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We hypothesized that embedding educational learning in a game would improve
learning outcomes, with increased engagement and recruitment of cognitive resources
evidenced by increased activation of working memory network (WMN) and deactivation
of default mode network (DMN) regions. In an fMRI study, we compared activity during
periods of learning in three conditions that were increasingly game-like: Study-only
(when periods of learning were followed by an exemplar question together with its
correct answer), Self-quizzing (when periods of learning were followed by a multiple
choice question in return for a fixed number of points) and Game-based (when, following
each period of learning, participants competed with a peer to answer the question
for escalating, uncertain rewards). DMN hubs deactivated as conditions became
more game-like, alongside greater self-reported engagement and, in the Game-based
condition, higher learning scores. These changes did not occur with any detectable
increase in WMN activity. Additionally, ventral striatal activation was associated with
responding to questions and receiving positive question feedback. Results support the
significance of DMN deactivation for educational learning, and are aligned with recent
evidence suggesting DMN and WMN activity may not always be anti-correlated.

Keywords: default mode network, working memory, memory, reward

INTRODUCTION

Games offer incentivised conditions that are remarkably effective in engaging players in goal-
directed behavior (Przybylski et al., 2010). This ability of games to engage their players has
prompted the idea that “gamifying” learning experiences (i.e., embedding the learning in a game-
like context) might improve learning outcomes. This interest may reflect common-sense reasoning
that, if gamification leads to a more rewarding environment for learning, we might be more
engaged and so learn more rapidly. A scientific basis for this idea is provided by data showing
incentives can enhance a range of cognitive processes (Krawczyk and D’Esposito, 2013) including
working memory, which is considered a strong predictor of educational learning (Gathercole
et al., 2004; Alloway and Alloway, 2010). Additionally, human fMRI studies have shown reward
can increase activity in prefrontal and parietal regions associated with working memory (Pochon
et al., 2002; Taylor et al., 2004; Krawczyk et al., 2007; Beck et al., 2010; Savine et al., 2010). In a
verbal working memory task, for example, incentive motivation can modulate performance with
amplification of activity within prefrontal and visual association regions selective to processing the
perceptual inputs of the stimuli to be remembered (Gilbert and Fiez, 2004).

Efforts to localize working memory function during learning have converged on a dorsal
fronto-parietal network that is activated in demanding tasks that require the processing of material
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presented (Corbetta and Shulman, 2002). Activation of this
network has been recorded in efforts to learn a range of new
abilities that include complex mathematics, second language
acquisition (Lopez-Barroso et al., 2015) spatial skills (Nemmi
et al., 2013) and learning in many other domains (see Chein
and Schneider, 2005 for review). In contrast to increased activity
in the working memory network (WMN) being associated
with top-down modulation of attention and working memory,
the default-mode network (DMN) may decrease its activity
when attention is focused on an external task. Insight into the
function of the DMN derives from two types of study, one in
which participants undertake self-referential tasks such as those
involving autobiographical memory, thinking about one’s future,
theory of mind and affective decision making (Ochsner et al.,
2004; Buckner et al., 2008; Spreng et al., 2008), and other studies
involving a passive or resting state, when participants are not
engaging with a specific task (McKiernan et al., 2003;Mason et al.,
2007; Christoff et al., 2009).When participants are supposed to be
engagedwith a task, the DMNhas been observed to activate when
attention is shifted away from the task toward unrelated internal
thoughts and feelings, i.e., during the act of mind-wandering
(Smallwood and Schooler, 2006; McVay and Kane, 2010). Mind
wandering may not always be wholly unhelpful, since it can
support autobiographical planning and creative problem solving
(Mooneyham and Schooler, 2013). However, it is associated
with a failure to encode (Otten and Rugg, 2001; Wagner and
Davachi, 2001; Daselaar et al., 2004, 2009) and to difficulties
in subsequent comprehension when it occurs during reading
(Schooler et al., 2004; Smallwood et al., 2008; Unsworth and
McMillan, 2013). It might, therefore, be assumed antithetical
to most notions of educational engagement. Andrews-Hanna
et al. (2010) have classified some DMN regions as subsystems,
with a dorsal medial prefrontal subsystem preferentially engaged
for participants’ self-referential judgements about the present
and a medial temporal lobe subsystem by episodic judgements
about their personal future. In contrast, their review identified
the anterior medial prefrontal cortex (aMPFC) and posterior
cingulate cortex (PCC) as core components which activated in
both such conditions and were selected as the focus of DMN
analysis in the present study. The putative opposite effects of
engaging with an external task on the WMN and DMN may
explain why anticorrelation of these two networks has been
frequently reported (Greicius et al., 2003; Fox et al., 2005;
Fransson, 2005; Weissman et al., 2006; Buckner et al., 2008;
Christoff et al., 2009; Panda et al., 2014), and has resulted in them
being dubbed the “task-positive” and “task-negative” networks
(Fox et al., 2005).

In light of the above arguments, if gamification increases
engagement with a goal-directed educational learning task
(without additional self-referential or creative processing), we
might expect to observe increased WMN activity and decreased
DMN activity with gamification. Such predictions could be tested
using a well-theorized learning game environment designed to
engage its player. The mechanisms by which games, including
learning games, incentivise their players remain to be fully
understood, but some insights can be provided by our emerging
understanding of the reward system. Midbrain dopamine

neurons which project to the ventral striatum (VS) fire in
response to cues that predict reward (Schultz, 1998) and during
anticipation of reward (Fiorillo et al., 2003), with fMRI research
indicating that VS activation increases in proportion to the
magnitude of anticipated reward (Knutson et al., 2001). In this
way, VS activation provides a potential index for motivational
state and an increase in VS response has been reported when
adults play off-the-shelf video games (Koepp et al., 1998; Hoeft
et al., 2008; Weinstein, 2010; Lorenz et al., 2015). Activation of
this dopaminergic pathway has been shown to predict declarative
memory formation, and an estimate of VS response has been
shown to predict correct answers in an educational learning
game (Howard-Jones et al., 2011). The features of a game
that contribute to activation of this midbrain dopaminergic
response and its potential role in cognition are the subject
of nascent research, but the schedule of rewards that games
offer their players may play an important role in their power
to engage and to influence our learning (Howard-Jones and
Demetriou, 2009; Bavelier et al., 2010; Howard-Jones et al., 2011).
For example, games often escalate rewards and so challenge
expectations in a positive way. A strong relationship between
midbrain dopaminergic response and prediction error (Schultz
et al., 1997; Schultz and Dickinson, 2000) suggests this scheduling
may help sustain greater phasic responses to anticipated rewards
than offering the same value of reward throughout. Also, since
game players find playing with or against each other more
engaging and enjoyable (Gajadhar et al., 2008), the reported
role of peer-presence on reward system activity (Chein et al.,
2011) may also be a factor. Additionally, it has been suggested
that the uncertain nature of reward in all games may increase
the brain’s response to the anticipated reward (Howard-Jones
and Demetriou, 2009). In primate and human studies (Fiorillo
et al., 2003; Preuschoff et al., 2006), the uncertainty of a reward
has been shown to increase the release of midbrain dopamine
into the VS, helping to explain our preference for uncertain
rewards our attraction to games (Shizgal and Arvanitogiannis,
2003). This joins other behavioral reports of improved learning
when rewards are uncertain (Ozcelik et al., 2013; Devonshire
et al., 2014 ) to suggest increased reward system activity may
underlie the supposed educational advantages of gamification.
These three factors (competition, escalation and uncertainty)
characterize the Game-based learning context investigated here
(Howard-Jones et al., 2014a). We do not, of course, claim that
our Game-based condition can be considered representative of
all games. Rather, the context we attempted to create in this
condition comprised a particular configuration of a small set of
features common to many popular games, and for which we
have some theoretical rationale for considering may contribute
to engagement and learning. We would also emphasize that the
evidence base for theorizing the design of learning games is very
incomplete and the underlying neural and cognitive processes
are poorly understood. Indeed, there have been no previous
attempts to physiologically measure reward system response in
educational learning games or even, to our knowledge, in any
educational learning task.

To explore how “gamification” of a learning context might
influence engagement and learning, we used fMRI to measure
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brain activity when adults were studying in three conditions
in a within-participants design. Our design also allowed the
educational learning achieved between conditions within a
defined time period (a learning window) to be meaningfully
compared. In this way, it provided an indication of the
comparative efficiency of the three approaches, which has been
identified as an important issue for those interested in evaluating
the effectiveness of digital game-based learning (All et al., 2015).
The three conditions were a Study-only condition in which
learning material (comprising text and images) was presented
during the learning window, followed by an exemplar question
and answer, a Self-quizzing condition in which each learning
window was followed by a question that the student must
answer in return for a fixed number of points, and a Game-
based condition in which the learning window was followed
by a question which the participant competed with a peer to
answer correctly, with an escalating and uncertain number of
points as a reward. The Self-quizzing condition was intended
to represent a level of gamification between that of the Study-
only and Game-based conditions. This self-quizzing condition
required the participant to test themselves, as in a solitary
quiz, but omitted the factors of competition and escalating
and uncertain rewards. In behavioral terms, we hypothesized a
measurable increase in learning, as measured by pre-test/post-
test, as the context became more gamified (Study-only < Self-
quizzing <Game-based). Alongside this behavioral increase with
gamification, we hypothesized greater activation of WMN and
deactivation of DMN during learning, and greater increases in
ventral striatal activity when responding to questions and when
receiving positive feedback.

MATERIALS AND METHODS

This study was carried out in accordance with the ethical
procedures of the University of Bristol (Graduate School of
Education) with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Participants
Informed consent was obtained from 24 healthy student
volunteers (6 males, 18 females) who responded to an
advertisement placed in the Education Department of the
University of Bristol. The department’s population has a strongly
international profile and the study was conducted in both Spanish
and English to facilitate recruitment. The first 12 volunteers in
each language category who met criteria (i.e., right-handed, no
metal, no psychoactive medications) were recruited. The mean
age of participants was 34.7 years, SD = 7.6 years.

Stimuli
For the sake of ecological validity, learning corpora were
constructed that addressed a diverse range of educational
topics (including history, biology, mathematics, grammar,
electronics, music, horticulture). Four corpora were developed,
each consisting of 10 topics that were exclusive to that corpus.

For each topic, learning content was generated that consisted of
a screen of text and pictures, along with an associated pair of
questions (resulting in 10 screens of content and 20 questions
for each corpus). Corpora (content and questions) were designed
to provide an educational challenge that extended beyond factual
recall. To achieve this, each of five levels of educational learning
objective, as defined in educational terms by Bloom’s taxonomy
(Bloom, 1956), were represented within each corpus by two pairs
of questions. In this way, each corpus focused four questions
on each of five of the six educational learning objectives defined
by Bloom (remembering, understanding, applying, evaluating, and
analyzing). The exception was creativity which was omitted due
to difficulties in assessing this type of learning objective in the
present experimental paradigm.

The four corpora were permutated across the three scanning
conditions of each participant, with the remaining corpus being
reserved for the Game-based condition when they competed with
their partner as their partner was being scanned. In this way,
each participant encountered each learning corpus only once.
Additionally, within each subgroup (N = 12) of Spanish and
English speakers, and within each presentation position (first,
second, third), each condition was combined once only with each
corpus.

Three different sets of 40 multiple-choice questions (120
questions) on the learning content were also generated. These
were designed to test participants knowledge and understanding
of the learning content immediately before (pre-test) and after
(post-test) being scanned and following a period of 3–4 weeks
(retention test). Each set comprised 1 question on each of the
10 screens of content within each of the four corpora. These
were novel questions, in the sense that they were similar in form,
but did not replicate, the questions that participants experienced
during scanning. The three sets were allocated for use as pre-,
post-, and retention tests, with balanced permutation of question
set across the three types of test within each subgroup of Spanish
and English speakers.

Task and Conditions
Participants experienced three experimental conditions that
represented three learning contexts (Study-only, Self-quizzing,
and Game-based). Following study of each topic, the Study-only
condition required participants to observe an exemplar question
and answer, the Self-quizzing condition required them to select
an answer for the question, and the Game-based condition
required them to compete with a friend to select an answer,
and to game their potential points on a wheel of fortune. These
conditions were implemented using an interface resembling that
used by Zondle Team Play (Zondle, 2013), an online app that
is used by teachers to facilitate whole-class learning games (see
Figure 1). At the beginning of each condition, scores were
set at zero. At the beginning of each trial (featuring a new
question) participants were first presented with the learning
content required to answer the question for 28 s (see Figure 2).
After this time, the interface would appear that displayed the
multiple-choice question. The interface also showed the number
of points available for the trial (or question), and the current score
for the participant and (when present) their competitor. Two
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FIGURE 1 | Screen shot of interface when participants are receiving
feedback on their response to the question (with the correct answer
now indicated with a tick). The response (as shown by the symbol in the
first circle) of both the participant being scanned (player “a”) and their
competitor in the control room (player “b”) was correct. Since the participant
being scanned had decided to game their points (as shown by the filled
second circle) he/she may now win 30 points or no points depending on a
wheel of fortune that is about to appear. Their competitor did not decide to
game their points, so they will receive 15 points for their correct answer
irrespective of the wheel of fortune.

circles were shown in front of the participant’s current score. The
first circle related to the participant’s response to the question,
the second related to their decision to “game” their points in the
Game-based condition. After the question had been displayed for
8.4 s, the first circle illuminated for up to 2.8 s, signaling that
the participant must respond to the question. During this period,
the participant (and, if present, their competitor) was required
to press one of four buttons to indicate their preferred response
to the question, causing the first circle to change the color of
its interior to gray, indicating a response had been made. The
participant held two of the buttons (for choosing the first and
second response options) in a box in their left hand, and two
buttons (for choosing the third and fourth response options) in a
box in their right hand. The first circle’s illumination disappeared
at the end of this 2.8 s period, indicating that it was now too late
to respond.

In the Study-only condition, participants were presented
with a question accompanied by only one answer option (the
correct response). To balance conditions and ensure wakefulness,
participants were still required to select this answer, after which
their score would increase by 10 points.

In the Game-based condition, each of the four options
featured a plausible response to the question, and participants
were asked to choose the correct response during the 2.8 s
question response window. In this condition, at the end of this
period, the second circle would illuminate. This indicated that
the participant and their competitor had 2.8 s to press the first
button held in their left hand again, should they wish to see their
winnings for a correct answer “gamed” on the wheel of fortune,
and not press it if they did not wish to game their points. At
the end of this gaming decision window, the response of both
participant and their competitor to the question were revealed

(inside the first circle) and the correct response was marked with
a tick. At the same time, a participant and/or competitor who
had not decided to game their points but had answered correctly
would see their score increased by the points available for the
question. After 2.8 s of displaying this information, a spinning
wheel of fortune appeared. At the end of a further 2.8 s, the
wheel of fortune stopped on either blue or white (with 50%
probability). For both the participant and competitor, a correct
response and prior commitment to game their points would
result either in gaining double the points available for the round
if the wheel landed on blue, or in losing their points for the
round if it landed on white. The outcome of the spinning wheel
of fortune remained on the screen for 2.8 s, before the next trial
began. In this condition, points began with one point for the first
two questions and increased by two points every two questions
such that, over a 20 trial block, 19 points were offered for the
last two questions (averaging 10 points per question – as in the
other conditions). The order in which screens of learning content
appeared was automatically randomized for each participant,
with each screen appearing twice with a block, but always with
a new question. Participants were made aware that, all else being
equal, the average value of gaming was equivalent to the value of
not gaming.

The Self-quizzing condition was identical to the Game-based
condition except that no competitor was present and 10 points
were provided for selecting the correct response. The average
value of points for correct responses across the three conditions
was, therefore, equivalent.

To ensure equal durations of trials in all conditions, a
2.8 s rest was provided in the Study-only and Self-quizzing
conditions instead of a gaming decision window. A spinning
wheel of fortune still appeared in the Study-only and Self-
quizzing conditions for 2.8 s, but it was made clear to participants
that this had no implication for their scores.

Procedure
An advertisement requested volunteers to apply for “Brain
School,” in which successful candidates would have the
opportunity to learn some interesting general knowledge while
having their brain scanned. Candidates were called to attend a
preliminary meeting with researchers in pairs. They completed
an initial survey of medical history to ensure they met scanning
criteria, and the task and three conditions were then explained
to them. Both candidates then experienced a shortened (15 min)
version of the procedure together with fMRI simulation, each
competing with the other candidate in the pair during the Game-
based condition. Each applicant experienced two trials in each
condition, using content and questions not employed in the main
scanning experiment. This simulation helped ensure volunteers
were aware of the procedures they were consenting to, and also
helped acclimatize them to the scanning environment. Pairs who
passed safety criteria and were able to provide informed consent
for scanning were then offered a slot on one of four scanning
days.

On arrival at the scanner, each member of a participating pair
completed a 40 question pre-test (featuring 10 novel questions
for each corpus) which assessed their prior knowledge of the
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FIGURE 2 | Trial timeline for the Games-based condition, with main epochs of interest indicated in capitals. In this condition, participants were asked to
study the learning content carefully (which was presented twice in the block to encourage rehearsal, but always with a novel question) before answering a question in
return for points that could be doubled or lost on a wheel of fortune. At the same time, a competitor in the control room was trying to accumulate points in the same
way. Responses of participant and competitor were hidden from each other until the correct answer was revealed, and both were required to decide whether they
would be gaming on the wheel of fortune, should their answer be correct, before this outcome was known. The points available for a correct answer escalated over
the block from 1 to 19. The duration of each trial was 50.4 s resulting in each the three conditions of 20 trials lasting 16 min and 48 s and, allowing for a momentary
pause between conditions, a total functional scanning time of approximately 51 min.

material they would be learning. Inside the scanner, one member
of each pair was functionally scanned while experiencing all three
conditions in quick succession, with each condition comprising a
block of 20 trials. In Study-only trials, participants simply had to
study each slide of learning content, and the exemplar question
and answer that followed it, acknowledging the latter with a
press of a button. In the Self-quizzing condition participants were
required to choose an answer for the question from four options,
receiving 10 points for a correct response. In the game-based
condition, the other member of the pair (as competitor) was also
responding to this question from the control room, with both
participant and competitor winning points for correct answers
that escalated (from 1 to 19) over the block and that could
be doubled or lost on a wheel of fortune. Following the three
conditions, a structural scanwas completed before the participant
left the scanner. The pair of participants then swapped their roles,
with the other member of the pair experiencing three conditions
while being scanned and their partner acting as competitor in the
Game-based condition. When scanning was completed for both

members of the pair, the participants individually provided a brief
self-reported evaluation of conditions in terms of engagement
and stress, and were then asked to complete a 40 question post-
test. Self-reports of engaged and stressed participants felt were
indicated on a 5-point Likert scale, where 1 was labeled “not at
all” and five was labeled “extremely”. After a period of 3–4 weeks,
participants were recalled for another 40 question retention test.

fMRI Image Acquisition
All of the imageswere collected on a Siemens 3TMagnetomSkyra
MRI scanner at the Clinical Research Imaging Centre (CRIC) at
the University of Bristol. The functional images were collected
using an echoplanar T2∗ gradient-echo EPI sequence to measure
BOLD contrast over the entire brain (36 contiguous 3 mm-thick
axial slices; TR = 2800 ms; TE = 30 ms; flip angle = 90◦; in-
plane voxel size = 3 mm × 3 mm). A T1-weighted anatomical
dataset was obtained from each participant (TR = 1.800 ms,
TE= 2.25ms, FA= 9◦, Fov= 240mm× 240mm, ST = 0.90mm,
spatial resolution 0.90 mm × 0.90 mm × 0.90 mm).
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Visual stimuli were presented with a personal computer
running in-house software implemented in Visual Basic
(Microsoft), back projected onto a translucent screen and viewed
through a mirror attached to the head coil. The presentation
timing was controlled and triggered by the acquisition of the
fMRI images.

fMRI Data Analysis
The functional MRI data were pre-processed and analyzed offline
using SPM8 (Wellcome Department of Cognitive Neurology,
Institute of Neurology, London). For each subject, the functional
images were first spatially corrected for head movements using
a least-squares approach and six-parameter rigid-body spatial
transformations (Friston et al., 1995). The realigned functional
images were then corrected for differences in the timing between
slices, using the middle slice acquired in time as the reference.
The high-resolution anatomical image and the functional images
were co-registered and then stereotactically normalized (using
trilinear interpolation) to the Montreal Neurological Institute
(MNI) brain template used in SPM8 (Mazziotta et al., 1995).
The functional images were re-sliced with a voxel size of
3 mm × 3 mm × 3 mm and spatially smoothed with a
three-dimensional Gaussian filter with a 12-mm full-width at
half maximum to accommodate anatomical variations between
subjects (Friston et al., 1995).

The images were subsequently analyzed using a random-
effects approach. At the first stage, the time series of the
functional MR images obtained from each participant were
analyzed separately. The effects of the experimental paradigm
were estimated on a voxel-by-voxel basis, according to the
general linear model extended to allow the analysis of fMRI
data as a time series (Worsley and Friston, 1995). The three
key epochs of interest were the learning window (28 s, or 10
scans duration), the question response window (2.8 s, or 1 scan
duration) and the period when question feedback was provided
(2.8 s, or 1 scan duration). However, to allow measurement
of change in BOLD during the learning window, this was
further divided into five sub-periods (each consisting of 5.6 s
of data, or 2 scans), creating a total of seven epochs of
interest per trial. Time points at each of these seven epochs
(learning window as five sub-periods, response window, question
feedback) were further divided into correct and incorrect trials,
creating 14 regressors for each of the three conditions. In
these first level analyses, individual BOLD data was modeled
with boxcar stimulus functions convolved with a canonical
hemodynamic response function to form these regressors. These
single-participant models were used to compute three contrast
images (Self-quizzing vs. Study-Only, Game-based vs. Self-
quizzing and Game-based vs. Study-only) for each of the seven
epochs (learning window as five sub-periods, response window,
question feedback), with the contrast for the response window
arranged to compare trials with positive feedback to those with
negative feedback.

For inference at group level, these contrasts were subjected to
a second level analysis in which random effects group statistics
were generated. Regions of interest (ROIs) were a priori defined
as spheres of 7 mm radius at locations identified in previous

studies of the WMN and DMN. For the WMN, spherical ROI’s
of 7 mm radius were selected at locations identified by Koshino
et al. (2014) during preparation and execution periods of a verbal
working memory task. These were in the left (−42, 34, 19) and
right Dorsolateral Prefrontal Cortex (DLPFC) (40, 34, 21) and
a posterior inferior (BA40) region of the parietal lobe in left
(−46, −48, 40) and right Inferior Parietal Lobule (IPL) (43,
−43, 42). Of the many regions that have been associated with
the DMN, the aMPFC, and PCC are of particular significance,
since these have been considered to represent the major hubs
of the DMN (Andrews-Hanna et al., 2010). Therefore, for the
DMN network, spherical ROI’s of 7 mm radius were selected
at locations of aMPFC [(−7, 50, 14), (5, 50, 14)] and PCC
[(−7, −51, 26), (4, −51, 25)] as also identified by Koshino
et al. (2014). To test hypotheses regarding learning in the three
conditions, contrasts were first calculated to detect changes across
the whole learning window in WMN and DMN activity in the
Game-based condition compared to the Self-quizzing and Study-
only conditions, and in the Self-quizzing condition compared
to the Study-only condition. In contrasts where hypotheses
were upheld, a further analysis explored changes in parameter
estimates in the five sub-periods comprising the learning window.
The marsbar toolbox for SPM (marsbar.sourceforge.net/) was
used to extract parameter estimates within functional ROIs.
To test hypotheses regarding ventral striatal activity during
answering and feedback, spherical ROIs (6 mm radius) were
defined at the location of the Nucleus Accumbens (NAcc) at
(±10, 6, −4), as reported on the basis of anatomical and
functional studies (Neto et al., 2008), and converted to MNI
coordinates using the Brett transform (Brett et al., 2001). ROI
analyses for all contrasts were thresholded at p< 0.05, family wise
error (FWE) using small volume correction. For completeness, all
contrasts were also explored using whole brain analyses and these
are reported at Pfwe(whole-brain) = 0.05 with an extent threshold
of 10 voxels (Forman et al., 1995). Images of activity are displayed
at p < 0.001 uncorrected with an extent threshold of 10 voxels.

RESULTS

Behavioral Results
Behavioral results were analyzed using IBM SPSS Statistics,
version 22. The average number of questions correctly answered
by participants during the self-quizzing and game-based
conditions were similar (see Table 1) and a paired t-test did not
reveal significant differences when a comparison was made of
participants’ responses in these two conditions [t(24) = 0.429,
p = 0.672]. Independent samples t-tests did not reveal any
significant difference in the number of correct responses made
by participants and competitors in the game-based condition
[t(46) = 1.60, p = 0.496], or in the percentage of decisions
to game points following a correct answer in this condition
[t(46) = 0.933, p = 0.929].

Means and standard deviations of the pre-test, post-test and
retention scores for learning content experienced in each of the
three conditions are provided in Table 2 and suggest participants
generally found learning in each condition suitably challenging.
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TABLE 1 | Descriptive statistics of percentage correct scores achieved by
individuals during learning in the Self-quizzing and Game-based
conditions, and for decisions to game following correct responses in the
Game-based condition (N = 24 in all cases).

M SD

Self-quizzing % Questions answered correctly by participants 51.4 13.9

Game-based % Questions answered correctly by participants 49.8 14.7

% Questions answered correctly by competitors 46.0 14.1

% Occasions participants chose to game points 65.9 28.2

% Occasions competitors chose to game points 73.7 29.6

Measures of immediate learning and retained learning were
calculated as, respectively, the increase in post-test and retention
test scores relative to the pre-test score. Descriptive statistics for
these measures are provided in Table 3. A 3× 2 factorial repeated
measures ANOVA was applied to investigate effects of condition
(three levels: Study-only, Self-quizzing, and Game-based) and the
time of test (two levels: immediate learning and retained learning
after 3–4 weeks). Mauchly’s test showed that the condition of
sphericity had been met, χ2(2) = 1.60, p = 0.450. Main effects
were found for condition (F2,46 = 3.69, p= 0.033) and time of test
(F1,23 = 61.57, p< 0.001) with no significant interaction between
condition and time (F2,46 = 0.313, p = 0.733). Planned contrasts
were carried out, collapsed across time, where learning in the
Game-based condition was found to be significantly higher than
that for the Study-only and Self-quizzing conditions together
(F1,23 = 5.86, p = 0.024), while there was no difference between
the Study-only and Self-quizzing conditions (F1,23 = 2.02,
p = 0.169).

Looking at the two time points separately using one-way
ANOVAs, immediate learning was not significantly different
across conditions (F2,46 = 2.56, p = 0.088), and neither was
retained learning following a delay (F2,46 = 2.95, p = 0.062),
although both approached significance.

A 3 × 2 × 2 (condition × time × language) ANOVA
revealed no additional main effect of first language (F1,22 = 0.178,
p = 0.678) and no interaction between first language and either
experimental condition (F2,44 = 0.682, p = 0.478) or time
(F1,22 = 1.046, p = 0.317). Assumptions of sphericity were
verified using Mauchly’s test as before, χ2(2) = 1.60, p = 0.450.

Across participants, the means of self-reported measures
of engagement and stress were all in the direction
Game-based > Self-quizzing > Study-only (see Table 4).

TABLE 2 | Descriptive statistics for scores (out of 10) achieved in the
pre-test, post-test, and retention tests (N = 24 for each type of test) for
topics covered in each of the three conditions (study-only, self-quizzing,
and game-based).

Pre-test Post-test Retention test

M SD M SD M SD

Study-only 3.92 1.53 5.50 1.77 3.63 1.93

Self-quizzing 3.42 1.64 5.58 2.00 4.17 1.53

Game-based 3.21 1.69 6.25 1.82 4.38 1.55

TABLE 3 | Descriptive statistics of measures of immediate and retained
learning calculated as the increase in post-test and retention test scores
relative to the pre-test score.

Immediate learning Retained learning

M SD M SD

Study-only 1.58 1.86 −0.29 2.53

Self-quizzing 2.17 2.50 0.75 2.13

Game-based 3.04 2.48 1.17 1.97

The post-test was completed immediately after leaving the scanner, and the
retention test was completed 3–4 weeks after the scan.

Within-participants analyses showed main effects for self-
reported engagement [F(2,46) = 77.1, p < 0.001] and stress
[F(2,46) = 39.72, p < 0.001] across conditions.

In each condition, positive associations were sought
between self-rated engagement and the learning achieved,
and negative associations between self-rated stress and the
learning achieved (see Table 5). Only correlation between
self-rated engagement and learning in the Game-based
condition reached statistical significance (Pearson’s r = 0.583,
p = 0.007).

Imaging Results
Learning Window
No significant increases in activity in WMN ROIs during
the learning window were identified when comparing the
Self-quizzing condition with the Study-only condition, or the
Game-based condition with either the Self-quizzing or the
Study-only condition. A whole brain analysis revealed no
unhypothesised activations at Pfwe(whole-brain) < 0.05 for these
contrasts.

Default mode network ROIs significantly deactivated in
the Game-based condition compared with both the Study-
only and the Self-quizzing conditions (see Figure 3). When
comparing activity during the learning window in the Game-
based condition with the Study-only condition, left and right
aMPFC were significantly deactivated [Pfwe(SVC) < 0.001 for
left and right] and also left and right PCC [Pfwe(SVC) = 0.004,
Pfwe(SVC) = 0.002, respectively]. When comparing activity
during the learning window in the Game-based condition
with the Self-quizzing condition, left and right aMPFC were
significantly deactivated [T(23) = 4.74, Pfwe(SVC) = 0.001
and T(23) = 6.23, Pfwe(SVC) < 0.001, respectively] and also

TABLE 4 | Means (with standard deviations in parentheses) of
self-reported measures of engagement and stress (on a scale of 1–5) for
the three conditions (Study-only, Self-quizzing, Game-based) reported
immediately following scanning.

Engagement Stress

M SD M SD

Study-only 3.83 2.31 2.54 1.98

Self-quizzing 7.33 1.43 5.54 1.86

Game-based 8.7 0.93 6.88 2.40
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TABLE 5 | Correlation statistics (Pearson’s r) for associations between self-reported engagement and stress in each condition with measures of
subsequent immediate and retained learning (N = 24 in all cases, ∗∗statistically significant at p < 0.01).

Correlation with subsequent measures of learning

Immediate Retained

Pearson’s r Significance (2-tailed) Pearson’s r Significance (2-tailed)

Study-only Engagement −0.227 0.285 0.111 0.606

Stress −0.029 0.895 0.183 0.404

Self-quizzing Engagement 0.214 0.315 −0.264 0.213

Stress 0.052 0.812 −0.082 0.710

Games-based Engagement 0.533 0.007∗∗ 0.171 0.424

Stress −0.149 0.497 0.036 0.872

FIGURE 3 | Regions that showed greater deactivation in the Game-based condition compared with (TOP) the Study-only and (BOTTOM) the
Self-quizzing condition, including bilateral Posterior Cingulate Cortex (PCC) and anterior Medial Prefrontal Cortex (aMPFC). The image is thresholded
at P < 0.001 uncorrected and an extent of 10 voxels, with peak coordinates at Pfwe(whole-brain) < 0.05 provided in Tables 2 and 3.

left and right PCC [T(23) = 3.62, Pfwe(SVC) = 0.013 and
T(23) = 4.68, Pfwe(SVC) = 0.002, respectively]. No differences in
deactivation in any these DMN ROIs could be identified in the
Self-quizzing condition relative to the Study-only condition [at
Pfwe(SVC) < 0.05].

A whole-brain analysis at Pfwe(whole-brain) < 0.05 was
carried out (see Table 6) for the Game-based condition
compared with the Study-only condition. This identified a
large cluster of occipital-parietal activation with a center in
the left cuneus/precuneus [(x = 12, y = −94, z = 16):
T(23) = 10.06; Pfwe < 0.001], and extending from bilateral
extrastriate cortex (BA 18/19) to include left and right IPL. A large
cluster of right medial gyrus activity was identified (BA 6/8; x= 6,
y = 32, z = 46): peak [T(23) = 7.70, Pfwe = 0.001], together
with activations in bilateral inferior frontal, middle frontal and
superior temporal gyri, and right thalamus.

An analysis at Pfwe(whole-brain) < 0.05 was also carried out
to detect deactivations across the whole brain for the Game-
based condition compared with the Self-quizzing condition (see
Table 7). In addition to a broad prefrontal right-hemisphere
cluster with centers on middle and superior frontal gyri, this
analysis identified two large clusters of activity with bilateral
centers in occipital cortex (BA19), both extending to right and
left inferior parietal cortex.

Whole-brain analyses failed [at Pfwe(whole-brain) < 0.05] to
detect increased activations during the learning window in the
Game-based or Self-quizzing conditions relative to the Study-
only condition, or with respect to the Game-based condition
relative to the Self-quizzing condition.

Trials in the present study were phase-locked to the scanner
repetition time and not jittered. This allowed a pace of
delivery and more trials, but prevented estimation of the BOLD
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TABLE 6 | Regions deactivating for the learning window in the Game-based compared with Study-only condition [Pfwe(whole brain) < 0.05, extent
threshold 10 voxels].

Region L/R BA Peak coordinates (MNI) Peak Z score Size in voxels

Cuneus 1 R 18 12 −94 16 6.21 1955

Precuneus 2 L 7 −6 −73 52 6.17

Cuneus 3 R 19 18 −94 22 6.05

Inferior frontal gyrus 4 R 9 48 11 34 6.09 386

Middle frontal gyrus 5 R 6 36 −1 52 5.49

Middle frontal gyrus 6 R 9 45 26 31 5.17

Inferior frontal gyrus 7 R 47 51 20 −2 5.37 88

Inferior frontal gyrus 8 R 47 33 20 −11 4.99

Medial frontal gyrus 9 R 8 6 32 46 5.36 285

Medial frontal gyrus 10 R 6 6 14 52 5.36

Medial frontal gyrus 11 R 6 6 38 40 5.09

Inferior frontal gyrus 12 L 47 −33 17 −11 5.32 67

Temporopolar cortex 13 L 38 −48 17 −11 5.23

Lingual gyrus 14 L 19 −27 −73 −8 4.97 19

Thalamus 15 R 9 −16 10 4.90 19

Supramarginal gyrus 16 R 40 57 −49 25 4.89 21

Superior temporal gyrus 17 R 13 57 −49 16 4.59

Middle frontal gyrus 18 L 6 −27 −7 52 4.87 18

Red nucleus 19 L 0 −22 −5 4.72 10

TABLE 7 | Regions deactivating for the learning window in the Game-based compared with Self-quizzing condition [Pfwe(whole brain) < 0.05, extent
threshold 10 voxels].

Region L/R BA Peak coordinates (MNI) Peak Z score Size in voxels

Inferior temporal gyrus R 19 45 −73 1 7.03 2790

Superior parietal lobule R 7 24 −73 46 6.34

Precuneus R 7 18 −70 53 6.30

Middle occipital gyrus L 19 −45 −76 4 6.78 330

Middle occipital gyrus L 19 −27 −88 16 5.03

Superior frontal gyrus R 6 21 14 49 5.62 585

Middle frontal gyrus R 9 48 14 34 5.51

Middle frontal gyrus R 8 39 23 40 5.50

Precentral gyrus L 9 −33 23 37 4.76 11

timecourse on a time scale of fractions of seconds. Instead, a
grosser estimate of change in BOLD response was obtained from
contrasts for each of the five sub-periods of the learning window,
to show how the level of deactivation of DMN ROIs changed
between these 5.6 s periods. These contrasts were calculated
for the Game-based condition (which produced greatest DMN
deactivation) compared with the Study-only condition, and
compared also with the Self-quizzing condition. These are shown
in Figure 4. The apparent dip in DMN activity in the later
part of the learning window in the Game-based vs. Study-only
was explored by making a paired comparison of the combined
activities over the four regions for each participant at sub-period
3 and 5, revealing a significant diminishment [T(23) = 2.09,
p = 0.047].

Responding to Questions
Activity in the VS during the response window in the
Self-quizzing and Game-based conditions was calculated by
comparing ROI activity in the conditions with the Study-only

condition, where a question and answer was presented with no
response required.

Statistically significant activation associated with responding
in the Self-quizzing condition, compared with the Study-only
condition, was found in the left and right ventral striatal
ROIs [T(23) = 2.71, Pfwe(SVC) = 0.046 and T(23) = 3.57,
Pfwe(SVC) = 0.009, respectively]. Activation associated with
responding in the Game-based condition, relative to the Study-
only condition, was also identified in both the left and right
ventral striatal ROIs [T(23) = 4.28, Pfwe(SVC) = 0.002 and
T(23) = 4.72, Pfwe(SVC) < 0.001, respectively), see Figure 5].
A comparison of Self-quizzing and Game-based conditions did
not reveal statistically significant differences in left or right
ventral striatal activation [T(23) = 1.62, Pfwe(SVC) = 0.201 and
T(23) = 0.40, Pfwe(SVC) = 0.507, respectively].

Feedback
For positive, compared with negative feedback, there was
increased activity in left and right ventral striatal ROIs in
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FIGURE 4 | Time-variation of Default Mode Network ROI in the left and right aMPFC and PCC. Graphs were created by analyzing each 5.6 s sub-period of
the 28 s learning window in the game-based condition and show the extent of decrease relative to (left) the Study-only condition and (right) the Self-quizzing
condition. An increase in the parameters estimates plotted here represents greater deactivation.

the Game-based condition during feedback [T(23) = 3.98,
Pfwe(SVC) = 0.004 and T(23) = 2.81, Pfwe(SVC) = 0.037,
respectively]. Left ventral striatal activity could be detected in

the Self-quizzing condition [T(23) = 3.05, Pfwe(SVC) = 0.035]
for positive compared to negative feedback, but activity in the
right ventral striatal ROI did not reach statistical significance
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FIGURE 5 | Bilateral activity in the ventral striatum (VS) when
participants were responding to the question in the Games-based
condition relative to the Study-only condition. The Game-based
condition required participants to choose the correct answer amongst four
options. The Study-only condition presented only one option with the
question, which was the correct answer. The image is thresholded at
P < 0.001 uncorrected and an extent of 10 voxels.

[T(23) = 2.64, Pfwe(SVC) = 0.054]. A factorial analysis
(condition × feedback) did not reveal statistically different levels
activity in relation to positive over negative feedback, for the
Game-based compared with the Self-quizzing condition in either
left or right VS [T(23) = 0.61, Pfwe(SVC)= 0.498 andT(23) = 1.67,
Pfwe(SVC) = 0.223, respectively].

Individual Differences
For the Game-based condition, positive associations across
participants were sought between deactivation of DMN ROI’s
(relative to the quizzing condition) and the immediate learning
achieved (relative to the quizzing condition), as calculated by pre-
test/post-test difference. Deactivation of the left and right PCC
was found to be correlated with learning (Spearman’s rho= 0.455,
p = 0.012 and Spearman’s rho = 0.372, p = 0.036, respectively),
with deactivations in medial prefrontal cortex failing to reach
significance. However, no such correlations in the Game-based
condition were found when neural activity and learner were
compared to the Study-only condition.

DISCUSSION

This experiment focused on the changes in neural activity
when participants studied in three environments that were, by
becoming progressively more game-like, intended to increase
goal-orientation and engagement with a learning task. The to-be-
learned material included a range of different types of knowledge
and concepts but, on all trials, success required participants to
attend carefully to it by reading and understanding. Self-reported
engagement improved with gamification, and the Game-based
condition produced higher learning scores than the other (less
game-like) conditions. All four ROIs corresponding to the nodes
of the DMN in bilateral PCC [7 mm radius spheres at (−7,

−51, 26) and (4, −51, 25)] and bilateral aMPFC [7 mm radius
spheres at (−7, 50, 14) and (5, 50, 14)] deactivated in the Game-
based condition relative to both the Study-only and Self-quizzing
conditions. Previous reported activation of DMN with off-task
behavior (McKiernan et al., 2003; Mason et al., 2007; Christoff
et al., 2009) suggests that relative activation of the DMN in less
gamified conditions may be associated with the poorer learning
achieved in these conditions. This is further supported by our
observation that activity in the posterior hubs of the DMN
were negatively correlated with learning performance across
individuals.

Given behavioral reports of increasing unrelated thoughts and
decreasing attentional performance over time (Smallwood et al.,
2006; McVay and Kane, 2009), a general increase in activation of
the DMN over sub-periods of the learning window was predicted
for the less gamified conditions, as might be associated with
increasing levels of mind wandering. This profile of increasing
activation of the DMN during the learning window was observed
for the Self-quizzing condition relative to the Game-based
condition. However, the generally larger differences in DMN
activation for the Study-only condition relative to the Game-
based condition reached a maximum and partly then declined.
This “inverted U” shape may reflect participants’ awareness that
they were running out of time in the Study-only condition and
about to be tested with a question. If so, it would suggest some
part of the off-task behavior in the Study-only condition was
amenable to conscious control. This possibility was also suggested
by the informal reports from our participants, in which several
described their conscious awareness of difficulties in staying on-
task. When reflecting on the Study-only condition, they spoke
of a “struggle,” that it was “difficult to engage,” and “difficult
to pay attention.” While theories based on neuronal energy
metabolism may suggest a biologically determined component
of mind-wandering (Killeen, 2013), reports of meta-awareness of
mind-wandering (Franklin et al., 2014) support such amenability
to effortful influence. Caution is required, however, when using a
supposed neural correlate (DMN activity) as a proxy for behavior
(mind-wandering). This is particularly true if there may be
differences in meta-awareness of mind-wandering in the two
conditions of Game-based and Self-quizzing, since the absence
of meta-awareness is associated with stronger DMN activation
during mind-wandering episodes (Christoff et al., 2009). Future
studies of the effects of different contexts on the trajectory
of mind-wandering behavior during study would benefit from
including behavioral probes that more directly examined the
contents of participants’ minds through experience sampling.

Whole-brain analysis revealed a range of activities that,
although not considered core, have also been associated the
DMN. These included dorsal medial prefrontal cortex, implicated
in one of two DMN subsystems identified by Andrews-Hanna,
also left middle frontal gyrus (Laird et al., 2009) and, more
controversially (Fox et al., 2015), temporopolar cortex (BA 38)
which appears strongly implicated in emotional processing and
also ‘theory of mind’ (or mentalizing; Olson et al., 2007). The
thalamus has also been included by some as part of the DMN
(Beckmann and Smith, 2004; Fox et al., 2005; Fransson, 2005;
Mantini andVanduffel, 2013) andmay be involved with switching
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between mind-wandering and mindfulness (Wang et al., 2014),
such as might occur frequently if participants were struggling to
attend. Although spontaneous thought during mind wandering
has been strongly linked to the DMN, studies have consistently
shown it to recruit other, non-DMN regions (Fox et al., 2015).
Studies of spontaneous thought during rest have identified right
middle frontal gyrus in a study of spontaneous thought during
rest (D’Argembeau et al., 2005) also extra-striate cortex and
lingual gyrus (BA 18/19; Christoff et al., 2004, 2009) identified
as deactivated by the game-based condition in our whole brain
analysis (Fox et al., 2015). This condition also deactivated
bilateral inferior frontal gyri which is, perhaps, surprising since
this region is associated with the type of conceptual processing
that might be required to achieve the observed improvement in
learning (Binder et al., 2009). However, it can also be activated
for reasoning about self-defining memories (D’Argembeau et al.,
2014), such as might occur during a drift away from the intended
educational significance of the learning content toward unhelpful
personal associations (see below).

The lack of increased activation of WMN with gamification
was contrary to the proposed anticorrelation of DMN and
WMN networks observed in other studies (Shulman et al., 1997;
Mazoyer et al., 2001; Wicker et al., 2003). The prediction of
increased WMN activity made at the outset of the present
study was based on the assumption that greater demands would
be made on working memory, as participants engaged more
with the educational task. Although the behavioral data (both
in terms of self-reported engagement and subsequent learning
scores) suggests such additional processing may have taken
place, there was no observable increase in WMN activity with
gamification. This is despite a notable decrease in DMN activity
with gamification, suggestive of decreased mind wandering.In a
study of mind wandering that combined fMRI and experience
sampling, it has been demonstrated that co-activation of the
executive function network (ACC and DLPFC) with the DMN
can occur during episodes of mind-wandering (Christoff et al.,
2009). The authors of this study point out that executive region
involvement in early fMRI reports of mind-wandering may
have been obscured, due to the associated decrease in cognitive
demand from activation to baseline when comparing activity
during highly practiced tasks and/or conditions of ‘rest’ with
novel, cognitively demanding tasks. Conflicting reports on the
relation between DMN and WMN may derive, at least in part,
from differences in how WMN structures are defined since the
regions where activity increases with greater working memory
load may depend on the type of information involved (e.g.,
whether arbitrary numbers or social information). However,
the DLPFC is perhaps the region most prominently activated
when information processing demands are generally high, and is
implicated in studies involving number (Crottaz-Herbette et al.,
2004; Zhang et al., 2013), verbal and figural (Loose et al., 2006)
information, written language (Manenti et al., 2008), and social
information (Meyer et al., 2012). Coactivation of DMN and
WMN are reported in tasks that might include a significant sense
of self, such as planning the future (Spreng and Grady, 2010),
the simulation of hypothetical scenarios (Gerlach et al., 2011), the
evaluation of creative works (Ellamil et al., 2012), social working

memory (Meyer et al., 2012), constructing scenes (Summerfield
and Egner, 2009) and preparation for a verbal working memory
task (Koshino et al., 2014). It is possible to conceptualize all these
processes occurring during different “types” of mind-wandering,
resulting in the possibility that a participant can be “off task”
and absorbed in self-orientated thoughts but still be experiencing
working memory load comparable to more engaged learning.
In other words, in the context of the current study, there may
have been a drift in interpretation and processing of the learning
content away from its intended educational significance toward
its relation to more personal concerns, rather than a diminution
in processing per se.

Gamification of the learning environment was intended to
improve goal-orientated motivation by stimulating the reward
system. Alongside greater self-reported engagement as the
context became more gamified and deactivation of putative hubs
of the DMN, we observed that answering questions, and receiving
positive feedback, in the two more gamified conditions activated
the VS. Greater learning was achieved in the most gamified
(Game-based) condition, and individual learning differences in
this condition were correlated with deactivation of the posterior
DMN hubs. Given the associated role of the DMN with internal
thoughts and feelings unrelated to the task at hand, it seems
likely that incentivisation may have increased goal-orientation,
and so possibly reduced occurrences of mind wandering and
improved learning. In the Game-based condition and Self-
quizzing conditions, compared with the Study-only condition,
bilateral activation of the VS was observed when participants
were responding during a test of their knowledge. This may
reflect dopaminergic activity in response to anticipated outcome,
even though, in this epoch-related study, this activity is being
captured with a temporal resolution that is very limited (In
this study, we attempted to provide participants with a well-
paced learning and gaming experience similar to that which
might be provided for educational purposes. This prevented
the inclusion of jittering which would enable reconstruction
of temporal changes in event-related BOLD response beyond
the resolution of the repetition time). If rehearsal of learning
occurred simultaneously with such a dopaminergic response, this
might have contributed to the greater learning achieved in the
more gamified conditions. Activation of this region in response
to cues indicating monetary incentives for remembering has been
found to have roughly linear relationship with the likelihood of
subsequent recall (Adcock, 2006). Unlike the work of Adcock
(2006), however, our study did not lend itself to examining
direct links between variations of this activation with learning
performance, and there was no statistically significant increase
in this activity with gamification (i.e., between the Self-quizzing
and Game-based conditions). Nevertheless, this observation of
reward system activity might still be relevant to theories seeking
to explain the educational benefits of games in terms of increased
activity in midbrain dopamine neurons (Bavelier et al., 2010;
Howard-Jones et al., 2011). Such theories have been based on the
ability to predict correct responses from estimated reward system
response in a learning game (Howard-Jones et al., 2011), from
children’s preference for, and adult emotional response to, reward
uncertainty (Howard-Jones and Demetriou, 2009), and from
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laboratory-based and classroom-based measures of improved
motivation and learning in response to reward uncertainty
(Ozcelik et al., 2013; Devonshire et al., 2014). However, to our
knowledge, this is the first reported ventral striatal activation
in relation to answering an educational question. Further
research might valuably identify how the three characteristics
of the Game-based condition employed here (competition,
escalation and uncertainty) contributed to this response and
to the apparent increase in learning in the Game-based
condition, as well as clarify the relationship between these two
outcomes.

Sorting and comparison of trials based on correctness of
question response revealed increased ventral striatal activation
bilaterally for positive feedback in both the Game-based
condition and in the left VS for the Self-quizzing condition.
Understanding of the brain’s reward circuitry has been
established chiefly through its robust response to physical
pleasures, and recent studies have shown that the same networks
are activated in response to social rewards such as praise
(Lieberman and Eisenberger, 2009). Being well regarded, treated
fairly, cooperating with others and seeing competitors lose
points have all been reported to activate the VS (Rilling et al.,
2002; Moll et al., 2006; Tabibnia et al., 2008; Howard-Jones
et al., 2010). The present study supports the notion that the
responsiveness of the human reward system to social stimuli may
extend to educational contexts. In the Game-based condition,
the context might be described as strongly social, in the
sense that participants were being observed by, and competing
with, a peer. Indeed, this was done on the basis that peer
presence might enhance reward system response, as observed
in a study of teenage risk-based decision making (Chein et al.,
2011). Less predictable, however, was the reward activation
identified in the Self-quizzing condition. No competitors or
peers were present in this condition (other than possibly the
experimenter, who was monitoring the experiment in the control
room). Participants knew their final score would be published
sometime later with others and a certificate would be provided
for the highest score, but it had also been emphasized that
this would all be done anonymously. Therefore, our results
suggest that simply answering a question, and also being
provided with positive feedback, may themselves be rewarding

experiences in an educational context, even without peers being
present.

We have chiefly discussed improvements in learning observed
in the Game-based condition in terms of reward system
response, but it is important to point out that these effects
might, at least in part, be explained in other ways. Alongside
improvements in self-reported engagement, self-reported stress
was also greater in the Self-quizzing condition compared
with the Study-only condition, and increased further in
the Game-based condition. All three defining characteristics
of the Game-based condition (competition, escalation, and
uncertainty) might conceivably have contributed to this stress.
The stress would have been experienced in the context and
close in time to the “to be remembered” material, and
may have triggered hormones (corticosteroids, noradrenaline,
corticotropin releasing hormone) suitable for enhancing memory
(Joels et al., 2006). If the stress was related to impending
judgement, then a desire to avoid humiliation could conceivably
have contributed to greater attention to the learning task, and
consequent deactivation of the default mode network.

CONCLUSION

We have demonstrated links between deactivation of the DMN
and educational learning. We believe our results support the
proposed usefulness of the concepts and techniques of cognitive
neuroscience in education, and particularly in regard to the
design of technology-enhanced learning (Howard-Jones et al.,
2014b). More specifically, the identification of neural markers
associated with educational notions of engagement may facilitate
new possibilities for “educational and neuroscience research
efforts to inform one another in increasingly rapid cycles”
(McCandliss, 2010, p. 8050).
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