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The brain’s fascinating ability to adapt its internal neural dynamics to the temporal
structure of the sensory environment is becoming increasingly clear. It is thought to
be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs
in a predictable stream, so that they will enter at optimal processing phases of the
spontaneously occurring rhythmic excitability fluctuations. However, some contexts have
a more predictable temporal structure than others. Here, we tested the hypothesis that
the processing of rhythmic sounds is more efficient than the processing of irregularly
timed sounds. To do this, we simultaneously measured functional magnetic resonance
imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball
target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or
random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally,
participants detected target sounds faster and more accurately when embedded in
rhythmic streams. The fMRI response in the auditory cortex was stronger during random
compared to random tone sequence processing. Simultaneously recorded N1 responses
showed larger peak amplitudes and longer latencies for tones in the random (vs. the
rhythmic) streams. These results reveal complementary evidence for more efficient neural
and perceptual processing during temporally predictable sensory contexts.

Keywords: EEG, fMRI, temporal context, sound processing, rhythm, auditory cortex

INTRODUCTION

The temporal dynamics of environmental sounds can be predictable, such as approaching footsteps,
or unpredictable and novel, such as a tire screech or a notification of a text message. It is increasingly
clear that the brain is well-equipped to use predictable, or “rhythmic,” temporal structures within
sensory information. It has been shown that ongoing oscillatory brain activity in the macaque
auditory and visual cortices can be entrained by rhythmic, task-relevant event streams, such
that the cortical representation of the events in that stream is enhanced (Kayser et al., 2008;
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Lakatos et al., 2008, 2009). Oscillatory entrainment is thought
to be metabolically efficient (Buzsáki and Draguhn, 2004) and
is sometimes referred to as a rhythmic mode of processing
(Schroeder and Lakatos, 2009). As many environmental stimuli
such as biological motion are inherently rhythmic, characterized
by slow rates of 1–5 Hz, this “rhythmic” mode is thought to
be beneficial for processing such natural stimuli by enhancing
and resetting low-frequency (delta and theta-band) spontaneous
oscillations (Schroeder and Lakatos, 2009).

There is also evidence from human research that a phase-
resettingmechanism operating in a rhythmic context can increase
processing efficiency; resulting in enhanced detection (Fiebelkorn
et al., 2011; Ten Oever et al., 2014) and neuronal responses
(Thorne et al., 2011; Romei et al., 2012; see discussion in Lakatos
et al., 2013b). For example, Thorne et al. (2011) showed that
phase-reset elicited by a visual stimulus increased the probability
of auditory target detection when a subsequent auditory input
arrived within the anticipated timewindow of optimal processing.
Furthermore, Romei et al. (2012) showed that visual cortex
excitability co-cycled with sound-induced occipital alpha-phase
concentration.

A rhythmic processing mode as described above may not be
beneficial in every situation, as it produces relatively long periods
of low neuronal excitability during which novel sounds will be
harder to detect. While many natural sounds have a rhythmic
component to them, the temporal structure may often vary in
rhythmicity or rate over time, such as in spoken language, a
property which would necessitate adapting to changes in the
temporal structure (Schroeder et al., 2008; Zion Golumbic et al.,
2012; Henry et al., 2014). In addition, task demands and dynamics
determine the relevance and usage of temporal structure, which
adds to the necessity to flexibly orchestrate the optimal processing
strategy (Van Atteveldt et al., 2014). One theory of how optimal
processing may be managed flexibly includes switching between
“vigilance” and “rhythmic” attentional modes (Schroeder and
Lakatos, 2009). For example, sound detection in an unpredictable
context may engage a mode of “vigilant” listening where
neuronal excitability in auditory cortex is continuously high,
rather than fluctuating between high- and low-excitability states.
Maintenance of high excitability is thought to be accomplished
by suppression of low frequency and related enhancement of
gamma oscillations, both of which are metabolically demanding
(Niessing et al., 2005; Kann, 2011; Galow et al., 2014). The role of
gamma frequencies during vigilance states is supported by studies
showing that shorter response latencies in vigilance tasks such
as change detection correlate with higher amplitudes of gamma
activity, which has been found in monkeys (Womelsdorf et al.,
2006) as well as humans (Koch et al., 2009).

In sum, it is likely that rhythmic-mode processing is efficient
in terms of metabolic demands, but is not optimal for perception
in all contexts. In the current study, we explored the proposition
that the brain flexibly switches between vigilant and rhythmic
processing modes depending on the temporal context, and that
both behaviorally and at the neural level, detecting target sounds
in a rhythmic context is more efficient. We used a combination of
electro-encephalography (EEG), functional magnetic resonance
imaging (fMRI) and behavioral measures to test our predictions.

Electro-encephalography has proven to be an excellent method
to investigate neural efficiency in different contexts. Several lines
of research suggest that the event-related potential (ERP) N1
component is particularly appropriate to help index neuronal
efficiency in vigilant and rhythmic sound conditions. The
N1 is the first, large negative-going peak of an auditory-
evoked response. It is generated in primary auditory cortex
(Campbell et al., 2007), functions in onset detection, stimulus-
specific (Näätänen et al., 1988) as well as complex feature
analysis (Banai et al., 2005; Johnson et al., 2007) and is related
to both brainstem processing (Musacchia et al., 2008) and
conscious perception of sound (for review, see Näätänen et al.,
2011). Related to temporal context and flexibility the N1 peak
amplitude is smaller when sound onset is predictable, as in a
rhythmic context (Parasuraman and Beatty, 1980; Parasuraman
and Mouloua, 1987; for review, see Sanders, 2013), and gets
larger with task conditions requiring voluntary attention and
increased detection difficulty (Hillyard et al., 1973; Näätänen
and Michie, 1979; for review, see Näätänen et al., 2011). These
data also support the now classic inverse relationship of “neural
efficiency” such thatmore intelligent subjects exhibit lower energy
consumption and cortical activation (Haier et al., 1992), which
is assumed to be reflected by smaller EEG and ERP amplitudes.
According to previous studies and theories, we predict that
sounds presented in a rhythmic context will be more efficiently
processed, resulting in easier target detection and smaller N1
peak amplitudes, compared to sounds presented at random time
intervals.

We measured fMRI simultaneously with EEG to be able to
localize brain regions exhibiting differences in processing sounds
in the rhythmic and vigilance contexts with great accuracy.
Furthermore, the hemodynamic response measured with fMRI
(the blood oxygenated level dependent or BOLD response)
reflects energy use by neurons (Huettel et al., 2009) and therefore
provides ameasure of processing efficiency that is complementary
to the N1 amplitude measure. As the fMRI signal strength (most
probably) reflects energy use of localized neuronal populations,
it provides complementary support for the presumed different
efficiency of variations in cortical activity between rhythmic and
vigilance conditions. Thus, we predict that both fMRI signal
strength and N1 amplitude should be smaller under rhythmic
conditions.

MATERIALS AND METHODS

Task and Experimental Design
Eleven healthy adults participated in the study (mean age 30.6;
age range 23–44; four males). All participants had normal or
corrected-to normal vision, and normal hearing as confirmed
by hearing thresholds obtained using an audiometer (Earscan
3 Manual audiometer, Micro Audiometrics Corp, Murphy, NC,
USA). Participants performed an auditory oddball detection task
during the EEG–fMRI recordings, which took place at the Center
for Advanced Brain Imaging (CABI) at the Nathan S. Kline
Institute for Psychiatric Research (NKI) in Orangeburg, NY, USA.
All procedures followed were approved by the CABI Protocol
Review Committee and the NKI Institutional Review Board.
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FIGURE 1 | Schematic representation of the stimulation design. (A) An exemplar run, consisting of eight blocks: four with rhythmic tones, four with random
tones. (B) The timing of tones in the rhythmic 1.6 Hz (upper time scale) and random 1.6 Hz (lower scale) blocks. In rhythmic blocks, tones were presented at a
regular SOA of 624 ms. In random blocks, tones were presented at a random onset time (interval 20–604 ms after trial onset), producing an irregular SOA between
40 and 1208 ms and a mean SOA of 624 ms. “Beeps” are standard tones (440 Hz) and “boops” target tones (5–10% lower in frequency). Note that the overall
structure was the same in the 2.2 Hz driving rate condition, but the exact times were different: the SOA was 454 ms during rhythmic blocks, and between 20 and
434 ms during random blocks.

Informed consent was obtained from all participants prior to the
measurements.

The software package Presentation® (Neurobehavioral systems,
Inc., Berkeley, CA, USA) was used for stimulus presentation,
response logging and synchronizing the stimuli with the fMRI
scanning pulses. Standard stimuli consisted of 440 Hz pure tones,
30 ms in duration and a 5 ms rise/fall time (Audacity, Inc.).
Subjects had to detect infrequent targets (17% of the stimuli)
with a lower frequency. The number of standards between two
subsequent target tones was 2–8 (randomly selected during the
experiment). Target frequency was selected according to a just-
noticeable-difference (JND) approximation performed in the
scanner, the difference between standard and target frequencywas
in the range of 5–10%. Tones were presented in blocks of 30 s,
with baseline periods of 15 s in between. In half of the blocks,
tones were rhythmic (with equal inter-stimulus intervals), in the
other half randomly spaced (with randomly varied inter-stimulus

intervals). Each run consisted of eight blocks in total, four random
blocks and four rhythmic blocks, in alternating order (Figure 1A).
The beginning of a block was cued with a brief sound (a high-
pitched beep), 2 s prior to the first tone of a block, to avoid a state
of vigilance during the baseline periods.

The average driving rate (the rate at which tones were
presented) in random blocks was equal to the rhythmic rate:
1.6 Hz in two runs, 2.2 Hz in the two other runs. These driving
rates were selected on the basis of a pilot experiment using the
same oddball detection task (n = 6) and for theoretical reasons:
the range of 1–2Hz (delta-range) contains the frequencies ofmany
relevant environmental rhythmic events (Schroeder and Lakatos,
2009). Starting condition (Ran, Rhy) and driving rate (1.6, 2.2 Hz)
of runs were counterbalanced.

For the rhythmic blocks, the 1.6 Hz driving rate was
implemented by presenting the tones with a fixed stimulus onset
asynchrony (SOA) of 624 ms. Tones were presented in trials of
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624 duration, one tone in each trial (see Figure 1B). In rhythmic
blocks, tones were presented at exactly 312 ms after the start of
the trial. In the random 1.6 Hz blocks, the onset of a tone was
randomly selected from an interval of 20 ms to 604 ms after the
start of the trial. This produced an average SOA of 624 ms. In the
2.2 Hz runs, trial duration was 454 ms. For the rhythmic blocks,
the tones were presented at exactly 227 ms after the start of the
trial. In the random 2.2 Hz blocks, the onset of the tones was
randomly selected from an interval of 20–434 ms after the start
of a trial, producing an average SOA of 454 ms.

Behavioral Data Analysis
We analyzed the reaction times (RTs) to correctly detected targets
(hits), and the ratio of correctly detected targets vs. total amount
of targets (hit rates, HRs). Reaction time and HR were used as
dependent variable in variables in two-way analyses of variance
(ANOVA’s) with condition (Ran vs. Rhy) and driving rate (1.6 vs.
2.2 Hz) as independent variable.

EEG Recordings and Analysis
Electroencephalographic data were recorded using an MR
compatible system developed to record EEG during continuous
fMRI scan acquisitions (BrainVision MR series, Brain Products,
Munich, Germany). A 64-channel MR-compatible ring electrode
cap with 10–20 International System electrode placement cap
(including an electrocardiogram, ECG, electrode on the back)
was applied to the subject prior to entrance into the magnet.
Electrode to scalp contact was adjusted until impedance was
<10 kOhm at each electrode. The vertex electrode was used
as the online reference and data were sampled at 1000 Hz
with a bandpass filter of 0.1–250 Hz applied online. Once
in the MRI scanner, impedance was rechecked and electrode
contact adjustments were made if necessary. Offline, scanner
and heartbeat artifacts were removed with the native BrainVision
artifact removal procedures in which a template scanner and
heartbeat artifact are constructed and the pattern of that
template is removed from the data via application of an inverse
matrix (e.g., singular value decomposition). Following this
decomposition, data were exported to a MATLAB compatible
format. Independent component analysis was performed using
the infomax algorithm to identify eyemovement artifact (fieldtrip
toolbox). Components that exhibited an eye movement pattern
(e.g., strong activity in frontal eye channels) were removed from
the data and portions of remaining movement-related artifacts
were rejected by visual inspection.

For ERP averaging, the data were low-pass filtered at 55 Hz and
epoched with a pre- and post-stimulus time window of −150 to
600 ms, respectively. Inspection of the data at this point revealed
an intermittent 6 Hz electrical noise artifact that was evident in six
out of 10 of the subjects which was a result of loose cap cabling
within the magnet. Rejection of this intermittent noise by eye
in the continuous data helped to greatly reduce the prevalence
of this in the accepted EEG. Individual ERP averages were then
created with an artifact rejection criterion of ±150 µV. Channels
with >±2.5 SD from the mean amplitude in the post-stimulus
time (0–600) were examined visually, and if found to be noisy,

were excluded from further analysis. For one participant, we only
acquired fMRI data, so the EEG analyses were performed on 10
participants.

In order to determine putative differences in the auditory-
evoked potential across conditions, a bootstrap analysis with
false discovery rate (FDR) correction for multiple comparisons
(α < 0.001) was applied to fronto-central electrodes (Fpz, Fp1,
Fp2, Fz, F1, F2, F3, F4, Fc1, Fc2, Fc5, Fc6, Cz, C3, C4, Pz).
Following the establishment of ERP differences, global field power
(GFP) was then calculated from all of the individuals good
electrodes, using the EEGLAB process based on the Lehmann
and Skrandies (1984) formula. N1 peaks in the individual
GFP averages were picked automatically at maximum values
between 115 and 145 ms. Visual inspection of the automatic
detection was performed to confirm that the automatic marker
placement fell on a peak. Once latency and amplitude values were
obtained, student’s paired t-tests were conducted to determine
the relative latency and amplitude in the rhythmic and random
conditions.

It is important to note that at the 2.2 Hz rate there was no clear
N1, rather a steady-state response with merged N1-P2 peaks. As
we have clear hypotheses concerning the N1, we decided to focus
the ERP analysis on the 1.6 Hz-rate. The reason to include two
different rates was to enable generalization of the results, and the
other measures (fMRI, behavioral) show that the general effects of
ran vs. rhy are in the same direction for the two driving rates. To
make sure that the 1.6 Hz rate is not affected by similar problems
of the merged N1-P2 peaks, we have run the analyses with a sub-
sample of the random trials with longer SOA’s (>300 ms).

fMRI Acquisition and Analysis
Scanning was performed on a Siemens Tim Trio scanner with 12-
channel head coil. A gradient-echo EPI (echo planar imaging)
sequence was used with the following parameters: TR 2000 ms,
TE 30 ms, FA 80°, FOV 240 mm, matrix 96 × 96 (in-plane
resolution 2.5 mm × 2.5 mm), slice thickness 3.6 mm, gap
0.9 mm, 25 slices. Intra-session anatomical scans were acquired
in each participant using an MPRAGE sequence with 192
sagittal slices and voxel size of 1 mm × 1 mm × 1 mm.
Images were analyzed using BrainVoyager QX (Brain Innovation,
Maastricht, Netherlands; Goebel et al., 2006). Preprocessing
included slice timing correction, 3Dmotion correction, high-pass
filtering using GLM-Fourier (two cycles) and spatial smoothing
(FWHM = 8 mm). Functional slices were co-registered to the
anatomical volume using position parameters from the scanner
and intensity-driven fine-tuning, and transformed into Talairach
space. For data presentation, an averaged anatomical volume was
created from the 11 individual anatomical volumes.

The functional time-series were analyzed using a whole-brain,
random-effects general linear model (GLM) with predictors Cue,
Rhy, and Ran. Predictor time-courses were adjusted for the
hemodynamic response delay by convolution with a double-
gamma hemodynamic response function. To get an overview of
brain regions activated during the sound detection task, we first
created maps using the second-level contrast of (Rhy or Ran) vs.
baseline. To test which brain areas responded differently during
the random and rhythmic blocks, we performed the second-level
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contrast of Ran vs. Rhy, masked with the positive map of the first
contrast (i.e., restricted to voxels in which Rhy or Ran> baseline).
To correct for multiple comparisons, we corrected the map of the
first contrast (Rhy or Ran vs. baseline) using the FDR (Genovese
et al., 2002) at Q(FDR) < 0.05. For the second contrast (Ran
vs. Rhy), we used cluster-extent thresholding: maps thresholded
at an initial voxel-level p-value were submitted to a whole-
data correction criterion based on the estimate of the map’s
spatial smoothness and on iterative Monte Carlo simulations for
estimating cluster-level false-positive rates (Forman et al., 1995;
Goebel et al., 2006). After 1,000 iterations, the minimum cluster-
size corresponding to a corrected false positive probability of
<0.05 was applied to the statistical maps. From the clusters in
resulting corrected maps, we extracted individual beta-estimates
for the Ran and Rhy conditions.

The second analysis (Ran vs. Rhy) was complemented with an
ROI-based GLM in which we modeled the eight blocks of each
run as separate predictors. This GLM consisted of nine predictors
(Cue, Rhy1, Rhy2, Rhy3. Rhy4, Ran1, Ran2, Ran3, Ran4) and was
used to extract estimates of fMRI signal change (beta estimates)
for each block, from the regions revealed by the whole-brain Ran
vs. Rhy contrast.

RESULTS

Behavioral Results
Analyses of the behavioral responses reveal a RT and HR
advantage for targets in rhythmic streams (Figure 2A). Using
HR as dependent variable, we found a main effect of Condition
[Rhy> Ran: F(1,10)= 5.95, p< 0.05]. The main effect of Driving
rate was non-significant [Hi vs. Lo; F(1,10) = 3.38, p < 0.1],
and neither was the interaction of Condition and Driving rate
[F(1,10)= 0.99, p< 0.5]. Two participants showed very low HRs,
especially for the random condition (24 and 34%, whereas the
mean HR was 75% for random). This may indicate that the JND
procedure to determine the target did not work well for these
participants and that the target was too difficult for them. Because
the mean RTs for these subjects would be based on very few hits
(only one or two hits in some of the runs), we excluded these
subjects from the RT analysis. Using RT as dependent variable,
we found main effect of Condition [Ran > Rhy: F(1,8) = 7.35,
p< 0.05] and a main effect of Driving rate [Lo>Hi: F(1,8)= 5.9,
p< 0.05], the interaction between Condition andDriving rate was
non-significant [F(1,8)= 0.001, p< 1.0].

To examine how RT’s and HR’s evolved over the course of
a run, we also looked at average RTs and HRs per block. As
displayed in Figure 1A, there were eight blocks in each run:
four random blocks and four rhythmic blocks, and the runs
were counterbalanced with regard to which condition started. We
plotted the RT per condition for blocks 1–8 in Figure 2B (left
graph) separately for the runs that started with a random and runs
that started with a rhythmic block. Figure 2C (left graph) shows
the same for HRs per block. To be able to average RTs and HRs
per block for all the runs together, we shifted half of the runs (the
runs with rhythmic as first block) to match the conditions. The
averaged RT across all runs are shown in Figure 2B (right graph),
the averaged HR’s across all runs in Figure 2C (right graph). Note

that we only show the blocks that overlapped for all four runs in
each subject (seven blocks in total).

fMRI Results
The fMRI results indicate that during the sound detection task,
a distributed network is recruited including superior temporal
gyrus (STG) bilaterally, insula, superior frontal gyrus (SFG,
medial), the thalamus, the brain stem and the cerebellum
(Figure 3A, orange map). In addition, several brain regions
seem suppressed during task performance relative to the baseline
periods (Figure 3A, blue map).

Within the positively activated network, the Ran vs. Rhy
contrast revealed a higher BOLD response in the STG bilaterally
during random blocks compared to rhythmic blocks (Figure 3B).
The averaged fMRI time course in both STG regions over the
course of a block shows an interesting dynamic. The BOLD signal
initially increases, followed by a drop in signal at∼10 s, afterwhich
it increases again more gradually. Nonetheless, throughout the
entire block the BOLD signal is stronger during the randomblocks
vs. the rhythmic blocks.

fMRI-Behavioral Correspondence
To examine how the fMRI activity changed over the course of
the runs, we ran an ROI-based GLM on the averaged time-
series of the left and right STG clusters (shown in Figure 3B)
with separate predictors for the eight blocks in each run (see
Figure 1A, for schematic explanation of blocks vs. runs). The
beta estimates for each block are shown in Figure 4. Note that
as in Figures 2B,C (right graphs), we shifted half of the runs
to match the conditions, and only show the seven blocks that
overlapped across all four runs in each subject. To test how
well the RTs and fMRI response strength corresponded, we
performed bivariate correlation analyses between the fMRI beta
estimates in the left and right STG against RT. We took all
blocks as separate cases and as RT’swere non-normally distributed
[D(264) = 0.145, p < 0.001], we performed non-parametric
correlation tests (Spearman’s rho). For RT and right STG beta’s
the correlation was significant (rs = 0.26, p < 0.001), for RT and
left STG beta’s it was not (rs = 0.03, p< 0.56).

EEG Results
Our bootstrap analysis of fronto-central waveforms between
the two conditions revealed consistent differences (α < 0.001)
between random and rhythmic responses in the N1 time window
(see gray shaded regions in Figure 5A). Additional regions of
differences were also observed at later time points (e.g., over the
P2/N2 region), but were less consistent. Bootstrap analysis of scalp
topography showed that the negativity in the random condition
was significantly larger (α < 0.001) in several fronto-central
electrodes during the N1 time window (filled red electrodes,
Figure 5B). Analysis of whole scalp GFP (Figure 6) over the N1
time region showed smaller [t(9) = 2.74, p < 0.04] and faster
[t(9) = 3.21, p < 0.02] N1 peaks in the rhythmic condition
compared to random (Figure 7). These measurements of the
N1 component that were simultaneously recorded as the fMRI
signals thus complement the fMRI data by indicating that the
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FIGURE 2 | Behavioral results. (A) Mean hit rates and reaction times for all targets in the experiment, separated for condition (i.e., targets occurring in rhythmic vs.
random blocks) and driving rate (i.e., targets occurring in runs with 1.6 vs. 2.2 Hz sound streams). (B) Mean reaction times to targets in each block of a run (block
1–8, see Figure 1A). Left panel: reaction times per block, separate for runs starting with rhythmic (red line) and random (blue line). Right panel: reaction time
averaged across all runs. Note that half of the runs (the runs starting with rhythmic) were shifted to match conditions, and only the seven blocks for which all four runs
in each subjects overlapped are shown. (C) Mean hit rates (% detected targets) in each block of a run (block 1–8; see Figure 1A). Left panel: hit rates per block,
separate for runs starting with rhythmic (red line) and random (blue line). Right panel: hit rates averaged across all runs. Note that half of the runs (the runs starting
with rhythmic) were shifted to match conditions, and only the seven blocks for which all four runs in each subjects overlapped are shown.
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FIGURE 3 | fMRI results. (A) Overall pattern of fMRI activation during the sound detection task. The orange map shows voxels where the fMRI response during
either task condition was greater than during baseline, the blue map shows voxels where it was lower than baseline. The maps are shown in four transversal slices of
the average anatomical image of all participants, going from the top (top left slice) to the base (lower right slice) of the brain. (B) Rhythmic vs. Random comparison.
Left panel: cluster-level corrected maps of the whole-brain Random vs. Rhythmic contrast, shown in the averaged anatomical image of all participants. Two clusters
on the superior temporal gyrus were revealed, one in the left (upper images) and one in the right hemisphere (lower images). Right panel: averaged BOLD response
time courses for the random (red lines) and rhythmic (green lines) conditions (averaged at the block onset).
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FIGURE 4 | fMRI response (beta estimates from left and right STG) for
separate blocks. In the graphs, beta estimates for random and rhythmic
blocks were averaged across all runs. Note that half of the runs (the runs
starting with rhythmic) were shifted to match conditions, and only the seven
blocks for which all four runs in each subjects overlapped are shown.

more directlymeasured electrophysiological activity shows effects
in the same direction.

DISCUSSION

Behavioral Results
Our behavioral results show more accurate and faster detection
of targets embedded in rhythmic (predictable) streams compared
to those occurring randomly in time, supporting the improved
behavioral efficiency of rhythmic mode processing (Schroeder
and Lakatos, 2009). This is in concert with previous findings
showing that temporally predictive environmental cues can
improve target detection and discrimination (Jones et al., 2006;
Praamstra et al., 2006; TenOever et al., 2014), see also (Thorne and
Debener, 2013). Moreover, we found faster RTs within streams
of higher driving rates, which suggests flexibility in our use of
temporal cues, such that important information can be detected
faster if the environmental rhythm is pushing us to do so.

BOLD Response
The fMRI results showed a stronger BOLD response bilaterally
in superior temporal cortex during the random blocks compared
to the rhythmic blocks. These regions are most likely parts of
the auditory association cortex, which comprises the superior-
and transverse temporal gyrus areas surrounding the primary
auditory cortex (Formisano et al., 2003). Although the exact

FIGURE 5 | Grand average ERP responses to sounds in Rhythmic and
Random Conditions. (A) Random (red line) and Rhythmic (black line) grand
average responses are shown for fronto-central electrode sites. Significant
response differences are shown in shaded gray. (B) Scalp topographies over
the N1 time window in both Random (bottom plots) and Rhythmic (middle
plots) conditions show a fronto-central negativity that is typical of auditory N1
responses. The negativity is stronger in the RAN condition at 125, 135, and
145 ms over several frontal electrodes (denoted in top plots, by red circles).

relation between the hemodynamic responses measured with
fMRI and the underlying neural activity is still uncertain, a
body of evidence shows that hemodynamic responses are strongly
positively correlated with broadband high-gamma range neuronal
activity, and negatively correlatedwith lower frequency oscillatory
activity (Mukamel et al., 2005; Niessing et al., 2005; Scheeringa
et al., 2011).

The stronger fMRI response in auditory areas while
participants were attending to the randomly timed tones
(i.e., a situation of vigilance) supports our prediction that this
temporal context is more metabolically demanding. It is thought
that vigilance elicits both the enhancement of continuous
high-gamma power as well as low frequency power suppression
(Schroeder and Lakatos, 2009). Because high gamma power is
strongly correlated with multi-unit neuronal firing, this predicts
a stronger BOLD response in vigilant states. Furthermore, it
highlights an interesting paradox: the random condition may
impose “low-frequency oscillatory suppression” on auditory
cortex and this may be accompanied by a larger “evoked N1
response,” perhaps due to an improved signal-to-noise ratio.
Congruent with this idea, Niessing et al. (2005) showed that
delta-power (1–4 Hz) correlated negatively with hemodynamic
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FIGURE 6 | Grand average global field power. The mean global field power
(GFP) was computed over time for all scalp electrodes. GFP in the Rhythmic
condition is shown in black, and the Random response is shown in red.

FIGURE 7 | N1 peak latency and magnitude in Random and Rhythmic
Conditions. Mean N1 latency (A) and global field power (B) of individual
waveforms to tones in Rhythmic (black bars) and Random (red bars)
conditions. Error bars show one standard error from the *denotes
significance p < 0.05.

response strength. As the driving rate of the sounds in the
rhythmic condition in the current study was within the delta
range (1.6 and 2.2 Hz), the lower fMRI response during rhythmic
vs. random blocks might be expected to accompany enhancement
of delta-range oscillatory power.

Simultaneous EEG
The simultaneously recorded EEG data enable a more direct
linking of the fMRI response to neural activity. The increased
amplitude and latency of the auditory N1 to the tones in the
random blocks supports the interpretation of increased neuronal
metabolism due to greater cognitive-energetic effort in the
following ways. Peak amplitude and latency are generally thought
to reflect the timing and size of neuronal population’s response
to incoming stimuli. The N1 amplitude effect demonstrated here
is explained by the predictive suppression hypothesis (Lakatos
et al., 2009, 2013b) as follows: (1) pure tones activate only a small
portion of the tonotopic representations in auditory cortices, and

while these regions are entrained to an attended stimulus stream
at an optimal excitability phase, all surrounding regions (with
different spectral tuning) are entrained to the same rhythmic
stream at a low excitability phase (Lakatos et al., 2013a; O’Connell
et al., 2014), and (2) the attentional enhancement in the first
case is swamped by the attentional suppression of the much
larger surround area (Lakatos et al., 2013b). Paradoxically, the
hypothesized net effect of stimuli in a rhythmic context is better
target detection, but decreased amplitude for attention-related
ERP peaks at the scalp (Lakatos et al., 2013b).

In addition, our N1 amplitude finding is compatible with
previous reports that the N1 is larger in amplitude when the
timing of sound onset cannot be predicted (Lange, 2009). Because
the BOLD signal reflects changes in blood oxygenation levels
triggered by increased metabolic demands of locally activated
neuronal populations (Huettel et al., 2009), predictive suppression
should correspond with a decrease in the BOLD activity. This is in
fact what we see here: both the BOLD response and N1 amplitude
are smaller in the rhythmic condition.While our evidence appears
to converge regarding the size of recruited neuronal populations
across conditions, the earlier latencies in the rhythmic condition
provides additional information regarding response timing. The
N1 latency effect suggests that neuronal activity in the rhythmic
condition is faster or more strongly time-locked relative to firing
in the random condition. Overall, the N1 results show shorter
response times and less activation in the rhythmic condition;
suggesting more “efficient” neuronal processing compared to
responses in the random, unpredictable temporal context.

In addition to exploring processing efficiency across different
temporal contexts, we also wanted to examine whether the
efficiency flexibly changes by switching contexts, and by repeated
exposure to switching contexts. Therefore, we analyzed fMRI
activity, RTs to targets and HRs for the eight blocks, which
alternated between rhythmic and random sound streams, in each
run separately. We found a positive correlations between the
fMRI response in the right auditory cortex and RTs for the
separate blocks, suggesting that the patterns of hemodynamic
and behavioral responses to the alternating temporal contexts
was similar. Inspection of the evolution of the fMRI activity in
auditory cortex over the course of a run revealed that the higher
BOLD response in the random condition did only occur in the
beginning of the runs, whereas activity levels in the rhythmic
condition stayed constant (Figure 4). A smaller effect, but in
the same direction, seems apparent in the RTs (Figure 2B, right
panel) This suggests that, interestingly, sound processing and
target detection in the random blocks seems more adaptive
to repeated exposure, raising the possibility that processing of
randomly timed sounds becomes more efficient after repeated
exposure to unpredictable sensory information. This may reflect
a learning effect, as for rhythmically timed sounds wemay already
perform at “ceiling” level. More speculatively, it may be possible
that the low frequency activity that persists in vigilance conditions
(Landau and Fries, 2012; Fiebelkorn et al., 2013), adapts and
contributes incrementally to performance. This may be enhanced
by the fact that in our current design, rhythmic and random
periods alternated, possibly strengthening the reliance on lower
frequencies.
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Converging Effects
The combination of fMRI, ERP, and behavioral results support
the notion that temporally predictable input streams are
processed more efficiently than unpredictable ones, and that
the more efficient processing of rhythmic inputs benefits
target detection. How the auditory cortex communicates
with other components of the distributed activated network
during the listening task (Figure 3A) should be investigated
in more detail in future studies using connectivity analyses.
For example, it will be interesting to explore whether
connectivity between the thalamus and auditory cortical areas
depends on the rhythmicity of the input (Musacchia et al.,
2014).

These results have important implications for natural events
with complex temporal structure, such as speech, as they suggest
that it is indeed efficient for the brain to tune into a “rhythmic”
mode if temporal regularities are present in the environmental
input. However, the decrease of the rhythmic-random difference
in auditory cortex activation as well as RTs for target detection,
suggests that the brain is also able to adapt to situations of irregular
temporal input, i.e., becomes more efficient for repeated exposure

to such environments, possibly by learning what stimulus features
to suppress if certain dimensions remain irrelevant over time. An
interesting suggestion is that the adaptation to the unpredictable
streams may be facilitated by the intervening rhythmic streams
in the current design, which could enhance the predictive
suppression mechanism to act also in the less predictable periods.
This suggestion needs to be investigated in more detail in follow-
up studies.
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