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Magnocellular (M) deficit theory points out that the core deficit of developmental dyslexia
(DD) is the impairment in M pathway, which has been evidenced in many previous
studies. Based on the M deficit, some researchers found that visual intervention focusing
on M deficit improved dyslexics’ M function as well as reading abilities. However, the
number and reliability of these training studies were limited. Therefore, the present
study conducted an M-based visual-motor intervention on Chinese children with DD
to investigate the relationship between M deficit and Chinese DD. Intervention programs
included coherent motion detection, visual search, visual tracking, and juggling, which
were related to M function. The results showed that M function and phonological
awareness of training dyslexic group were improved to a normal level as age-matched
normal children after intervention, while non-training dyslexics did not. It supported M
deficit theory, and suggested M deficit might be the core deficit of Chinese DD.

Keywords: developmental dyslexia, magnocellular pathway, coherent motion detection, visual-motor
intervention, Chinese reading

Introduction

Developmental dyslexia (DD) is a neurobiological reading disorder. Individuals with DD have
difficulties in accurate or fluent word recognition, spelling, and word decoding despite adequate
instruction and intelligence (Lyon et al., 2003). Although researchers have made efforts in studying
on DD, the cause of DD remains controversial. Some researchers pointed out that the cause of
DD could be traced back to a more general perceptual dysfunction. Magnocellular (M) deficit
theory postulates that the core deficit of DD is the impairment in M pathway (Stein, 2001). M
pathway starts from retinal M ganglion cells in retina, then visual information is conveyed to the
M layers of the dorsal lateral geniculate nucleus (LGN) of the thalamus. Then, information was
project to the primary visual cortex, and further transferred to the posterior parietal cortex (PPC)
via the dorsal stream (also known as the “where” stream), which has been implicated in object
localization, motion perception, visual attention, and goal-directed behavior. The dorsal stream
includes middle temporal (MT) area, which is known to play a key role in motion perception and
is specifically activated when observers are presented with random dot kinematograms (RDKs)
containing coherent motion (CM; Goodale and Westwood, 2004; Boden and Giaschi, 2007).

Compared with chronological age-matched (CA) controls, individuals with DD showed less
sensitivity in detecting CM (Cornelissen et al., 1995; Talcott et al., 1998, 2003; Witton et al., 1998;
Hansen et al., 2001; Conlon et al., 2004; Pellicano and Gibson, 2008). Moreover, CM sensitivity
of DD was significantly correlated with pseudoword reading, which reflected the phonological
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processing skills (Talcott et al., 1998; Witton et al., 1998). Pre-
reading children at familial risk of DD exhibited the disability
in detecting CM, suggesting deficits in M pathway occurred
before reading commencement (Kevan and Pammer, 2008).
A meta-analysis study obtained a relatively large effect size of
CM sensitivity in comparison between CA controls and DD,
confirming the reliability of CM deficits of DD (Benassi et al.,
2010). However, some studies did not support M deficit theory.
Ramus et al. (2003) found that only 2 of 16 dyslexic adults had
visual M deficit. Meanwhile, these two visually impaired dyslexics
also had auditory and phonological problems, suggesting that
visual M deficit was not an independent core deficit of DD.
Sperling et al. (2005) pointed out that deficits in noise exclusion,
not M processing, contributed to the etiology of dyslexia.
Additionally, Skottun (2015) pointed out that CM deficit should
be attributed to deficits of dorsal stream rather than M pathway;
namely, M pathway and dorsal stream should be distinguished.
Although M deficit theory is still debatable, M deficits have been
extensively evidenced in DD.

Some researchers tried to conduct intervention studies
on DD. Solan et al. (2004) adopted perceptual accuracy,
visual efficiency, guided reading, visual search, and visual
scan as training programs. After 15 training sessions, disabled
readers’ CM sensitivity, pseudoword reading skills, and reading
comprehension were improved (Solan et al., 2004). However, the
enhancement of M function and reading skills might result from
the print reading training rather than visual training, because
the guided reading program used words as stimuli. Lawton
(2011) conducted a direction discrimination task on DD twice
a week for 14 weeks, and found that dyslexics enhanced contrast
sensitivity (an index of M function) as well as a mass of reading
skills, including reading rates, spelling, word identification and
comprehension. The relatively small sample size (only three
dyslexics) might limit the reliability of training effects. In a cohort
of normal adult readers, either CM or parallel line detection
(parvocellular task) training increased the speed of lexical
decision, but the correlation between accuracy improvement in
lexical decision and improvement of visual function was only
found in the CM training group (Chouake et al., 2012). The
result suggested that M training seemed to have an advantage
over general visual training on reading performance [reaction
time (RT) as well as accuracy]. These studies consistently showed
that M-based intervention ameliorated reading skills, suggesting
the causal role of M pathway in reading development. However,
a recent functional magnetic resonance imaging (fMRI) study
on dyslexia did not support this opinion. Although dyslexic
children showed lower MT activity than CA controls, but similar
activity to reading level-matched controls. What’s more, the
researchers conducted an 8-week phonological-based reading
training on DD. They found that dyslexics’ MT activity along
with reading skills [i.e., real word and pseudoword reading skills
and phonological awareness (PA)] were improved, while their
performance did not change in the control period (in which a
math intervention or no intervention was carried out; Olulade
et al., 2013). The result suggested the M deficits attributed to
lower reading level and less reading experience rather than the
cause of DD.

The above studies were conducted in alphabetic languages.
In contrast to the writing systems with specific grapheme-
to-phoneme correspondence, Chinese is a logographic writing
system. Chinese characters have complex visual structures.
So, visual processing skills are important for Chinese reading
development (Chung et al., 2008; Li et al., 2012; Yang et al., 2013).
Previous studies found that Chinese dyslexic children had higher
CM thresholds than CA controls (Meng et al., 2011; Qian and
Bi, 2014), suggesting that Chinese DD had impairments in visual
M pathway. An event-related potential (ERP) study showed
Chinese DD induced smaller amplitude of visual mismatch
negativities (vMMNs) than both age-matched and reading level
matched children in the visual M condition (moving gratings;
Wang et al., 2010). A recent intervention study found visual
perceptual training significantly decreased the discrimination
threshold of visual texture discrimination task (TDT) for Chinese
DD. Meanwhile, DD who accepted training exhibited significant
and long-lasting enhancement in reading fluency (Meng et al.,
2014). However, this study focused on training of general visual
perception. Then, how about M pathway function?

Based on previous evidence of M deficits in Chinese DD
(Meng et al., 2011; Qian and Bi, 2014), the present study
examined whether M-based visual-motor intervention had a
positive effect in M function and relevant reading-related
cognitive skills of DD. Dyslexic children accepted 10 sessions of
visual-motor training focusing on M pathway. Meanwhile, CM
detection and reading-related skills were tested on training DD,
non-training DD and CA groups. According to previous studies
in both alphabetic languages and Chinese, DD exhibited deficits
in PA and rapid naming (RAN), which played important roles
in reading development (McBride-Chang and Manis, 1996; Wolf
and Bowers, 1999; Ho et al., 2000, 2002 ). Moreover, the two
skills were closely associated with M function (Hulslander et al.,
2004; Kinsey et al., 2004; Ben-Shachar et al., 2007). Therefore,
we adopted PA test and digit RAN test as indexes of children’s
reading skills.

Materials and Methods

Participants
The participants were recruited from ordinary primary schools
in Beijing. The study was conducted under the informed
consent of their parents, and was approved by the Institutional
Review Board of the Institute of Psychology, Chinese Academy
of Sciences. All of the participants were right-handed, and
had normal hearing and normal or corrected-to-normal vision
without ophthalmological or neurological abnormalities. The
inclusionary criteria for DDwere consistent with previous studies
in mainland China (Shu et al., 2006; Wang et al., 2010; Meng
et al., 2011; Zhao et al., 2014), including the IQ was above
85 as measured by Combined Raven’s Test (Li et al., 1989),
meanwhile the written vocabulary test score was at least one
and a half standard deviations below corresponding age norm
in the Standard Character Recognition Test (Wang and Tao,
1996). Seventeen children with DD and 11 CA children (three
female, mean age: 10.42 years, and range: 9–11 years) took part
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in this study. The children with DD were randomly divided
into two groups. One DD group accepted M-based visual-
motor intervention (eight children, two females, mean age:
10.63 years, and range: 9–11 years), while another group did not
(nine children, two females, mean age: 10.11 years, and range:
9–11 years). Characteristics of participants were shown in
Table 1.

Reading-related Tests
PA test
An oddball paradigm (Bradley and Bryant, 1978) was adopted.
Within a trial, three characters were presented orally by
the experimenter, and participants were asked to pick out a
phonologically odd item among them. There were three types of
oddity: onset, rime, and lexical tone. For example, for the three
items “tan4”, “tong3”, and “ji1”, “tan4” and“tong3” had the same
onset “t”, which was different from “ji1”. Meanwhile, the three
items were completely different in rime and lexical tone in order
to control for possible confounds. A total of ten trails for each
type of oddity was presented. The accuracy of responses was
recorded. The test-retest reliability was 0.77.

RAN Test
Five digits (2, 4, 6, 7, and 9) were used. Digits were repeatedly
presented visually in random order on a 6 × 5 row–column grid.
Participants were asked to name each digit in sequence as quickly
as possible. The test was conducted twice, and the scores were
averaged as the final score. The total time (s) taken to name all
digits was collected and converted to a per-second score. The
test–retest reliability was 0.89.

Magnocelluar Function Test
We adopted CM detection task to measure magnocelluar
pathway function. The experimental paradigm was similar to
what used in the study of Solan et al. (2004). Two patches of
300 randomly moving white dots with a speed of 7◦/s and a
lifetime of 225 ms were presented on the left and right sides
of screen with dark background. The luminance of dots was
125 cd/m2, and the luminance of background was 0.39 cd/m2,
Michelson contrast was 99.4%. The two patches were separated
by a horizontal distance subtending 5◦, and the size was 10◦ wide
and 14◦high. The patches of dots were presented for 2300 ms
in each trial. In one patch, all dots moved randomly, while the
other patch had a certain percentage of dots moving coherently
leftward or rightward. Participants had to judge which patch
had such coherently moving dots after patches disappeared. CM
threshold was obtained according to a 1-up–1-down staircase
procedure; incorrect responses led to an increase in the number

of coherent moving dots by 1%, while correct responses led to
a decrease by 1%. After 10 reversals, a session was terminated.
Threshold was defined by the mean of the number of coherent
moving dots of the last six reversals. The experiment included
three sessions, and the final CM threshold was the mean of them.
The test–retest reliability was 0.74.

Magnocellular (M)-based Visual-motor
Intervention
The present study adopted M-based visual-motor intervention
programs to train dyslexics’ M function. One training session
included three training projects:

(1) CM detection task. This task aimed to train M function
directly. The parameters were similar to that in the above M
function test.

(2) Visual search and visual tracking tasks. The tasks focused
on eye movement, object localization and visual spatial
attention, which were the function ofM pathway (Boden and
Giaschi, 2007). These tasks were also involved in previous
intervention studies (Solan et al., 2004; Lawton, 2011).
(i) In the visual search task, participants were asked to search
certain digits (0–9) rapidly and delete them in the sequence
from small to large (i.e., 0, 1, 2, 3 . . .. . .9) on a paper of 100
digits. (ii) Visual tracking task included dynamic tracking
and static tracking. In dynamic tracking task (12 trials),
participants were required to gaze the moving object, pursuit
its moving direction, and localize its final position. Static
tracking task involved line puzzle (six trials) andmaze puzzle
(six trials). In the line puzzle task, participants were asked to
follow the correct line to find the correct object in connection
with the target; in the maze puzzle task, participants were
required to find the correct path from entrance to exit.
The paradigms of these tasks referred to a previous study
(Yu et al., 2006) and the Internet (http://www.eyecanlearn.
com/). Stimuli in visual search and static visual tracking
were presented on papers, while stimuli in dynamic tracking
were presented by the computer. The stimuli were different
in each training session, and the examples were shown in
Figure 1.

(3) Juggling. An fMRI study (Draganski et al., 2004) found that
after 3-month juggling training, participants demonstrated a
significant transient bilateral expansion in greymatter inMT
area. This study suggested that juggling was associated with
visual perception and spatial anticipation of moving objects,
and was a stronger stimulus for plasticity in the visual areas
than in the motor areas (Draganski et al., 2004). Therefore,

TABLE 1 | Characteristics of two developmental dyslexia (DD) groups and one chronological age-matched (CA) group.

Training DD 1 (n = 8) Non-training DD 2 (n = 9) CA 3 (n = 11) F Group comparison

Age (years) 10.63 (0.52) 10.11 (0.33) 10.42 (1.07) 1.10 ➀ = ➁ = ➂

IQ 100.13 (11.37) 105.63 (10.35) 109.82 (11.91) 1.70 ➀ = ➁ = ➂

Vocabulary 2111.02 (306.91) 2067.30 (502.78) 2807.48 (349.70) 11.10∗∗∗ ➀ = ➁ < ➂

Standard deviations were shown in the parentheses; ∗∗∗p < 0.001.
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FIGURE 1 | The examples of visual search and visual tracking tasks. (A) The example of visual search; (B) The example of dynamic tracking; (C) The example
of line puzzle (a task of static tracking); (D) The example of maze puzzle (a task of static tracking).

juggling was regarded as a M-based intervention program,
and adopted to induce the changes of MT area.

Intervention Procedure
The training DD group accepted ten sessions of M-based
visual-motor intervention within 5 weeks with two sessions per
week. One session cost about one hour. When training group
conducted training programs, non-training dyslexic group, and
CA group did free activities. All the three groups accepted
reading-related tests and M function test before and after the
intervention course.

Results

CM thresholds, accuracy in PA test, digit RAN speed before and
after training for three groups were shown in Table 2. Repeated
measures ANOVA were conducted to analyze CM thresholds,
accuracy of PA and RAN speed, with group (training DD and
non-training DD) as a between-subject factor, and time (pre- and
post-) as a within-subject factor. Additionally, we compared the
performance difference of the two DD groups and CA group in
the three tests, so as to explore dyslexics’ deficits before and after
training when compared with normal readers.

For CM thresholds, the main effects of group (training DD
group and non-training DD group) and time were significant

[F(1,15) = 6.36, p < 0.05; F(1,15) = 11.07, p < 0.01],
the interaction between group and time was also significant
[F(1,15) = 7.55, p < 0.05]. Further simple effect analysis showed
that there was no significant difference between the two DD
groups in the pre-test, while dyslexics in training group had a
significantly lower threshold than those in non-training group
(p < 0.01) in the post-test. For training DD group, post-threshold
was significantly lower than pre-threshold (p < 0.01), but there
was no significant difference for non-training group.

With respect to PA, the main effects of time was significant
[F(1,15) = 20.64, p < 0.001], while the main effects of group
(training DD group and non-training DD group) was not
[F(1,15) = 0.04, p > 0.05]. The interaction between them was
significant [F(1,15) = 14.32, p < 0.01]. Simple effect analysis
showed that group differences were not significantly different
in both pre-PA test and post-PA test The difference of accuracy
between pre- and post-test was significant for training DD group
(post-accuracy was higher; p < 0.001), but not for non-training
DD group.

For digit naming speed, the main effect of time was significant
[F(1,15) = 8.23, p < 0.05], post-naming was faster than pre-
naming. The main effect of group and the interaction between
group and time were not significant.

In order to further explore whether the intervention could
improve dyslexics’ performance to a normal level, one-way
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TABLE 2 | The performance of pre-test and post-test for three groups.

Pre- Post-

Training DD Non-training DD CA Training DD Non-training DD CA

CM 75.88 (26.13) 83.00 (24.61) 46.41 (19.59) 34.19 (11.31) 79.02 (33.43) 49.80 (30.13)

PA 0.47 (0.12) 0.53 (0.15) 0.72 (0.15) 0.63 (0.16) 0.54 (0.16) 0.71 (0.14)

RAN 2.66 (0.42) 2.69 (0.42) 3.19 (0.56) 2.87 (0.37) 2.85 (0.51) 3.50 (0.71)

Standard deviations were shown in the parentheses. CM, coherent motion threshold; PA, accuracy in phonological awareness test; RAN, digit rapid naming speed
(number per second).

ANOVA was conducted to compare the performance of two DD
groups with that of CA group before and after intervention.
The results showed that the differences of three groups were
significant in pre- and post- CM, PA, and RAN tests; pre-CM:
F(2,25) = 7.05, p < 0.01; pre-PA: F(2,25) = 8.20, p < 0.01; pre-
RAN: F(2,25)= 3.88, p< 0.05; post-CM: F(2,25)= 5.92, p< 0.01;
post-PA: F(2,25) = 3.17, p = 0.06; and post-RAN: F(2,25) = 4.31,
p < 0.05. Post hoc analyses indicated that, in the pre-tests, two
DD groups had significantly higher CM thresholds (ps < 0.05),
lower accuracy in PA test (ps< 0.01), and slower RAN (ps< 0.05)
than CA group, while there was no significant difference between
the two DD groups in each of three tests. For post-CM, training
DD group and CA group had lower thresholds than non-training
group (ps < 0.05), and there was no difference between training
DD group and CA group. For post-PA, only CA group had
significantly higher accuracy than non-training group (p < 0.05),
while there was no significant difference betweenCA and training
groups and between training and non-training groups. For post-
RAN, CA group had faster naming speed than two DD groups
(ps < 0.05), while there was no significant difference between DD
groups.

Discussion

The present study investigated whether M-based visual-motor
intervention could improve M function and reading-related
cognitive skills. Compared with age-matched normal children,
children with DD exhibited deficits in CM detection, PA
and RAN in pre-tests. After intervention, training DD group
decreased CM thresholds (i.e., increased CM sensitivity) and
increased PA, while non-training DD did not. Additionally, the
performance of training DD group in post-CM and PA tests was
equal to that of CA group.

Magnocellular-based visual-motor training improved the CM
sensitivity of children with DD to a normal level. However,
there was no significant difference between pre- and post-CM
thresholds for non-training dyslexics. Consistent with previous
alphabetic studies (Solan et al., 2004; Lawton, 2011), the present
result suggested the M pathway function of dyslexic children
benefited from visual intervention. However, the intervention
programs included direct CM tasks, then was the enhancement
just a practice effect? Actually, dyslexics’ deficits in CM were
relatively persistent, and not influenced by practice (Conlon
et al., 2009), so the enhancement here might not be merely
a practice effect, and might benefit from other training tasks.

The current visual-motor intervention involved training focusing
on visual search and tracking, which might be related with
oculomotor control and visual spatial attention (Hooge and
Erkelens, 1999; Kramer et al., 1999; de Brouwer et al., 2002).
Juggling has been evidenced induced structural changes in MT
area (Draganski et al., 2004). Because of the close association
between structure and function (Bullmore and Sporns, 2009),
juggling might also exert a positive effect on neural activities
in MT areas and further directly influence motion perception.
Therefore, dyslexics’ M function could be effectively ameliorated
by an integrated M-based visual-motor intervention with diverse
training programs. However, it was unknown which of these tasks
played a dominant role in the improvement of M function, which
should be further investigated in the future.

In the post-test, PA of dyslexic children with training was
significantly improved, and the accuracy was equivalent to that
of CA. However, the accuracy of non-training dyslexics did
not differ in the pre- and post-tests, and was still lower than
CA, which suggested that M-based visual-motor intervention
improved dyslexics’ PA, supporting the M deficit theory. Many
prior studies have found the association between M function
and PA (Talcott et al., 1998; Witton et al., 1998; Hulslander
et al., 2004; Kinsey et al., 2004; Ben-Shachar et al., 2007).
Another training study found that after a 8-week phonological-
based reading intervention, MT activity increased along with
enhancement of PA (Olulade et al., 2013). It was implied that M
deficit was the consequence of impoverished reading rather than
the cause of DD. Whereas, Olulade et al. (2013) adopted “seeing
stars” as the phonological-based intervention, which addressed
visualization of letters, syllables, multisyllables, and words as well
as motor/tactile and articulatory aspects of word presentation
(Bell, 1997), thereby promoting visual imagery of orthographic
presentations as well as PA. So, the intervention program
might likewise influence visual system, consequently improving
activation in MT area. In contrast, the intervention in the current
study was pure perceptual training without the confusion of
prints or phonological processing. Thus, it adequately supported
M theory, and evidenced that M deficit might be the cause of DD.

Previous studies manifested an association between M
function and RAN (Hulslander et al., 2004; Meng et al.,
2011; Qian et al., 2015). However, all the three groups in the
present study increased RAN speed in the post-test, suggesting
the enhancement of RAN might be the outcome of natural
development rather than a training effect. The training time was
short in the present, which might lead to the lack of training effect
on RAN. Therefore, it needed further study to explore whether
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more training sessions would induce larger improvement of
naming speed for training dyslexics.

However, the current study had some limitations. Firstly,
the relatively small sample size restricted the reliability of the
current training effect. Secondly, the non-training groups did
free activities, which were not manipulated. Thirdly, the current
study lacked character reading or spelling tests, so it was
unclear whether the enhancement of reading-related skills could
be transferred to general character reading. Finally, all of the
dyslexics here had deficits in M pathway. Thus, it remained
unknown whether M-based intervention was beneficial to other
subtypes of DD. Due to these limitations, caution was needed in
drawing conclusions of intervention effect of M pathway. Further
studies were needed to confirm the current result by enlarging
sample size, manipulating control training programs, adding

general character reading tests, and involving more subtypes of
DD, etc.

Summary

The present preliminary study showed M-based visual-motor
training might improve dyslexics’ M function and PA, suggesting
M-based intervention might be beneficial to Chinese DD.
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