27 with

respect to Vegetables, µ(A′) = 0.13 with respect to Not

Fruits, µ(B′) = 0.76 with respect to Not Vegetables,

µ(A and B) = 0.53 with respect to Fruits And Vegetables,

µ(A and B′) = 0.75 with respect to Fruits And Not

Vegetables, µ(A′ and B) = 0.25 with respect to Not

Fruits And Vegetables, and µ(A′ and B′) = 0.34 with

respect to Not Fruits And Not Vegetables. If one first

looks for a representation of Raisin in the Hilbert space

C
8, then the concepts Fruits and Vegetables, and their

negations Not Fruits and Not Vegetables are respectively

represented by the unit vectors |A〉 = eiφA (0.05, −0.01,

0.34, 0.01, −0.1, −0.51, 0.23, −0.75) and |B〉 = eiφB

(−0.41, −0.15, −0.73, −0.1, −0.38, −0.17, −0.19, −0.25),

and |A′〉 = eiφA′ (0.56,−0.73,−0.09, 0.1,−0.08,−0.28,−0.15,

0.16) and |B′〉 = eiφB′ (0.07, 0.46, −0.14, 0.04,

0.13,−0.76,−0.11, 0.4).

However, a complete representation satisfying Equations

(86), (88), (90), and (92) can only be worked out in the Fock

space C
8 ⊕ (C8 ⊗ C

8). This occurs for interference angles

φAB = φB − φA = 80.79◦, φAB′ = φB′ − φA = 160◦,
φA′B = φB − φA′ = 18.15◦ and φA′B′ = φB′ − φA′ = 92.88◦,
and for an entangled state characterized by

∑8
i,j= 5 c

2
ij =

0.412,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.852,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.322 and

∑4
i,j= 1 c

2
ij = 0.132, and convex weights mAB = 0.45, nAB =

0.89, mAB′ = 0.65, nAB′ = 0.76, mA′B = 0.26, nA′B = 0.97,

mA′B′ = 0.48, and nA′B′ = 0.88.

Fox, with respect to (Pets, Farmyard Animals). Fox scored

µ(A) = 0.13 with respect to Pets, µ(B) = 0.3 with respect

to Farmyard Animals, µ(A′) = 0.86 with respect to Not

Pets, µ(B′) = 0.68 with respect to Not Farmyard Animals,

µ(A and B) = 0.18 with respect to Pets And Farmyard

Animals, µ(A and B′) = 0.29 with respect to Pets And Not

Farmyard Animals, µ(A′ and B) = 0.46 with respect to

Not Pets And Farmyard Animals, and µ(A′ and B′) = 0.59

with respect to Not Pets And Not Farmyard Animals.

If one first looks for a representation of Fox in the

Hilbert space C
8, then the concepts Pets and Farmyard

Animals, and their negations Not Pets and Not Farmyard

Animals are respectively represented by the unit vectors

|A〉 = eiφA (−0.07, −0.84, −0.39, −0.03, −0.02, −0.31,

0.02, 0.19) and |B〉 = eiφB (−0.01, 0.17, −0.82,

0.01, −0.01, 0.28, −0.01, −0.47), and |A′〉 = eiφA′ (−0.05,

0.19, −0.31, −0.02,0.12, 0.39, −0.02, 0.83) and |B′〉 = eiφB′

(−0.14, 0.47,−0.26,−0.08,−0.08,−0.8, 0.04, 0.17).

However, a complete representation satisfying Equations

(86), (88), (90), and (92) can only be worked out in the Fock

space C
8 ⊕ (C8 ⊗ C

8). This occurs for interference angles

φAB = φB − φA = 96.58◦, φAB′ = φB′ − φA = 95.05◦,
φA′B = φB − φA′ = 85.68◦ and φA′B′ = φB′ − φA′ =
−20◦, and for an entangled state characterized by

∑8
i,j= 5 c

2
ij =

0.052,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.362,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.552 and

∑4
i,j= 1 c

2
ij = 0.762, and convex weights mAB = 0.51, nAB =

0.86, mAB′ = 0.61, nAB′ = 0.79, mA′B = 0.61, nA′B = 0.79,

mA′B′ = 0.66, and nA′B′ = 0.75.

(iv) Let us finally describe the quantum-theoretic representation

of an exemplar that does not present overextension in any

conjunction, but still does not admit a representation in a

classical Kolmogorovian probability framework.

Window Seat, with respect to (Home Furnishing,

Furniture). Window Seat scored µ(A) = 0.5 with

respect to Home Furnishing, µ(B) = 0.48 with respect

to Furniture, µ(A′) = 0.47 with respect to Not Home

Furnishing, µ(B′) = 0.55 with respect to Not Furniture,

µ(A and B) = 0.45 with respect to Home Furnnishing

And Furniture, µ(A and B′) = 0.49 with respect to

Home Furnishing And Not Furniture, µ(A′ and B) = 0.39

with respect to Not Home Furnishing And Furniture, and

µ(A′ and B′) = 0.41 with respect to Not Home Furnishing

And Not Furniture. If one first looks for a representation

of Window Seat in the Hilbert space C
8, then the concepts

Home Furnishing and Furniture, and their negations

Not Home Furnishing and Not Furniture are respectively

represented by the unit vectors |A〉 = eiφA (−0.01, 0.69,

0.14, −0.01, −0.13, −0.66, −0.2, 0.11) and |B〉 = eiφB

(−0.08, −0.39, −0.6,0, −0.03, −0.4, −0.17, 0.54), and

|A′〉 = eiφA′ (0.13, −0.19, 0.69, 0.01, 0.09,0.05, −0.05, 0.67)

and |B′〉 = eiφB′ (−0.09, 0.57, −0.34, −0.02, 0.17, 0.54, 0.11,

0.47).

The interference angles φAB = φB − φA = 76.57◦, φAB′ =
φB′ − φA = 103.86◦, φA′B = φB − φA′ = 84.42◦ and φA′B′ =
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φB′ − φA′ = 85.94◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.312,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.642,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.622 and

∑4
i,j= 1 c

2
ij = 0.342, and convex weights mAB = 0.51, nAB =

0.86, mAB′ = 0.77, nAB′ = 0.63, mA′B = 1, nA′B = 0,

mA′B′ = 0.54, and nA′B′ = 0.84.

The theoretic analysis on the representatibility of the data in

Tables A1–A4 is thus concluded. We stress that the majority of

these data can be faithfully modeled by using the mathematical

formalism of quantum theory in Fock space.We finally observe that

a big amount of the collected data can be modeled by using only the

first sector of Fock space, while almost all the weights of n2-type in

first sector prevail over the weights ofm2-type in second sector. The

reasons of this will be clear after the discussion in Section 5.

5. Discussion

Our experimental data on conjunctions and negations of natural

concepts confirm that classical probability does not generally

work when people combine concepts, as we have seen in the

previous sections. And, more, we have proved here that the

deviations from classicality cannot be reduced to overextension

and underextension, but they also include a very strong and

fundamental pattern of violation. On the other side, our quantum-

theoretic framework in Fock space has received remarkable

corroboration. Thus, we think it worth to summarize and stress

the novelties that have emerged in this article with respect to our

approach.

We have recently put forward an explanatory hypothesis with

respect to the deviations from classical logical reasoning that have

been observed in human cognition (Aerts et al., 2015a). According

to our explanatory hypothesis, human reasoning is a specifically

structured superposition of two processes, a “logical reasoning”

and a “conceptual reasoning” (also called “emergent reasoning”).

The former “logical reasoning” combines cognitive entities, such as

concepts, combinations of concepts, or propositions, by applying

the rules of logic, though generally in a probabilistic way. The latter

“emergent reasoning” enables formation of combined cognitive

entities as newly emerging entities, in the case of concepts, new

concepts, in the case of propositions, new propositions, carrying

new meaning, linked to the meaning of the constituent cognitive

entities, but with a linkage not defined by the algebra of logic.

The two mechanisms act simultaneously and in superposition

in human thought during a reasoning process, the first one

is guided by an algebra of “logic,” the second one follows a

mechanism of “emergence.” In this perspective, human reasoning

can be mathematically formalized in a two-sector Fock space.

More specifically, first sector of Fock space models “conceptual

emergence,” while second sector of Fock space models a conceptual

combination from the combining concepts by requiring the rules

of logic for the logical connective used for the combining to

be satisfied in a probabilistic setting. The relative prevalence of

emergence or logic in a specific cognitive process is measured by the

“degree of participation” of second and first sectors, respectively.

The abundance of evidence of deviations from classical logical

reasoning in concrete human decisions (paradoxes, fallacies, effects,

contradictions), together with our results, led us to draw the

conclusion that emergence constitutes the dominant dynamics of

human reasoning, while logic is only a secondary form of dynamics.

Now, if one reflects on how we represented conceptual negation

in Section 3, one realizes at once that its modeling directly and

naturally follows from the general hypothesis stated above. Indeed,

suppose that a person is asked to estimate whether a given exemplar

x is a member of the concepts A, B′, “A and B′ (a completely

equivalent explanation can be given for the conjunctions “A′ and
B” and “A′ and B′”). Then, our quantum mathematics can be

interpreted by assuming that a “logical thought” acts, where the

person considers two copies of x and estimates whether the first

copy belongs to A and the second copy of x “does not” belong

to B, thus applying logical rules, though in a probabilistic way.

But also a “conceptual thought” acts, where the person estimates

whether the exemplar x belongs to the newly emergent concept

“A and B′.” The place whether these superposed processes can be

suitably structured is the two-sector Fock space. First sector of Fock

space hosts the latter process, second sector hosts the former, hence

one expects that classical logical rules are valid in this sector, though

they are generally violated whenever both sectors are considered.

The weights m2
AB′ and n2AB′ indicate whether the overall process is

mainly guided by logic or emergence.

The second confirmation of our quantum-conceptual

framework comes from the significantly stable deviations

from classicality in Equations (26–30). We have seen in Section

2.4 that these deviations occur at a different, deeper, level than

overextension and underextension. We think we have identified

a general mechanism determining how concepts are formed in

the human mind. And this would already be convincing even

without mentioning a Fock space modeling. But, this very stable

pattern can exactly be explained in our two-sector Fock space

framework by assuming that emergence plays a primary role

in the human reasoning process, but also aspects of logic are

systematically present. Indeed, suppose that, for every exemplar x

and every X = A,A′,Y = B,B′, n2XY = 1 and m2
XY = 0, that is,

the decision process only occurs in first sector of Fock space. This

assumption corresponds, from our quantum modeling perspective

(see Equations 86–92), to a situation where only emergence is

present. We have then argued in Aerts et al. (2015b) that, for every

X = A,A′,Y = B,B′, IX = IY = −0.5 and IABA′B′ = −1, in

this case. Then, an immediate comparison with the experimental

values of IX , IY , and IABA′B′ in Section 2.4 reveals that a component

of second sector of Fock space is also present, which is generally

smaller than the component of first sector but systematic across all

exemplars. The consequence is immediate: both emergence and

logic play a role in the decision process—emergence is dominant,

but also logic is systematically present. We believe that this finding

is really a fundamental one, and it deserves further investigation in

the future.

The third strong confirmation of this two-layered structure

of human thought and its representation in two-sector Fock

space comes from the peculiarities of conceptual negation. Indeed,

being pushed to cope with conceptual conjunction and negation

simultaneously, we have found a new insight which we had not

noticed before, namely, the emergent non-classical properties of the
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conjunction Fruits And Vegetables are naturally accounted for in

first sector of Fock space, while the fact that Not Vegetables does

not have a well defined prototype, but it is rather the negation of

Vegetables, is accounted for in second sector of Fock space, where

logic occurs. In both cases, the Fock space model has naturally

suggested us the right directions to follow.

The fourth corroboration derives from the fact that our Fock

space indicates how and why introducing entanglement. In our

previous attempts to model conceptual combinations, we had not

recognized that by representing the combined concept by a tensor

product vector |A〉 ⊗ |B〉, we implicitly assumed that membership

weights probabilities are factorised in second sector, that is, the

membership weights µ(A) and µ(B) correspond to independent

events in this sector. In Section 3.2 we have showed that, if

one introduces entangled states to represent combined concepts

in second sector, one is able to fully reproduce all classicality

conditions Equations (26–30) in this sector. And, more, one can

formalize the fact that, for certain exemplars, the probabilities

associated with memberships of, say Fruits and Vegetables, are not

independent. Therefore, Fock space has suggested how to capture

this relevant aspect in depth.

The discussion above shows, in our opinion, that the merits

of our two-sector Fock space framework go beyond faithful

representation of one or more sets of experimental data. It

captures some fundamental aspects of the mechanisms through

which concepts are formed, combine and interact in human

cognition.

Supplementary Material

The Supplementary Material for this article can be found online at:

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01447
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Appendix

A1. Fundamentals of Modeling in a
Classical Framework

We introduce in this section the elementary measure-theoretic

notions that are needed to express the classicality of experimental

data coming from the membership weights of two concepts A

and B with respect to the conceptual negation “not B” and

the conjunctions “A and B,” “A and not B,” “not A and B,”

and “not A and not B.” As we have anticipated in Section

2, by “classicality of a collection of experimental date” we

actually mean the possibility to represent them in a “classical,” or

“Kolmogorovian,” probability model. We avoid in our presentation

superfluous technicalities, but aim to be synthetic and rigorous at

the same time.

Let us start by the definition of a σ -algebra over a set.

First definition. A σ -algebra over a set � is a non-empty collection

σ (�) of subsets of � that is closed under complementation and

countable unions of its members. It is a Boolean algebra, completed

to include countably infinite operations.

Measure structures are the most general classical structures

devised by mathematicians and physicists to structure weights.

A Kolmogorovian probability measure is such a measure applied

to statistical data. It is called “Kolmogorovian,” because Andrey

Kolmogorov was the first to axiomatize probability theory in this

way (Kolmogorov, 1933).

Second definition. Ameasure P is a function defined on a σ -algebra

σ (�) over a set� and taking values in the extended interval [0,∞]

such that the following three conditions are satisfied:

(i) the empty set has measure zero;

(ii) if E1, E2, E3, . . . is a countable sequence of pairwise disjoint

sets in σ (�), the measure of the union of all the Ei is equal

to the sum of the measures of each Ei (countable additivity, or

σ -additivity);

(iii) the triple (�, σ (�), P) satisfying (i) and (ii) is then called

a measure space, and the members of σ (�) are called

measurable sets.

A Kolmogorovian probability measure is a measure with total

measure one. A Kolmogorovian probability space (�, σ (�), P) is

a measure space (�, σ (�), P) such that P is a Kolmogorovian

probability. The three conditions expressed in a mathematical way

are:

P(∅) = 0 P(

∞
⋃

i= 1

Ei) =
∞
∑

i= 1

P(Ei) P(�) = 1 (A1)

Let us now come to the possibility to represent a set of experimental

data on two concepts and their conjunction in a classical

Kolmogorovian probability model.

Third definition. We say that the membership weights µ(A), µ(B)

and µ(A and B) of the exemplar x with respect to the pair of

concepts A and B and their conjunction “A and B,” respectively,

can be represented in a classical Kolmogorovian probability model

if there exists a Kolmogorovian probability space (�, σ (�), P) and

events EA,EB ∈ σ (�) of the events algebra σ (�) such that

P(EA) = µ(A) P(EB) = µ(B) and P(EA ∩ EB) = µ(A and B)

(A2)

Let us finally come to the representability a set of experimental

data on a concept and its negation in a classical Kolmogorovian

probability model.

Fourth definition. We say that the membership weights µ(B) and

µ(not B) of the exemplar x with respect to the concept B and

its negation “not B,” respectively, can be represented in a classical

Kolmogorovian probability model if there exists a Kolmogorovian

probability space (�, σ (�), P) and an event EB ∈ σ (�) of the

events algebra σ (�) such that

P(EB) = µ(B) P(� \ EB) = µ(not B) (A3)

A2. Quantum Mathematics for Conceptual
Modeling

We illustrate in this section how the mathematical formalism

of quantum theory can be applied to model situations outside

the microscopic quantum world, more specifically, in the

representation of concepts and their combinations. As in Appendix

A1, we will limit technicalities to the essential.

When the quantum mechanical formalism is applied for

modeling purposes, each considered entity—in our case a

concept—is associated with a complex Hilbert space H, that is, a

vector space over the field C of complex numbers, equipped with

an inner product 〈·|·〉 that maps two vectors 〈A| and |B〉 onto a

complex number 〈A|B〉. We denote vectors by using the bra-ket

notation introduced by Paul Adrien Dirac, one of the pioneers of

quantum theory (Dirac, 1958). Vectors can be “kets,” denoted by
|A〉, |B〉, or “bras,” denoted by 〈A|, 〈B|. The inner product between
the ket vectors |A〉 and |B〉, or the bra-vectors 〈A| and 〈B|, is realized
by juxtaposing the bra vector 〈A| and the ket vector |B〉, and 〈A|B〉
is also called a “bra-ket,” and it satisfies the following properties:

(i) 〈A|A〉 ≥ 0;

(ii) 〈A|B〉 = 〈B|A〉∗, where 〈B|A〉∗ is the complex conjugate of

〈A|B〉;
(iii) 〈A|(z|B〉 + t|C〉) = z〈A|B〉 + t〈A|C〉, for z, t ∈ C, where the

sum vector z|B〉 + t|C〉 is called a “superposition” of vectors

|B〉 and |C〉 in the quantum jargon.

From (ii) and (iii) follows that inner product 〈·|·〉 is linear in the ket

and anti-linear in the bra, i.e., (z〈A|+t〈B|)|C〉 = z∗〈A|C〉+t∗〈B|C〉.
We recall that the “absolute value” of a complex number is

defined as the square root of the product of this complex number

times its complex conjugate, that is, |z| =
√
z∗z. Moreover, a

complex number z can either be decomposed into its cartesian form

z = x + iy, or into its polar form z = |z|eiθ = |z|(cos θ + i sin θ).

As a consequence, we have |〈A|B〉| =
√
〈A|B〉〈B|A〉. We define

the “length” of a ket (bra) vector |A〉 (〈A|) as |||A〉|| = ||〈A||| =√
〈A|A〉. A vector of unitary length is called a “unit vector’. We

say that the ket vectors |A〉 and |B〉 are “orthogonal” and write

|A〉 ⊥ |B〉 if 〈A|B〉 = 0.

We have now introduced the necessary mathematics to state the

first modeling rule of quantum theory, as follows.
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First quantum modeling rule: A state A of an entity—in our case

a concept—modeled by quantum theory is represented by a ket

vector |A〉 with length 1, that is 〈A|A〉 = 1.

An orthogonal projection M is a linear operator on the Hilbert

space, that is, a mapping M : H → H, |A〉 7→ M|A〉 which

is Hermitian and idempotent. The latter means that, for every

|A〉, |B〉 ∈ H and z, t ∈ C, we have:

(i) M(z|A〉 + t|B〉) = zM|A〉 + tM|B〉 (linearity);
(ii) 〈A|M|B〉 = 〈B|M|A〉∗ (hermiticity);

(iii) M ·M = M (idempotency).

The identity operator 1maps each vector onto itself and is a trivial

orthogonal projection. We say that two orthogonal projections

Mk and Ml are orthogonal operators if each vector contained in

Mk(H) is orthogonal to each vector contained in Ml(H), and we

write Mk ⊥ Ml, in this case. The orthogonality of the projection

operators Mk and Ml can also be expressed by MkMl = 0, where

0 is the null operator. A set of orthogonal projection operators

{Mk |k = 1, . . . , n} is called a “spectral family” if all projectors are

mutually orthogonal, that is, Mk ⊥ Ml for k 6= l, and their sum is

the identity, that is,
∑n

k= 1 Mk = 1.

The above definitions give us the necessary mathematics to state

the second modeling rule of quantum theory, as follows.

Second quantum modeling rule: A measurable quantity Q of an

entity—in our case a concept— modeled by quantum theory, and

having a set of possible real values {q1, . . . , qn} is represented by

a spectral family {Mk |k = 1, . . . , n} in the following way. If the

entity—in our case a concept—is in a state represented by the vector

|A〉, then the probability of obtaining the value qk in a measurement

of the measurable quantity Q is 〈A|Mk|A〉 = ||Mk|A〉||2. This
formula is called the “Born rule” in the quantum jargon. Moreover,

if the value qk is actually obtained in the measurement, then the

initial state is changed into a state represented by the vector

|Ak〉 =
Mk|A〉

||Mk|A〉||
(A4)

This change of state is called “collapse” in the quantum jargon.

The tensor product HA ⊗ HB of two Hilbert spaces HA and HB

is the Hilbert space generated by the set {|Ai〉 ⊗ |Bj〉}, where |Ai〉
and |Bj〉 are vectors of HA and HB, respectively, which means that

a general vector of this tensor product is of the form
∑

ij |Ai〉⊗|Bj〉.
This gives us the necessary mathematics to introduce the third

modeling rule.

Third quantum modeling rule: A state C of a compound entity—in

our case a combined concept—is represented by a unit vector |C〉 of
the tensor productHA ⊗HB of the two Hilbert spacesHA andHB

containing the vectors that represent the states of the component

entities—concepts.

The above means that we have |C〉 =
∑

ij cij|Ai〉 ⊗ |Bj〉, where
|Ai〉 and |Bj〉 are unit vectors of HA and HB, respectively, and
∑

i,j |cij|2 = 1. We say that the state C represented by |C〉 is a

product state if it is of the form |A〉 ⊗ |B〉 for some |A〉 ∈ HA and

|B〉 ∈ HB. Otherwise, C is called an “entangled state’.

The Fock space is a specific type of Hilbert space, originally

introduced in quantum field theory. For most states of a quantum

field the number of identical quantum entities is not conserved but

is a variable quantity. The Fock space copes with this situation in

allowing its vectors to be superpositions of vectors pertaining to

different sectors for fixed numbers of identical quantum entities.

More explicitly, the k-th sector of a Fock space describes a fixed

number of k identical quantum entities, and it is of the form

H⊗ . . .⊗H of the tensor product of k identical Hilbert spacesH.

The Fock space F itself is the direct sum of all these sectors, hence

F = ⊕j

k= 1
⊗k

l= 1 H (A5)

For our modeling we have only used Fock space for the “two” and

“one quantum entity” case, hence F = H ⊕ (H ⊗ H). This is

due to considering only combinations of two concepts. The sector

H is called the “first sector,” while the sector H ⊗ H is called the

“second sector’. A unit vector |F〉 ∈ F is then written as |F〉 =
neiγ |C〉 + meiδ(|A〉 ⊗ |B〉), where |A〉, |B〉 and |C〉 are unit vectors
of H, and such that n2 + m2 = 1. For combinations of j concepts,

the general form of Fock space in (A5) should be used.

A3. Data Modeling Tables and Statistical
Analysis

Tables A1–A5A–E.

A4. Proofs of Theorems 1–4

Proof of Theorem 1. If µ(A), µ(B), µ(A′), µ(B′) and

µ(A and B), µ(A and B′), µ(A′ and B), µ(A′ and B′) are

classical conjunction and negation data, then there exists a

Kolmogorovian probability space (�, σ (�), P) and events

EA,EB ∈ σ (�) such that P(EA) = µ(A), P(EB) = µ(B),

P(� \ EA) = µ(A′), P(� \ EB) = µ(B′), P(EA ∩ EB) = µ(A and B),

P(EA ∩ ((� \ EB)) = µ(A and B′), P((� \ EA)∩ EB) = µ(A′ and B)
and P((� \ EA) ∩ (� \ EB)) = µ(A′ and B′). From the general

properties of a Kolmogorovian probability space it follows that (1),

(2), (3), (4), (5), (6), (7) and (8) are satisfied.

Now suppose that x is such that its membership weights

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B)

andµ(A′ and B′) with respect to the conceptsA, B,A′, B′, “A and B,”

“A and B′,” “A′ and B” and “A′ and B′,” respectively, satisfy (1), (2),
(3), (4), (5), (6), (7) and (8). We will prove that as a consequence

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B)

and µ(A′ and B′) are classical conjunction and negation data, in

the sense that “there exists a classical Kolmogorovian probability

space, such that we can represent all of them as measures on event

sets of this space’. We make our proof by explicitly constructing a

Kolmogorovian probability space that models these data. Consider

the set � = {1, 2, 3, 4} and σ (�) = P(�), the set of all subsets of

�. We define

P({1}) = µ(A and B) (A6)

P({2}) = µ(A and B′) = µ(A)− µ(A and B) (A7)

P({3}) = µ(A′ and B) = µ(A′)− µ(A′ and B′) (A8)

P({4}) = µ(A′ and B′) (A9)

and further for an arbitrary subset S ⊆ {1, 2, 3, 4} we define
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TABLE A1 | Representation of the membership weights in the case of the concepts Home Furnishing and Furniture.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Mantelpiece 0.9 0.61 0.12 0.5 0.71 0.75 0.21 0.21 0.1 0.25 0.09 0.09 −0.89 −0.56 −0.31 −0.31 −0.46

Window

Seat

0.5 0.48 0.47 0.55 0.45 0.49 0.39 0.41 −0.03 −0.01 −0.08 −0.06 −0.74 −0.44 −0.36 −0.33 −0.35

Painting 0.8 0.49 0.35 0.64 0.64 0.6 0.33 0.38 0.15 −0.04 −0.03 0.03 −0.94 −0.44 −0.48 −0.35 −0.33

Light Fixture 0.88 0.6 0.16 0.51 0.73 0.63 0.33 0.16 0.13 0.11 0.16 0 −0.84 −0.48 −0.45 −0.33 −0.28

Kitchen

Counter

0.67 0.49 0.31 0.62 0.55 0.54 0.38 0.33 0.06 −0.08 0.06 0.01 −0.79 −0.42 −0.44 −0.39 −0.24

Bath Tub 0.73 0.51 0.28 0.46 0.59 0.59 0.36 0.29 0.08 0.13 0.08 0.01 −0.83 −0.45 −0.44 −0.37 −0.41

Deck Chair 0.73 0.9 0.27 0.2 0.74 0.41 0.54 0.18 0.01 0.21 0.27 −0.03 −0.86 −0.42 −0.38 −0.44 −0.39

Shelves 0.85 0.93 0.24 0.13 0.84 0.39 0.53 0.08 −0.01 0.26 0.29 −0.05 −0.83 −0.38 −0.43 −0.36 −0.34

Rug 0.89 0.58 0.18 0.61 0.7 0.68 0.41 0.21 0.13 0.07 0.24 0.04 −1 −0.48 −0.54 −0.45 −0.28

Bed 0.76 0.93 0.26 0.11 0.79 0.36 0.61 0.14 0.03 0.26 0.35 0.03 −0.9 −0.39 −0.48 −0.49 −0.39

Wall-

Hangings

0.87 0.46 0.21 0.68 0.55 0.71 0.35 0.24 0.09 0.03 0.14 0.03 −0.85 −0.39 −0.44 −0.38 −0.27

Space Rack 0.38 0.43 0.63 0.62 0.41 0.49 0.43 0.58 0.04 0.11 0 −0.04 −0.9 −0.53 −0.41 −0.37 −0.44

Ashtray 0.74 0.4 0.32 0.64 0.49 0.6 0.36 0.39 0.09 −0.04 0.04 0.07 −0.84 −0.34 −0.45 −0.43 −0.35

Bar 0.72 0.63 0.37 0.51 0.61 0.61 0.4 0.4 −0.01 0.11 0.03 0.03 −1.03 −0.51 −0.39 −0.43 −0.51

Lamp 0.94 0.64 0.15 0.49 0.75 0.7 0.4 0.2 0.11 0.21 0.25 0.05 −1.05 −0.51 −0.51 −0.45 −0.41

Wall Mirror 0.91 0.76 0.13 0.45 0.83 0.66 0.44 0.14 0.07 0.21 0.31 0.01 −1.06 −0.58 −0.51 −0.45 −0.35

Door Bell 0.75 0.33 0.32 0.79 0.5 0.64 0.34 0.51 0.17 −0.11 0.02 0.19 −0.99 −0.39 −0.51 −0.53 −0.36

Hammock 0.62 0.66 0.41 0.41 0.6 0.5 0.56 0.31 −0.02 0.09 0.16 −0.09 −0.98 −0.48 −0.5 −0.47 −0.41

Desk 0.78 0.95 0.31 0.09 0.78 0.33 0.75 0.15 −0.01 0.24 0.44 0.06 −1 −0.32 −0.58 −0.59 −0.39

Refrigerator 0.74 0.73 0.26 0.41 0.66 0.55 0.46 0.25 −0.06 0.14 0.21 −0.01 −0.93 −0.47 −0.4 −0.46 −0.39

Park Bench 0.53 0.66 0.59 0.46 0.55 0.29 0.56 0.39 0.02 −0.17 −0.03 −0.07 −0.79 −0.31 −0.45 −0.36 −0.22

Waste Paper

Basket

0.69 0.54 0.36 0.63 0.59 0.41 0.46 0.49 0.04 −0.22 0.1 0.13 −0.95 −0.31 −0.51 −0.59 −0.27

Sculpture 0.83 0.46 0.34 0.66 0.58 0.73 0.46 0.36 0.11 0.07 0.13 0.03 −1.13 −0.48 −0.58 −0.49 −0.43

Sink Unit 0.71 0.57 0.34 0.58 0.6 0.56 0.38 0.38 0.03 −0.01 0.04 0.04 −0.91 −0.46 −0.41 −0.41 −0.36

A = Home Furnishing, B = Furniture.

P(S) =
∑

a∈ S

P({a}) (A10)

Let us prove that P : σ (�) → [0, 1] is a probability measure.

For this purpose, we need to prove that P(S) ∈ [0, 1] for an

arbitrary subset S ⊆ �, and that the “sum formula” for a

probability measure is satisfied. The sum formula for a probability

measure is satisfied because of definition (A10). What remains to

be proved is that P(S) ∈ [0, 1] for an arbitrary subset S ⊆ �,

and that all different subsets that can be formed are contained

in σ (�). P({1}), P({2}), P({3}) and P({4}) are contained in [0, 1]

as a consequence of equations (1), (3), (5) and (6). Using (5)

we have that P({1, 2}) = µ(A and B) + µ(A and B′) =
µ(A and B) + µ(A) − µ(A and B) = µ(A). Using (6) we have

that P({3, 4}) = µ(A′ and B′) + µ(A′ and B) = µ(A′ and B′) +
µ(A′) − µ(A′ and B′) = µ(A′). Again using (6) we have that

P({1, 3}) = µ(A and B) + µ(A′ and B) = µ(A and B) +
µ(B) − µ(A and B) = µ(B), and using again (5) we have that

P({2, 4}) = µ(A and B′)+ µ(A′ and B′) = µ(B′)− µ(A′ and B′)+
µ(A′ and B′) = µ(B′). Moreover, P({1, 2}), P({3, 4}), P({1, 3}) and
P({2, 4}) are all contained in [0, 1] as a consequence of equations

(1), (2), (3) and (4). We have already found the representatives of

all elements and their conjunctions in σ (�). But we have not yet

considered all subsets of �. Indeed, let us consider µ({1, 2, 3}) =
µ(A and B) + µ(A and B′) + µ(A′ and B) = 1 − µ(A′ and B′).
And from (7) it follows that this is contained in [0.1]. In an

analogous way we prove that µ({1, 2, 4}) = 1 − µ(A′ and B),

µ({1, 3, 4}) = 1−µ(A and B′), and µ({2, 3, 4}) = 1−µ(A and B).

We almost have all subsets of �. Let us consider {1, 4} and {2, 3}.
Since by construction we have µ({1}) ≤ µ({1, 4}) ≤ µ({1, 2, 4})
and µ({2}) ≤ µ({2, 3}) ≤ µ({2, 3, 4}), it follows that both

µ({1, 4}) and µ({2, 3}) are contained in [0, 1]. The last subset

to control is � itself. We have P(�) = P({1}) + P({2}) +
P({3}) + P({4}) = 1, following the calculation we made above.

We have verified all subsets S ⊆ �, and hence proved that P

is a probability measure. All subsets for which we have gathered

data are represented in this σ -algebra, which completes our

proof.

Proof of Theorem 2. Let us consider Theorem 1. In its proof, we

did not use (8)„ which means that inequalities (5), (6), (7) and (8)

are not independent. By using, for example, (5), (6), and then (7)

we get

1− µ(A′) − µ(B′)+ µ(A′ and B′)

= 1− µ(B)− µ(B′)+ µ(A and B)
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TABLE A2 | Representation of the membership weights in the case of the concepts Spices and Herbs.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Molasses 0.36 0.13 0.67 0.84 0.24 0.54 0.25 0.73 0.11 0.18 0.12 0.06 −0.75 −0.41 −0.36 −0.31 −0.43

Salt 0.67 0.04 0.36 0.92 0.24 0.69 0.09 0.6 0.19 0.02 0.04 0.24 −0.61 −0.26 −0.28 −0.33 −0.37

Peppermint 0.67 0.93 0.38 0.1 0.7 0.38 0.55 0.15 0.03 0.28 0.18 0.05 −0.78 −0.41 −0.33 −0.33 −0.43

Curry 0.96 0.28 0.04 0.78 0.54 0.88 0.16 0.21 0.26 0.1 0.13 0.18 −0.79 −0.45 −0.42 −0.34 −0.31

Oregano 0.81 0.86 0.21 0.13 0.79 0.4 0.5 0.08 −0.03 0.28 0.29 −0.05 −0.76 −0.38 −0.43 −0.36 −0.35

MSG 0.44 0.12 0.59 0.85 0.23 0.58 0.24 0.73 0.11 0.13 0.12 0.13 −0.76 −0.36 −0.34 −0.37 −0.45

Chili Pepper 0.98 0.53 0.05 0.56 0.8 0.9 0.28 0.13 0.27 0.34 0.23 0.08 −1.1 −0.73 −0.54 −0.35 −0.46

Mustard 0.65 0.28 0.39 0.71 0.49 0.65 0.23 0.46 0.21 0 −0.05 0.08 −0.83 −0.49 −0.44 −0.3 −0.41

Mint 0.64 0.96 0.43 0.09 0.79 0.31 0.64 0.11 0.14 0.23 0.21 0.03 −0.85 −0.46 −0.47 −0.32 −0.34

Cinnamon 1 0.49 0.02 0.51 0.69 0.79 0.21 0.15 0.19 0.28 0.19 0.13 −0.84 −0.48 −0.41 −0.34 −0.43

Parsley 0.54 0.9 0.54 0.09 0.68 0.26 0.73 0.18 0.14 0.18 0.19 0.09 −0.84 −0.4 −0.5 −0.36 −0.35

Saccarin 0.34 0.14 0.68 0.88 0.24 0.54 0.24 0.8 0.1 0.19 0.1 0.12 −0.81 −0.43 −0.34 −0.36 −0.46

Poppy Seeds 0.82 0.47 0.29 0.54 0.59 0.66 0.31 0.28 0.12 0.13 0.02 −0.02 −0.84 −0.43 −0.43 −0.29 −0.4

Pepper 0.99 0.47 0.1 0.58 0.7 0.9 0.18 0.14 0.23 0.32 0.08 0.04 −0.91 −0.61 −0.41 −0.21 −0.46

Turmeric 0.88 0.53 0.11 0.43 0.74 0.69 0.28 0.21 0.21 0.26 0.16 0.1 −0.91 −0.54 −0.49 −0.38 −0.47

Sugar 0.45 0.34 0.59 0.77 0.35 0.56 0.25 0.65 0.01 0.11 −0.09 0.06 −0.81 −0.46 −0.26 −0.31 −0.44

Vinegar 0.3 0.11 0.76 0.88 0.15 0.41 0.26 0.83 0.04 0.11 0.16 0.07 −0.65 −0.26 −0.31 −0.33 −0.36

Sesame Seeds 0.8 0.49 0.3 0.59 0.59 0.7 0.34 0.29 0.1 0.11 0.04 −0.01 −0.91 −0.49 −0.44 −0.33 −0.4

Lemon Juice 0.28 0.2 0.74 0.81 0.15 0.43 0.39 0.81 −0.05 0.15 0.19 0.07 −0.78 −0.3 −0.34 −0.46 −0.43

Chocolate 0.27 0.21 0.78 0.8 0.2 0.46 0.38 0.78 −0.01 0.19 0.16 −0.01 −0.81 −0.39 −0.36 −0.37 −0.44

Horseradish 0.61 0.67 0.48 0.28 0.61 0.4 0.53 0.33 0 0.12 0.04 0.04 −0.86 −0.4 −0.47 −0.37 −0.44

Vanilla 0.76 0.51 0.3 0.49 0.63 0.61 0.33 0.35 0.11 0.13 0.03 0.05 −0.91 −0.48 −0.44 −0.38 −0.48

Chives 0.66 0.89 0.43 0.26 0.76 0.28 0.64 0.31 0.1 0.02 0.21 0.06 −0.99 −0.38 −0.51 −0.53 −0.33

Root Ginger 0.84 0.56 0.23 0.44 0.69 0.59 0.41 0.23 0.13 0.14 0.18 −0.01 −0.91 −0.43 −0.54 −0.41 −0.37

A = Spices, B = Herbs.

= 1− µ(B)− µ(A′ and B′)− µ(A)+ µ(A and B)

+ µ(A and B)

= µ(A′ and B′)− µ(A′ and B′)+ µ(A and B)

= µ(A and B)

which proves indeed that (8) can be derived from (5), (6) and then

(7), and can be left out as a condition.

Let us now prove a result which is useful for our purposes.

Following (5) and (6) we have that µ(A and B′) + µ(A and B) +
µ(A′ and B) = µ(A)+µ(B)−µ(A and B). Moreover, by using (7),

we get µ(A and B′)+ µ(A and B)+ µ(A′ and B)+ µ(A′ and B′) =
µ(A)+µ(B)−µ(A and B)+ 1−µ(A)−µ(B)+µ(A and B) = 1.

The equality

µ(A and B′)+ µ(A and B)+ µ(A′ and B)+ µ(A′ and B′) = 1

(A11)

can be used, together with (5) and (6), as follows.

µ(A)+ µ(A′) = µ(A and B)+ µ(A and B′)+ µ(A′ and B)

+µ(A′ and B′) = 1

µ(B)+ µ(B′) = µ(A and B)+ µ(A′ and B)+ µ(A and B′)

+µ(A′ and B′) = 1

This means that from (1), and hence 0 ≤ µ(A) ≤ 1, follows that

0 ≤ 1 − µ(A) ≤ 1, and hence 0 ≤ µ(A′) ≤ 1. And from (2),

and hence 0 ≤ µ(B) ≤ 1, follows that 0 ≤ 1 − µ(B) ≤ 1, and

hence 0 ≤ µ(B′) ≤ 1. Suppose now that (1) and (2) are satisfied.

This means that 0 ≤ µ(A) − µ(A and B) = µ(B′) − µ(A′ and B′)
and hence µ(A′ and B′) ≤ µ(B′), and 0 ≤ µ(B) − µ(A and B) =
µ(A′) − µ(A′ and B′) and hence µ(A′ and B′) ≤ µ(A′). The only
condition that lacks to have derived (3) and (4) from (1) and (2), is

that 0 ≤ µ(A′ and B′). We can add this as a requirement to (7).

Hence, we have proved the Theorem 2.

Proof of Lemma 1. That (14), (15), (16) and (17) follow from (5)

and (6) follows from a simple reshuffling of the terms. Suppose now

that (14), (15), (16) and (17) are satisfied. The inverse reshuffling of

the same terms proves that (5) and (6) are satisfied. This completes

the proof of Lemma 1.

Proof of Theorem3. Lemma 1 entails that we can substitute (5) and

(6) by the four equations expressing themarginal law to be satisfied.

A further simplification is possible. Indeed, (5), (6) and (7) are

equivalent with (14), (15), (16), (17) and (A11). We have proved

above that (5), (6) and (7) imply (A11). Let us prove the inverse.

Hence suppose that (14), (15), (16), (17) and (A11) are satisfied,

and let us proof (7). We have

1 − µ(A)− µ(B)+ µ(A and B)

= 1− µ(A and B)− µ(A and B′)− µ(A and B)− µ(A′ and B)

+µ(A and B)
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TABLE A3 | Representation of the membership weights in the case of the concepts Pets and Farmyard Animals.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Goldfish 0.93 0.17 0.12 0.81 0.43 0.91 0.18 0.43 0.26 0.1 0.06 0.31 −0.94 −0.41 −0.43 −0.48 −0.53

Robin 0.28 0.36 0.71 0.64 0.31 0.35 0.46 0.46 0.04 0.08 0.1 −0.18 −0.59 −0.39 −0.41 −0.22 −0.18

Blue-tit 0.25 0.31 0.76 0.71 0.18 0.39 0.44 0.56 −0.08 0.14 0.13 −0.15 −0.56 −0.31 −0.3 −0.24 −0.24

Collie Dog 0.95 0.77 0.03 0.35 0.86 0.56 0.25 0.11 0.09 0.21 0.23 0.09 −0.79 −0.48 −0.34 −0.34 −0.33

Camel 0.16 0.26 0.89 0.75 0.2 0.31 0.51 0.68 0.04 0.16 0.26 −0.08 −0.7 −0.36 −0.46 −0.3 −0.24

Squirrel 0.3 0.39 0.74 0.65 0.28 0.26 0.46 0.59 −0.03 −0.04 0.07 −0.06 −0.59 −0.24 −0.34 −0.31 −0.2

Guide Dog for

Blind

0.93 0.33 0.13 0.69 0.55 0.73 0.16 0.33 0.23 0.03 0.04 0.2 −0.76 −0.35 −0.39 −0.36 −0.36

Spider 0.31 0.39 0.73 0.63 0.31 0.31 0.44 0.51 0 0 0.05 −0.12 −0.58 −0.31 −0.36 −0.23 −0.19

Homing

Pigeon

0.41 0.71 0.61 0.34 0.56 0.25 0.59 0.34 0.16 −0.09 −0.03 0 −0.74 −0.41 −0.44 −0.31 −0.25

Monkey 0.39 0.18 0.65 0.79 0.2 0.49 0.29 0.61 0.03 0.09 0.11 −0.04 −0.59 −0.29 −0.31 −0.25 −0.31

Circus Horse 0.3 0.48 0.74 0.6 0.34 0.35 0.53 0.48 0.04 0.05 0.04 −0.13 −0.69 −0.39 −0.38 −0.26 −0.23

Prize Bull 0.13 0.76 0.88 0.26 0.43 0.28 0.83 0.34 0.29 0.14 0.06 0.08 −0.86 −0.57 −0.49 −0.28 −0.35

Rat 0.2 0.36 0.85 0.68 0.21 0.28 0.54 0.63 0.01 0.08 0.18 −0.05 −0.65 −0.29 −0.39 −0.31 −0.23

Badger 0.16 0.28 0.88 0.73 0.14 0.26 0.44 0.66 −0.03 0.1 0.16 −0.07 −0.5 −0.24 −0.3 −0.23 −0.19

Siamese Cat 0.99 0.5 0.05 0.53 0.74 0.75 0.18 0.24 0.24 0.23 0.13 0.19 −0.9 −0.5 −0.41 −0.36 −0.46

Race Horse 0.29 0.7 0.71 0.39 0.51 0.31 0.65 0.31 0.23 0.03 −0.05 −0.08 −0.79 −0.54 −0.46 −0.26 −0.24

Fox 0.13 0.3 0.86 0.68 0.18 0.29 0.46 0.59 0.04 0.16 0.16 −0.09 −0.51 −0.33 −0.34 −0.19 −0.19

Donkey 0.29 0.9 0.78 0.15 0.56 0.18 0.81 0.23 0.28 0.03 0.04 0.08 −0.78 −0.45 −0.48 −0.26 −0.25

Field Mouse 0.16 0.41 0.83 0.59 0.23 0.24 0.43 0.58 0.06 0.08 0.02 −0.01 −0.46 −0.3 −0.24 −0.18 −0.23

Ginger

Tom-cat

0.82 0.51 0.21 0.54 0.59 0.58 0.26 0.29 0.08 0.03 0.05 0.08 −0.71 −0.34 −0.34 −0.34 −0.32

Husky in

Slead team

0.64 0.51 0.37 0.53 0.56 0.51 0.44 0.29 0.06 −0.01 0.07 −0.08 −0.8 −0.43 −0.49 −0.36 −0.28

Cart Horse 0.27 0.86 0.76 0.15 0.53 0.2 0.84 0.23 0.26 0.05 0.08 0.08 −0.79 −0.46 −0.5 −0.31 −0.28

Chicken 0.23 0.95 0.8 0.06 0.58 0.11 0.81 0.18 0.34 0.05 0.01 0.11 −0.68 −0.46 −0.44 −0.19 −0.23

Doberman

Guard Dog

0.88 0.76 0.14 0.27 0.8 0.55 0.45 0.23 0.04 0.28 0.31 0.09 −1.03 −0.47 −0.49 −0.54 −0.51

A = Pets, B = Farmyard Animals.

= 1− µ(A and B)− µ(A and B′)− µ(A′ and B)

= µ(A′ and B′)

which proves that (7) holds.

We have thus proved Theorem 3, stating a new and more

symmetric set of classicality conditions.

Proof of Theorem 4. Suppose that the theoretical values for a

modeling only in second sector of Fock space are given. This means

that |C〉 andM are given, and the values ofµ(A),µ(B),µ(A′),µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B) and µ(A′ and B′) are given
respectively by 〈C|M ⊗ 1|C〉, 〈C|1 ⊗ M|C〉, 〈C|(1 − M) ⊗ 1|C〉,
〈C|1 ⊗ (1 − M)|C〉,〈C|M ⊗ M|C〉, 〈C|M ⊗ (1 − M)|C〉, 〈C|(1 −
M) ⊗ M|C〉 and 〈C|(1 − M) ⊗ (1 − M)|C〉. If we use the results
calculated in (76), (77), (78), (79), (80), (81), (82) and (83), we can

easely prove all the classicality conditions (26)–(30) to be satisfied.

Let us prove one of them explicitly. For example, µ(A′ and B) +
µ(A′ and B′) = 〈C|(1−M)⊗M|C〉+ 〈C|(1−M)⊗ (1−M)|C〉 =
〈C|(1−M)⊗M + (1−M)|C〉 = 〈C|(1−M)⊗ 1|C〉 = µ(A′).

Let us prove the other implication. Hence suppose that we

have available data satisfying the classicality conditions (26)–(30),

let us prove that we can find a state |C〉 and an orthogonal

projector M, such that second sector models these data. It is a

straightforward verification that an entangled vector |C〉, such that

cij = 1
16

√

µ(A and B) for 5 ≤ i ≤ 8 and 5 ≤ j ≤ 8,

cij = 1
16

√

µ(A and B′) for 5 ≤ i ≤ 8 and 1 ≤ j ≤ 4, cij =
1
16

√

µ(A′ and B) for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8 and cij =
1
16

√

µ(A′ and B′) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4, is a solution.

A5. Conditions for the Existence of
Solutions in First and Second Sector of
Fock Space

In this section we make explicit the conditions that should be

satisfied by experimental data in order to be represented in Fock

space. In our analysis, we distinguish between the first sector

representation in C
8 and the complete two-sector representation

in C
8 ⊕ (C8 ⊗ C

8).

Let us start from theC
8 representation.We first analyze whether

or not the solution of (52)–(65) is compatible with (70)–(73). To

this end note that the right hand side of (70)–(73) correspond

to the average of the probabilities of the former concepts, plus

the so called “interference term,” which depends on (i) how the
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TABLE A4 | Representation of the membership weights in the case of the concepts Fruits and Vegetables.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Apple 1 0.23 0 0.82 0.6 0.89 0.13 0.18 0.38 0.07 0.13 0.18 −0.79 −0.49 −0.5 −0.3 −0.24

Parsley 0.02 0.78 0.99 0.25 0.45 0.1 0.84 0.44 0.43 0.08 0.06 0.19 −0.83 −0.53 −0.51 −0.29 −0.29

Olive 0.53 0.63 0.47 0.44 0.65 0.34 0.51 0.36 0.12 −0.11 0.04 −0.08 −0.86 −0.46 −0.53 −0.41 −0.26

Chili Pepper 0.19 0.73 0.83 0.35 0.51 0.2 0.68 0.44 0.33 0.01 −0.06 0.09 −0.83 −0.53 −0.46 −0.29 −0.29

Broccoli 0.09 1 0.94 0.06 0.59 0.09 0.9 0.25 0.49 0.03 −0.04 0.19 −0.83 −0.58 −0.49 −0.21 −0.28

Root Ginger 0.14 0.71 0.81 0.33 0.46 0.14 0.71 0.43 0.33 0 0 0.1 −0.74 −0.46 −0.46 −0.33 −0.24

Pumpkin 0.45 0.78 0.51 0.26 0.66 0.21 0.63 0.18 0.21 −0.05 0.11 −0.09 −0.68 −0.43 −0.51 −0.29 −0.13

Raisin 0.88 0.27 0.13 0.76 0.53 0.75 0.25 0.34 0.26 −0.01 0.12 0.21 −0.86 −0.39 −0.51 −0.46 −0.33

Acorn 0.59 0.4 0.49 0.64 0.46 0.49 0.38 0.51 0.06 −0.1 −0.03 0.02 −0.84 −0.36 −0.44 −0.39 −0.36

Mustard 0.07 0.39 0.87 0.6 0.29 0.23 0.55 0.75 0.22 0.16 0.16 0.15 −0.81 −0.44 −0.45 −0.43 −0.38

Rice 0.12 0.46 0.9 0.52 0.21 0.23 0.59 0.59 0.09 0.11 0.13 0.07 −0.61 −0.32 −0.34 −0.28 −0.29

Tomato 0.34 0.89 0.64 0.19 0.7 0.2 0.74 0.23 0.36 0.01 0.1 0.04 −0.86 −0.56 −0.55 −0.33 −0.24

Coconut 0.93 0.32 0.17 0.7 0.56 0.69 0.2 0.34 0.24 −0.01 0.03 0.17 −0.79 −0.33 −0.44 −0.37 −0.33

Mushroom 0.12 0.66 0.9 0.38 0.33 0.13 0.66 0.5 0.21 0.01 0 0.12 −0.61 −0.33 −0.33 −0.26 −0.24

Wheat 0.17 0.51 0.8 0.52 0.34 0.21 0.61 0.56 0.17 0.04 0.11 0.04 −0.73 −0.38 −0.44 −0.38 −0.26

Green Pepper 0.23 0.61 0.81 0.41 0.49 0.24 0.61 0.43 0.26 0.01 0 0.02 −0.76 −0.5 −0.49 −0.23 −0.26

Watercress 0.14 0.76 0.89 0.25 0.49 0.1 0.79 0.35 0.35 −0.04 0.03 0.1 −0.73 −0.45 −0.51 −0.24 −0.2

Peanut 0.62 0.29 0.48 0.75 0.48 0.55 0.25 0.53 0.18 −0.07 −0.04 0.05 −0.8 −0.41 −0.43 −0.3 −0.33

Black Pepper 0.21 0.41 0.81 0.61 0.38 0.21 0.5 0.63 0.17 0.01 0.09 0.01 −0.71 −0.38 −0.46 −0.31 −0.23

Garlic 0.13 0.79 0.88 0.24 0.53 0.1 0.75 0.45 0.4 −0.03 −0.04 0.21 −0.83 −0.5 −0.49 −0.33 −0.31

Yam 0.38 0.66 0.71 0.43 0.59 0.24 0.65 0.44 0.21 −0.14 −0.01 0.01 −0.91 −0.45 −0.58 −0.38 −0.24

Elderberry 0.51 0.39 0.54 0.61 0.45 0.41 0.46 0.48 0.06 −0.09 0.07 −0.07 −0.8 −0.36 −0.52 −0.39 −0.28

Almond 0.76 0.29 0.28 0.72 0.48 0.61 0.24 0.48 0.18 −0.11 −0.04 0.19 −0.8 −0.33 −0.42 −0.43 −0.37

Lentils 0.11 0.66 0.89 0.38 0.38 0.11 0.7 0.53 0.26 0 0.04 0.15 −0.71 −0.38 −0.41 −0.33 −0.26

A = Fruits, B = Vegetables.

vectors representing the former concepts in the combination, when

restricted to the subspace determined by M, project into each

other, and (ii) on the phase angles of the vectors (Aerts, 2009).

Note that the configuration of the phase angles φA, φB, φA′ , φB′

allow to model a variety of interference situations. In fact, when

the difference between these phase angles is close to 0 or π , we

have a maximal amount of interference while, when the difference

between these phase angles is close to π
2 or 3π

2 , we have a

minimal amount of interference. We can then characterize a set

of “compatibility intervals” for the solution of (52)–(65) and (70)–

(73) which determines the modeling capacity of this Hilbert space

model. Let,

i(A,B)1 =
1

2
(µ(A)+ µ(B))− |a5b5 + a6b6

+a7b7 + a8b8| (A12)

i(A,B)2 =
1

2
(µ(A)+ µ(B))+ |a5b5 + a6b6

+a7b7 + a8b8| (A13)

i(A,B′)1 =
1

2
(µ(A)+ µ(B′))− |a5b′5 + a6b

′
6

+a7b
′
7 + a8b

′
8| (A14)

i(A,B′)2 =
1

2
(µ(A)+ µ(B′))+ |a5b′5 + a6b

′
6

+a7b
′
7 + a8b

′
8| (A15)

i(A′,B)1 =
1

2
(µ(A′)+ µ(B))− |a′5b5 + a′6b6

+a′7b7 + a′8b8| (A16)

i(A′,B)2 =
1

2
(µ(A′)+ µ(B))+ |a′5b5 + a′6b6

+a′7b7 + a′8b8| (A17)

i(A′,B′)1 =
1

2
(µ(A′)+ µ(B′))− |a′5b′5 + a′6b

′
6

+a′7b
′
7 + a′8b

′
8| (A18)

i(A′,B′)2 =
1

2
(µ(A′)+ µ(B′))+ |a′5b′5 + a′6b

′
6

+a′7b
′
7 + a′8b

′
8| (A19)

and let us define the following “solution intervals”

IAB = [i(A,B)1, i(A,B)2] (A20)

IAB′ = [i(A,B′)1, i(A,B
′)2] (A21)

IA′B = [i(A′,B)1, i(A
′,B)2] (A22)

IA′B′ = [i(A′,B′)1, i(A
′,B′)2] (A23)

A solution of (52)-(73) exists if and only if the membership

weights µ(A and B), µ(A′ and B), µ(A and B′) and µ(A and B)

are respectively contained in the intervals IAB, IA′B, IAB′

and IA′B′ .
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TABLE A5A | Calculation of the p-values corresponding to the deviation IA between µ(A) and µ(A and B) + µ(A and B′).

Deviation of µ(A) from µ(A and B) + µ(A and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 5.61E-09 Molasses 9.73E-07 Goldfish 2.52E-05 Apple 1.78E-08

Window Seat 1.08E-05 Salt 7.01E-04 Robin 1.78E-06 Parsley 5.14E-07

Painting 4.19E-07 Peppermint 5.57E-06 Blue-tit 3.56E-06 Olive 1.98E-05

Light Fixture 4.20E-06 Curry 6.51E-05 Collie Dog 7.90E-06 Chili Pepper 1.85E-07

Kitchen Counter 6.10E-05 Oregano 1.78E-06 Camel 5.92E-05 Broccoli 4.35E-09

Bath Tub 4.17E-06 MSG 5.93E-05 Squirrel 5.23E-04 Root Ginger 1.44E-06

Deck Chair 5.35E-06 Chili Pepper 4.00E-12 Guide Dog for Blind 6.72E-04 Pumpkin 9.35E-06

Shelves 2.20E-06 Mustard 2.26E-05 Spider 4.19E-05 Raisin 1.13E-06

Rug 1.81E-09 Mint 1.56E-05 Homing Pigeon 4.87E-05 Acorn 1.04E-05

Bed 5.81E-07 Cinnamon 8.90E-08 Monkey 7.21E-04 Mustard 6.05E-07

Wall-Hangings 7.75E-07 Parsley 2.05E-05 Circus Horse 3.71E-07 Rice 7.87E-05

Space Rack 2.02E-08 Saccarin 1.64E-06 Prize Bull 2.02E-08 Tomato 1.77E-07

Ashtray 2.73E-06 Poppy Seeds 5.63E-05 Rat 1.05E-03 Coconut 1.61E-03

Bar 3.07E-08 Pepper 2.70E-07 Badger 3.79E-04 Mushroom 3.40E-05

Lamp 4.80E-08 Turmeric 1.62E-08 Siamese Cat 4.20E-06 Wheat 3.76E-06

Wall Mirror 1.95E-10 Sugar 1.52E-07 Race Horse 1.47E-07 Green Pepper 3.96E-07

Door Bell 5.94E-07 Vinegar 5.93E-04 Fox 2.26E-05 Watercress 2.60E-07

Hammock 2.35E-06 Sesame Seeds 5.49E-07 Donkey 1.79E-06 Peanut 7.62E-05

Desk 2.94E-05 Lemon Juice 2.79E-05 Field Mouse 1.20E-05 Black Pepper 6.54E-06

Refrigerator 2.41E-07 Chocolate 3.06E-06 Ginger Tom-cat 9.79E-06 Garlic 2.38E-07

Park Bench 1.09E-06 Horseradish 1.55E-06 Husky in Slead team 1.56E-05 Yam 3.68E-08

Waste Paper Basket 2.41E-06 Vanilla 4.28E-07 Cart Horse 2.62E-08 Elderberry 8.82E-05

Sculpture 1.43E-06 Chives 7.42E-06 Chicken 8.62E-08 Almond 1.04E-04

Sink Unit 3.97E-07 Root Ginger 5.02E-06 Doberman Guard Dog 1.29E-04 Lentils 9.59E-07

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.

Let us now come to the complete representation in C
8 ⊕ (C8 ⊗

C
8), and let us consider the data collected in the experiments eXY ,

X = A,A′, Y = B,B′, of Section 2. These data are explicitly

reported inTables A1–A4. Since the existence of solutions for (86)–

(92) depends, for a given experiment eXY , on the expemplar x

and the pair (A,B) of concepts that are considered, we explicitly

report such dependence for all the relevant variables that are

considered in this section. Hence, for each considered exemplar

x, we collected the eight membership weights µx(A), µx(B),

µx(A
′), µx(B

′), µx(A and B), µx(A and B′), µx(A
′ and B), and

µx(A
′ and B′).

The analysis we made in the foregoing sections makes it possible

for us to propose a general modeling procedure. For what concerns

solutions that can be found on first sector alone, we determined the

intervals of solutions as explained in (A20), (A21), (A22) and (A23).

We can now easily determine the general intervals of solutions,

including the extra solutions made possible by second sector.

Therefore, we need to consider the following quantities
∑8

i,j= 5 c
2
ij,

∑8
i= 5

∑4
j= 1 c

2
ij,

∑4
i= 1

∑8
j= 5 c

2
ij and

∑8
i= 5

∑4
j= 1 c

2
ij, respectively

for the combinations “A and B,” “A and not B,” “not A and B” and

“not A and not B’. To be able to express the intervals of Fock space

solutions, we introduce the following quantities.

s(A,B, x) = min





8
∑

i,j= 5

c2ij, i(A,B)1



 (A24)

t(A,B, x) = max





8
∑

i,j= 5

c2ij, i(A,B)2



 (A25)

Then, the interval

Usol (AB, x) = [s(A,B, x), t(A,B, x)] (A26)

is the solution interval for the general Fock space model. Hence,

in case the experimental value µ(A and B) is contained in this

interval, a solution exists. As a second step we can then see whether

a solution in first sector alone exists, which consists of veryfying

whether the experimental value µ(A and B) is contained in IAB.

Suppose that the anwer is “yes,” then we can caculate the angle

φB − φA that gives rise to this solution in first sector. This angle

is then an indication of which angle to choose for the general Fock

space solution. Usually different choices are possible. If there is no

solution in first sector, we anyhow can choose an angle φB − φA,

such that a choice of this angle φB−φA, and a choice ofmAB and nAB
gives a solution. The possible values of the angle and the coefficients

mAB and nAB are calculated by solving (86).

We can analyze the other combinations in an equivalent way.

Let us start with the combination “A and not B’. We have:

s(A,B′, x) = min





8
∑

i= 5

4
∑

j= 1

c2ij, i(A,B
′)1



 (A27)
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TABLE A5B | Calculation of the p-values corresponding to the deviation IB between µ(B) and µ(A and B) + µ(A′ and B).

Deviation of µ(B) from µ(A and B) + µ(A′ and B)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 1.09E-05 Molasses 4.21E-06 Goldfish 1.89E-07 Apple 9.00E-07

Window Seat 1.89E-05 Salt 9.37E-05 Robin 8.27E-07 Parsley 9.14E-08

Painting 2.20E-07 Peppermint 2.50E-04 Blue-tit 2.90E-06 Olive 6.81E-08

Light Fixture 2.99E-06 Curry 8.55E-06 Collie Dog 2.00E-06 Chili Pepper 1.60E-07

Kitchen Counter 5.12E-06 Oregano 1.25E-06 Camel 1.35E-07 Broccoli 1.22E-06

Bath Tub 1.43E-06 MSG 1.79E-06 Squirrel 5.85E-06 Root Ginger 7.24E-06

Deck Chair 1.07E-04 Chili Pepper 2.20E-07 Guide Dog for Blind 4.55E-06 Pumpkin 1.17E-07

Shelves 7.84E-07 Mustard 5.57E-06 Spider 6.15E-05 Raisin 4.75E-08

Rug 4.99E-09 Mint 1.80E-06 Homing Pigeon 1.18E-06 Acorn 9.32E-08

Bed 2.73E-06 Cinnamon 5.03E-06 Monkey 2.95E-05 Mustard 4.61E-08

Wall-Hangings 3.93E-06 Parsley 7.52E-06 Circus Horse 2.27E-05 Rice 9.76E-06

Space Rack 2.16E-08 Saccarin 2.63E-06 Prize Bull 2.17E-06 Tomato 4.63E-07

Ashtray 8.83E-07 Poppy Seeds 3.05E-06 Rat 4.08E-06 Coconut 3.58E-06

Bar 3.07E-05 Pepper 4.70E-06 Badger 8.59E-05 Mushroom 1.39E-04

Lamp 8.94E-07 Turmeric 2.06E-07 Siamese Cat 1.98E-05 Wheat 5.03E-07

Wall Mirror 1.05E-06 Sugar 2.45E-06 Race Horse 5.03E-06 Green Pepper 8.15E-07

Door Bell 6.27E-07 Vinegar 1.89E-05 Fox 9.66E-05 Watercress 1.26E-07

Hammock 4.82E-06 Sesame Seeds 6.89E-07 Donkey 2.41E-06 Peanut 3.58E-06

Desk 5.97E-06 Lemon Juice 1.64E-06 Field Mouse 1.29E-03 Black Pepper 3.97E-07

Refrigerator 3.82E-05 Chocolate 9.12E-06 Ginger Tom-cat 1.64E-06 Garlic 1.15E-05

Park Bench 2.16E-08 Horseradish 1.31E-05 Husky in Slead team 1.01E-07 Yam 1.62E-09

Waste Paper Basket 7.21E-08 Vanilla 1.22E-07 Cart Horse 2.26E-07 Elderberry 1.98E-08

Sculpture 4.46E-08 Chives 3.81E-07 Chicken 4.98E-05 Almond 2.17E-06

Sink Unit 3.64E-06 Root Ginger 1.02E-08 Doberman Guard Dog 2.40E-06 Lentils 7.69E-06

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24 = 2.08 · 10−3.

t(A,B′, x) = max





8
∑

i= 5

4
∑

j= 1

c2ij, i(A,B
′)2



 (A28)

Then, the interval

Usol(AB
′, x) = [s(A,B′, x), t(A,B′, x)] (A29)

is the solution interval for the general Fock space model. The

equation to be used to calculate the angle φB′ − φA, and the

coefficientsmAB′ and nAB′ is (88).

For the combination “A′ and B,” we have:

s(A′,B, x) = min





4
∑

i= 1

8
∑

j= 5

c2ij, i(A
′,B)1



 (A30)

t(A′,B, x) = max





4
∑

i= 1

8
∑

j= 5

c2ij, i(A
′,B)2



 (A31)

Then, the interval

Usol(A
′B, x) = [s(A′,B, x), t(A′,B, x)] (A32)

is the solution interval for the general Fock space model. The

equation to be used to calculate the angle φB − φA′ , and the

coefficientsmA′B and nA′B is (90).

Finally, for the combination “not A and not B,” we have:

s(A′,B′, x) = min





8
∑

i= 5

4
∑

j= 1

c2ij, i(A
′,B′)1



 (A33)

t(A,B′, x) = max





8
∑

i= 5

4
∑

j= 1

c2ij, i(A
′,B′)2



 (A34)

Then, the interval

Usol(A
′B′, x) = [s(A′,B′, x), t(A′,B′, x)] (A35)

is the solution interval for the general Fock space model. The

formula to be used to calculate the angle φB′ − φA′ , and the

coefficientsmA′B′ and nA′B′ is Equation (92).
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TABLE A5C | Calculation of the p-values corresponding to the deviation IA′ between µ(A′) and µ(A′ and B) + µ(A′ and B′).

Deviation of µ(A′) from µ(A′ and B) + µ(A′ and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 2.38E-05 Molasses 6.35E-05 Goldfish 1.51E-05 Apple 9.93E-05

Window Seat 4.88E-04 Salt 1.63E-04 Robin 2.85E-03 Parsley 3.03E-05

Painting 6.06E-05 Peppermint 3.01E-03 Blue-tit 4.54E-04 Olive 1.33E-06

Light Fixture 5.64E-04 Curry 7.06E-04 Collie Dog 1.39E-05 Chili Pepper 3.47E-05

Kitchen Counter 1.55E-05 Oregano 1.33E-04 Camel 5.17E-04 Broccoli 7.60E-03

Bath Tub 9.61E-05 MSG 2.91E-05 Squirrel 5.10E-05 Root Ginger 1.71E-04

Deck Chair 2.96E-04 Chili Pepper 8.75E-05 Guide Dog for Blind 2.75E-05 Pumpkin 2.55E-04

Shelves 6.06E-05 Mustard 2.14E-03 Spider 1.06E-02 Raisin 7.20E-06

Rug 1.09E-05 Mint 2.62E-03 Homing Pigeon 8.10E-04 Acorn 1.68E-05

Bed 3.00E-05 Cinnamon 3.65E-04 Monkey 5.59E-03 Mustard 1.75E-06

Wall-Hangings 1.12E-04 Parsley 1.33E-04 Circus Horse 5.80E-04 Rice 4.90E-03

Space Rack 3.28E-06 Saccarin 6.42E-06 Prize Bull 3.59E-04 Tomato 4.41E-04

Ashtray 1.55E-05 Poppy Seeds 2.05E-03 Rat 1.29E-03 Coconut 1.86E-04

Bar 2.34E-05 Pepper 7.60E-03 Badger 2.48E-02 Mushroom 2.62E-03

Lamp 2.26E-05 Turmeric 5.96E-04 Siamese Cat 2.71E-04 Wheat 2.76E-05

Wall Mirror 5.58E-06 Sugar 2.81E-04 Race Horse 1.28E-03 Green Pepper 2.75E-02

Door Bell 1.64E-05 Vinegar 5.31E-05 Fox 9.46E-02 Watercress 1.41E-03

Hammock 2.04E-04 Sesame Seeds 1.17E-03 Donkey 6.94E-03 Peanut 1.20E-05

Desk 1.36E-05 Lemon Juice 1.35E-07 Field Mouse 2.22E-02 Black Pepper 1.10E-03

Refrigerator 2.55E-05 Chocolate 3.03E-05 Ginger Tom-cat 2.79E-04 Garlic 6.14E-05

Park Bench 2.93E-05 Horseradish 2.80E-06 Husky in Slead team 3.22E-05 Yam 1.13E-06

Waste Paper Basket 7.87E-09 Vanilla 2.07E-06 Cart Horse 2.98E-04 Elderberry 1.58E-05

Sculpture 2.41E-06 Chives 1.08E-06 Chicken 2.66E-02 Almond 6.63E-06

Sink Unit 7.90E-06 Root Ginger 7.32E-04 Doberman Guard Dog 2.64E-07 Lentils 6.54E-05

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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TABLE A5D | Calculation of the p-values corresponding to the deviation IB′ between µ(B′) and µ(A and B′) + µ(A′ and B′).

Deviation of µ(B′) from µ(A and B′) + µ(A′ and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 1.09E-06 Molasses 3.14E-07 Goldfish 2.89E-07 Apple 1.46E-05

Window Seat 8.03E-05 Salt 1.56E-05 Robin 2.23E-02 Parsley 5.26E-05

Painting 5.38E-05 Peppermint 1.56E-05 Blue-tit 1.63E-04 Olive 4.77E-04

Light Fixture 1.16E-03 Curry 1.83E-04 Collie Dog 2.06E-04 Chili Pepper 5.16E-05

Kitchen Counter 3.02E-03 Oregano 1.11E-03 Camel 5.93E-03 Broccoli 1.83E-04

Bath Tub 4.21E-06 MSG 2.60E-07 Squirrel 2.64E-03 Root Ginger 2.14E-03

Deck Chair 4.45E-06 Chili Pepper 1.71E-07 Guide Dog for Blind 5.83E-04 Pumpkin 5.09E-03

Shelves 5.06E-04 Mustard 4.08E-06 Spider 2.57E-02 Raisin 2.38E-05

Rug 1.17E-05 Mint 1.13E-04 Homing Pigeon 9.81E-03 Acorn 1.37E-05

Bed 4.44E-05 Cinnamon 5.03E-07 Monkey 9.47E-03 Mustard 3.07E-05

Wall-Hangings 7.21E-04 Parsley 6.14E-05 Circus Horse 1.87E-03 Rice 6.15E-04

Space Rack 1.38E-06 Saccarin 6.59E-08 Prize Bull 4.22E-04 Tomato 5.09E-04

Ashtray 5.03E-06 Poppy Seeds 1.87E-04 Rat 1.14E-02 Coconut 2.81E-04

Bar 1.74E-08 Pepper 3.52E-04 Badger 1.18E-02 Mushroom 4.84E-04

Lamp 2.24E-07 Turmeric 1.32E-06 Siamese Cat 3.69E-05 Wheat 1.45E-04

Wall Mirror 1.52E-04 Sugar 2.60E-06 Race Horse 7.53E-03 Green Pepper 4.63E-03

Door Bell 5.64E-06 Vinegar 1.50E-05 Fox 1.97E-02 Watercress 1.68E-03

Hammock 2.32E-04 Sesame Seeds 3.41E-05 Donkey 4.90E-03 Peanut 1.16E-04

Desk 6.37E-05 Lemon Juice 1.16E-06 Field Mouse 1.18E-02 Black Pepper 3.76E-03

Refrigerator 1.71E-05 Chocolate 8.26E-08 Ginger Tom-cat 1.20E-03 Garlic 4.62E-05

Park Bench 1.04E-04 Horseradish 7.46E-08 Husky in Slead team 2.62E-03 Yam 3.20E-05

Waste Paper Basket 2.88E-06 Vanilla 1.36E-06 Cart Horse 3.42E-04 Elderberry 3.72E-04

Sculpture 1.28E-04 Chives 6.15E-05 Chicken 1.92E-03 Almond 2.73E-06

Sink Unit 1.89E-04 Root Ginger 6.54E-05 Doberman Guard Dog 1.15E-05 Lentils 6.94E-05

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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TABLE A5E | Calculation of the p-values corresponding to the deviation IABA′B′ between µ(A and B) + µ(A and B′) + µ(A′ and B) + µ(A′ and B′) and 1.

Deviation of µ(A and B) + µ(A and B′) + µ(A′ and B) + µ(A′ and B′) from 1

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 4.34E-09 Molasses 4.33E-07 Goldfish 3.98E-09 Apple 1.24E-08

Window Seat 5.12E-06 Salt 4.04E-05 Robin 1.09E-05 Parsley 1.03E-08

Painting 1.07E-07 Peppermint 7.51E-07 Blue-tit 3.54E-07 Olive 1.44E-08

Light Fixture 5.01E-07 Curry 3.31E-06 Collie Dog 1.55E-07 Chili Pepper 2.81E-09

Kitchen Counter 4.63E-06 Oregano 1.95E-07 Camel 1.19E-05 Broccoli 6.15E-09

Bath Tub 1.13E-07 MSG 5.67E-07 Squirrel 1.99E-05 Root Ginger 1.79E-06

Deck Chair 3.04E-07 Chili Pepper 2.19E-10 Guide Dog for Blind 2.43E-05 Pumpkin 6.60E-07

Shelves 7.84E-08 Mustard 5.67E-07 Spider 5.24E-05 Raisin 7.37E-09

Rug 8.18E-09 Mint 9.21E-08 Homing Pigeon 5.23E-06 Acorn 8.26E-09

Bed 3.69E-08 Cinnamon 2.42E-08 Monkey 5.05E-04 Mustard 9.61E-08

Wall-Hangings 1.09E-06 Parsley 2.61E-07 Circus Horse 7.10E-07 Rice 3.68E-06

Space Rack 3.77E-08 Saccarin 1.20E-07 Prize Bull 1.27E-08 Tomato 1.82E-09

Ashtray 9.08E-08 Poppy Seeds 1.24E-06 Rat 5.07E-05 Coconut 6.54E-07

Bar 2.27E-09 Pepper 8.33E-07 Badger 3.01E-04 Mushroom 5.77E-06

Lamp 1.87E-08 Turmeric 5.34E-08 Siamese Cat 1.34E-07 Wheat 9.21E-08

Wall Mirror 2.20E-09 Sugar 5.03E-07 Race Horse 5.77E-08 Green Pepper 6.54E-07

Door Bell 1.62E-07 Vinegar 3.40E-05 Fox 9.66E-04 Watercress 6.57E-08

Hammock 7.17E-07 Sesame Seeds 1.07E-07 Donkey 2.38E-06 Peanut 3.51E-07

Desk 7.94E-07 Lemon Juice 4.30E-07 Field Mouse 8.23E-04 Black Pepper 9.33E-07

Refrigerator 5.49E-07 Chocolate 5.18E-08 Ginger Tom-cat 6.79E-07 Garlic 2.51E-07

Park Bench 1.39E-08 Horseradish 5.03E-08 Husky in Slead team 3.99E-08 Yam 1.60E-10

Waste Paper Basket 1.38E-09 Vanilla 6.49E-08 Cart Horse 8.26E-09 Elderberry 1.60E-07

Sculpture 7.78E-09 Chives 1.80E-08 Chicken 1.53E-06 Almond 9.09E-08

Sink Unit 2.66E-07 Root Ginger 6.10E-08 Doberman Guard Dog 3.86E-08 Lentils 3.47E-07

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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