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In this work, we explore an alternative quantum structure to perform quantum

probabilistic inferences to accommodate the paradoxical findings of the Sure Thing

Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing

classical probabilities by quantum probability amplitudes. However, since this approach

suffers from the problem of exponential growth of quantum parameters, we also

propose a similarity heuristic that automatically fits quantum parameters through vector

similarities. This makes the proposed model general and predictive in contrast to the

current state of the art models, which cannot be generalized for more complex decision

scenarios and that only provide an explanatory nature for the observed paradoxes. In

the end, the model that we propose consists in a nonparametric method for estimating

inference effects from a statistical point of view. It is a statistical model that is simpler

than the previous quantum dynamic and quantum-like models proposed in the literature.

We tested the proposed network with several empirical data from the literature, mainly

from the Prisoner’s Dilemma game and the Two Stage Gambling game. The results

obtained show that the proposed quantum Bayesian Network is a general method that

can accommodate violations of the laws of classical probability theory andmake accurate

predictions regarding human decision-making in these scenarios.

Keywords: Bayesian networks, decision making, quantum probability, quantum cognition, sure thing principle

1. INTRODUCTION

The present work proposes a new model to make predictions in paradoxical situations where the
Sure Thing Principle is being violated. The Sure Thing Principle (Savage, 1954) is a fundamental
principle in economics and probability theory and states that if one prefers action A over B
under state of the world X, and if one also prefers A over B under the complementary state
of the world, ¬ X, then one should always prefer action A over B even when the state of
the world is unspecified. Several experiments have shown that people violate this principle in
decisions under uncertainty, leading to paradoxical results and violations of the classical law of
total probability (Tversky and Kahnenman, 1974; Tversky and Kahneman, 1983; Tversky and Shafir,
1992; Aerts et al., 2004; Birnbaum, 2008).

1.1. Motivation
More recently, cognitive scientists have turned to quantum probability theory in order to
accommodate these paradoxical findings. Although many models have been proposed in the
literature, most of them cannot be considered predictive. Most of these models require a set of
quantum parameters to be fitted and, so far, the only way these models have to fit the parameters is
to use the final outcome of the experiment to set the parameters in order to explain that outcome.
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Moreover, these models cannot scale to more complex
decision scenarios, because the number of parameters is
exponentially large (Khrennikov, 2003a, 2004, 2006) or because
of computational constraints in the computation of very large
unitary operators (Busemeyer et al., 2006b, 2009; Pothos and
Busemeyer, 2009).

1.2. Contributions
For these reasons, in this work, we propose a network structure
framework that can easily scale to more complex decision
scenarios. In other words, we propose a quantum-like Bayesian
Network formalism, which consists in replacing classical
probabilities by quantum probability amplitudes. However, since
this approach also suffers from the problem of exponential
growth of quantum parameters that need to be fit, we also
propose a similarity heuristic (Shah andOppenheimer, 2008) that
automatically computes this exponential number of quantum
parameters through vector similarities. A Bayesian Network
can be understood as an acyclic directed graph, in which each
node represents a random variable and each edge represents a
direct causal influence from the source node to the target node
(conditional dependence).

In this article, we will address the problem of violations to the
Sure Thing Principle by examining two major problems in which
these violations were verified: the Prisoner’s Dilemma game and
the Two Stage Gambling game. These violations were initially
reported by Tversky and Shafir (1992) and later simulated in
several works in the literature that also reported similar results (Li
and Taplin, 2002; Busemeyer et al., 2006a; Hristova and Grinberg,
2008). We will show how the current classical models fail to
explain the paradoxical findings implied in the violations of the
Sure Thing Principle and we will make a more deep discussion
about the drawbacks of the most representative quantum-like
models in the literature.

1.3. Research Questions
With the present work, we intend to address the following
research questions. An answer to these questions is given in
Section 8.

1. Why do we need another quantum-like model to explain
violations to the Sure Thing Principle?

2. What is the advantage of the proposed approach? How
can it make a difference toward the current well-established
quantum models that have been proposed in the literature?

2. VIOLATIONS OF THE SURE THING
PRINCIPLE

In this section, we present two experiments from the literature, in
which it was observed violations to the Sure Thing Principle and
consequently to the laws of classical probability theory and logic.
The two experiments are the Prisoner’s Dilemma game and the
Two Stage Gambling game.

2.1. The Prisoner’s Dilemma Game
The Prisoner’s Dilemma game corresponds to an example of the
violation of the Sure Thing Principle. In this game, there are

two prisoners who are in separate solitary confinements with no
means of speaking to or exchanging messages with the other. The
police offer each prisoner an agreement: each prisoner is given the
opportunity either to betray the other (Defect), by testifying that
the other committed the crime, or to Cooperate with the other by
remaining silent.

In order to test the veracity of the Sure Thing Principle under
the Prisoner’s Dilemma game, an experiment was made in which
three conditions were tested:

• Participants were informed that the other participant chose to
Defect.

• Participants were informed that the other participant chose to
cooperate.

• Participants had no information about the other participant’s
decision.

Table 1 summarizes the results of several works of the literature,
which have performed this experiment. Note that all entries of
Table 1 show a violation of the law of total probability. According
to the total law of probability, it is expected that:

Pr(P2 = Defect | P1 = Defect) ≥ Pr(P2 = Defect)

≥ Pr(P2 = Defect | P1 = Cooperate)

Note that, Pr
(

P2 = Defect | P1 = Defect
)

corresponds to the
probability of the second player choosing the Defect action
given that he knows that the first player chose to Defect. In
Table 1 this corresponds to the entry Known to Defect. In
the same way, Pr

(

P2 = Defect | P1 = Cooperate
)

corresponds
to the entry Known to Collaborate. The observed probability
during the experiments concerned with player 2 choosing to
Defect, Pr

(

P2 = Defect
)

, corresponds to the entry unknown of
Table 1, since there is no evidence about the first player’s actions.
Finally, the entry Classical Probability corresponds to the classical
probability Pr

(

P2 = Defect
)

, which is computed through the
law of total probability:

TABLE 1 | Works of the literature reporting the probability of a player

choosing to Defect under several conditions for the Prisoner’s Dilemma

Game: when the action of the second player is known to be Defect

(Known to Defect), when the action of the second player is known to be

Cooperate (Known to Collaborate), and when the action of the second

player is not known (Unknown).

Literature Known to Known to Unknown Classical

Defect Collaborate probability

Shafir and Tversky, 1992 0.9700 0.8400 0.6300 0.9050

Croson, 1999a 0.6700 0.3200 0.3000 0.4950

Li and Taplin, 2002b 0.8200 0.7700 0.7200 0.7950

Busemeyer et al., 2006a 0.9100 0.8400 0.6600 0.8750

Hristova and Grinberg, 2008 0.9700 0.9300 0.8800 0.9500

Average 0.8700 0.7400 0.6400 0.8050

a corresponds to the average of the results reported in the first two payoff matrices of the

work of Croson (1999).

b corresponds to the average of all seven experiments reported in the work of Li and Taplin

(2002).
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TABLE 2 | Works of the literature reporting the probability of a player

choosing to make a second gamble under several conditions for the Two

Stage Gambling Game: when the outcome of the first gamble is known to

be Lose (Known to Lose), when the outcome of the first gamble is known

to be Win (Known to Win), and when the outcome of the first gamble is

not known (Unknown).

Literature Known Known Unknown Classical

to Win to Lose probability

Tversky and Shafir, 1992 0.69 0.58 0.37 0.6350

Kuhberger et al., 2001 0.72 0.47 0.48 0.5950

Lambdin and Burdsal, 2007 0.63 0.45 0.41 0.5400

Average 0.68 0.50 0.42 0.5900

Pr(P2 = Defect) = Pr(P1 = Defect) · Pr(P2 = Defect|
P1 = Defect)+

+ Pr(P1 = Cooperate) · Pr(P2 = Defect|P1
= Cooperate)

2.2. The Two Stage Gambling Game
The Two Stage Gambling game is another game that shows
violations of the Sure Thing Principle. In this game, participants
were asked at each stage tomake the decision of whether or not to
play a gamble that has an equal chance of winning $200 or losing
$100. Three conditions were verified:

1. Participants were informed if they had won the first
gamble;

2. Participants were informed if they had lost the first
gamble;

3. Participants did not know the outcome of the first gamble;

The overall results revealed that participants who knew that they
won the first gamble, decided to play again. Participants who
knew that they lost the first gamble, also decided to play again.
Through Savage’s Sure Thing Principle, it was expected that the
participants would choose to play again, even if they did not know
the outcome of the first gamble. However, the results obtained
revealed something different. If the participants did not know the
outcome of the first gamble, then many of them decided not to
play the second one.

We conclude this section by clarifying why we will only
validated the proposed quantum-like Bayesian Network in small
decision problems (such as the Prisoner’s Dilema and the
Two Stage Gambling Game), since we are defending a general
quantum-like structure that is able to deal with complex decision
scenarios. We used small decision scenarios, because we cannot
find literature showing violations to the Sure Thing Principle
for more complex decision scenarios. Actually, after performing
some research, we believe that the violations of the Sure Thing
Principle tend to diminish with the complexity of the decision
scenario. Imagine for instance a three stage gambling game. It will
be very hard to find significant data that shows a player wishing
to play the last gamble, given that he has lost the two previous
gambles. Table 2 shows the results obtained in several works of
the literature.

3. VIOLATION OF THE SURE THING
PRINCIPLE: CLASSICAL APPROACHES

There are many classical approaches that could be used to try
to accommodate violations to the Sure Thing Principle. Two
of these main models are the Classical Markov Models and the
Classical Bayesian Networks. In this section, we will describe how
these two models work and we will explain why they cannot be
used to simulate violations to the Sure Thing Principle.

3.1. Classical Markov Model
A Markov Model can be generally defined as a stochastic
probabilistic undirected graphicalmodel that satisfies theMarkov
property. This means that the process evolves (and tries to
perform a prediction) based only on the present state. The
current state is independent of any past or future states. These
probabilistic models are very useful to model systems that
change states according to a transition matrix that specifies some
probability distribution or some transition rules that depend
solely on the current state.

The initial state is given by a vector, which contains the
probabilities of each event occurring. This vector requires that
the sum of these probabilities is one.

PI =
[

a0 a1 . . . an
]

·
1

∑

i ai

The state transition is represented by a differential equation,
which consists in themultiplication of this initial probability state
PI by a transition function T(t). This function is represented by a
matrix containing positive real numbers and with the constraint
that each row must sum to one (normalization axiom). In other
words, this matrix represents the new probability distribution
across all possible outcomes through some time period t (Pothos
and Busemeyer, 2009).

d

dt
T(t) = K · T(t) (1)

The intensity matrix K corresponds to the problem’s settings.
For instance, for the Prisoner’s Dilemma Game, it represents
the payoffs of each player, in the Two Stage Gambling Game,
it represents the rewards/losses that the player can have in each
gamble. A solution to this equation is given by Equation 2, which
allows one to construct a transition matrix for any time point
from the fixed intensity matrix. In other words, the intensity
matrix performs a transformation in the probabilities of the
current state in order to favor a certain action in the decision
problem.

T(t) = eK.t (2)

In the end, we can compute the solution for the probability
distribution over time by multiplying the transition matrix by the
initial probability state.

PF(t) = eK.t · PI(0) (3)
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In Equation 3, we do not need to perform any normalization in
the end, because the operation in Equation 1 together with the
intensity matrix K assure that the values computed are already
probability values.

Since, in the end, the Markov Model has to obey to the rules
of probability theory and set theory, even if we parameterize
the intensity matrix K, we would find that there are no values
that could explain the violations of the Sure Thing Principle
without violating the laws of classical probability theory. Some
studies have been proposed in the literature demonstrating that
the classical Markov Model cannot accommodate violations to
the Sure Thing Principle (Busemeyer et al., 2009; Pothos and
Busemeyer, 2009).

3.2. Classical Bayesian Networks
A classical Bayesian Network can be defined by a directed acyclic
graph structure in which each node represents a different random
variable from a specific domain and each edge represents a
direct influence from the source node to the target node. The
graph represents independence relationships between variables
and each node is associated with a conditional probability table,
which specifies a distribution over the values of a node given each
possible joint assignment of values of its parents. This idea of
a node, depending directly from its parent nodes, is the core of
Bayesian Networks. Once the values of the parents are known, no
information relating directly or indirectly to its parents or other
ancestors can influence the beliefs about it (Koller and Friedman,
2009).

A Bayesian Network can be understood as the representation
of a full joint probability distribution through conditional
independence statements. This way, a Bayesian Network can
be used to answer any query about the domain by combining
(adding) all relevant entries from the joint probability.

The full joint distribution (Russel and Norvig, 2010) of a
Bayesian Network, where X is the list of variables, that is, the set
of nodes of the Bayesian Network and is given by:

Pr(X1, . . . ,Xn) =
n
∏

i=1

Pr(Xi|Parents(Xi)) (4)

The formula for computing classical exact inferences on Bayesian
Networks is based on the full joint distribution (Equation 4).
Let e be the list of observed variables (nodes) and let Y be
the remaining unobserved variables (nodes) in the network. For
some query X, the inference is given by Equation 5. Note that,
Pr(X, e, y) corresponds to the full joint probability distribution.

Pr(X|e) = α





∑

y∈Y
Pr(X, e, y)



 (5)

Where α =
1

∑

x∈X Prc(X = x, e)

The summation is over all possible y, i.e., all possible
combinations of values of the unobserved variables y. The

α parameter, corresponds to the normalization factor for
the distribution Pr(X|e) (Russel and Norvig, 2010). This
normalization factor comes from some assumptions that are
made in Bayes rule.

One might think that if we parameterize the Bayesian
Network, it could be possible to explain the paradoxical findings
of the Sure Thing Principle. This line of thought is legitimate,
however one must take into account that in the end, the
probabilistic inferences computed through the Bayesian Network
must obey set theory and to the law of total probability. This
means that, even if we parameterize the network, we could not
find any closed form optimization that would accommodate
violations to the Sure Thing Principle.

4. VIOLATION OF THE SURE THING
PRINCIPLE: QUANTUM-LIKE
APPROACHES

In this section, we introduce the most import quantum decision
models that have been proposed in the literature that can
accommodate the violations to the Sure Thing Principle. The
models that we describe in this section are the following: the
Quantum Dynamical Model (Section 4.1), the Quantum-Like
Approach (Section 4.2), and the Quantum Prospect Decision
Theory (Section 4.3).

4.1. The Quantum Dynamical Model
The Quantum Dynamical Model was originally proposed by
Busemeyer (Busemeyer et al., 2009; Pothos and Busemeyer, 2009)
and consists on a general framework that corresponds to a
quantum version of a classical dynamical Markov model. The
Quantum Dynamical Model takes into account time evolution.
Quantum interference effects are also taken into account though
a superposition of paths.

The initial belief state corresponds to a quantum state
representing a superposition of the participant’s beliefs in the
form of a vector. The term ψ corresponds to a quantum
probability amplitude.

PI =
[

ψ0 ψ1 . . . ψn

]

·
1

∑

i |ψi|2
(6)

Next, we need to create a unitary matrix. In quantum mechanics,
a unitary matrix restricts the allowed evolution of quantum
systems, ensuring that the sum of probabilities of all possible
outcomes of any event is always 1. This means that the matrix
must be orthonormal (the rows are mutually orthogonal unit
vectors, as are the columns). In the Quantum Dynamical
Model, this matrix encodes all state transitions that a person
can experience while choosing a decision. The unitary matrix
U is computed by a differential equation called Schrödinger’s
equation.

δ

δt
U(t) = −i ·H · U(t) (7)

The parameter t corresponds to the time evolution. Under
the Dynamical Quantum Model, this parameter is set to π/2,
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corresponding to the average time that a participant takes to
make a decision (approximately 2 s) (Pothos and Busemeyer,
2009). The matrix H is called the Hamiltonian matrix, which
must be Hermitian in order to generate a unitary matrix.

U(t) = exp(−i · H · t) (8)

By multiplying the unitary matrix with the initial superposition
belief state, one can compute the transition of the participants’
beliefs at each time. The final vector QF represents the amplitude
distribution across states after deliberation.

In the end, we can compute the solution for the probability
distribution over time by multiplying the transition matrix by the
initial probability state.

QF = U · Qi = e−i·H·t · QI(0) (9)

In Equation 9, we do not need to perform any normalization
in the end, because the operation in Equation 8 together with
the intensity matrix H assure that the values computed are in
accordance with the normalization axiom.

4.2. The Quantum-Like Approach
The Quantum-Like Approach has its roots in contextual
probabilities. This model was proposed by Khrennikov and
corresponds to a general contextual probability space from
which the classical and quantum probability models can be
derived (Khrennikov, 2009b, 2010).

In the Quantum-Like Approach, the context relates to the
circumstances that form the setting for an event in terms of
which it can be fully understood, clarifying the meaning of the
event. More specifically, it is a complex of conditions under
which a measurement is performed. For instance, in domains
outside of physics, such as cognitive science, one can have mental
contexts. In social sciences, we can have a social context. And the
same idea is applied to many other domains, such as economics,
politics, game theory, biology, etc. (Khrennikov, 1999, 2001,
2003b, 2005a,b).

The Quantum-Like Approach corresponds to a contextual
probabilistic model given by M = (C, O, π(O, C)). Where C

is a set of contexts, O is the set of observables and π(O, C)
corresponds to a probability distribution of some observables
belonging to a specific context. Associated with a context, there
are a set of observables. In quantum mechanics, an observable
corresponds to a self-adjoint operator on a complex Hilbert
Space. Under the Quantum-Like Approach, these observables
correspond to the set of possible events with their respective
values.

Let’s assume, for a context C ∈ C, that there are two
dichotomous observables a, b ∈ O, and each of these observables
can take some values α ∈ a and β ∈ b, respectively.

The Quantum-Like Approach can be built from the general
structure of the quantum law of total probability. The quantum
law of total probability is very similar to the classical law of
total probability, except that it uses complex amplitudes instead
of real probability values. In order to obtain a probability
value, the magnitude of the quantum amplitude must be

squared Busemeyer and Bruza (2012). This will generate an
additional term called the interference term. This term does not
exist in classical probability and enables the representation of
interferences between quantum states.

Pr(b = β) = Classical_Probability(b = β)+ Interference_Term
(10)

Under this representation, we can replace Classical_Probability
by the classical law of total probability, and also replace the
quantum Interference_Term by a measure of supplementary,
represented by δ(β|a,C).

If we perform the normalization of the probability measure of
supplementary δ(β|a,C) by the square root of the product of all
probabilities, we obtain:

λθ =
δ(β|a,C)

2
√
∏

α∈a Pr(a = α|C)Pr(b = β|a = α,C)
(11)

From Equation 11, the general probability formula of the
Quantum-Like Approach can be derived. For two variables, is
given by:

Pr(b = β|C) =
∑

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)

+2λθ

√

∏

α∈a
Pr(a = α|C)Pr(b = β|a = α,C) (12)

If we look closely to Equation 12, we will see that the first
summation of the formula corresponds to the classical law of
total probability. The second term of the formula (the one that
contains the λθ parameter), does not exist in the classical model
and it is called the interference term.

In a quantum context, since the supplementary term δ(β|a,C)
is being normalized in a quantum fashion, then we automatically
know that the indicator term λθ will always have to be smaller
than 1 in order to obtain quantum probabilities, λθ ≤ 1. So,
under trigonometric contexts, the Quantum-Like Approach for
quantum probabilities becomes:

λθ = cos(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

+2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cos(θ) (13)

Equation 13 can be simplified in the following way:

Pr(β|C) =
∣

∣

∣

√

Pr(α1|C)Pr(β|α1,C)

+eiθβ|α,C
√

Pr(α2|C)Pr(β|α2,C)
∣

∣

∣

2
(14)

Equation 14 corresponds to the representation of the quantum
law of total probability. In this equation, the angle θβ|α,C
corresponds to the phase of a random variable and incorporates
the phase of both A = α1 and A = α2 in the following way:
θβ|α,C = θβ|α1 − θβ|α2 .
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One should note that, the Quantum-Like Approach can be
extended to more complex decision scenarios, that is, with
more than two random variables. However, this will lead to
the very difficult task of tuning an exponential number of
quantum θ parameters. Peter Nyman noticed this problem
when he generalized the Quantum-Like Approach for three
dichotomous variables (Nyman, 2010, 2011b; Nyman and
Basieva, 2011a,b).

4.2.1. The Hyperbolic Interference
Although the Quantum-Like Approach provides great
possibilities comparing with the classical one, it seems that
it cannot cover completely data from psychology and that a
quantum formalism was not enough to explain some paradoxical
findings (see Khrennikov et al., 2014), so hyperbolic spaces were
proposed (Khrennikov, 2005c; Nyman, 2011a,b).

From Equation 12, if Pr(b = β) −
∑

α∈a Pr(a = α|C)Pr(b =
β|a = α,C) is different from zero, then some interference
effects occur. In order to determine which type of interference
happened, one tests the Quantum-Like Approach for quantum
probabilities. This can be determined by normalizing the
supplementary measure in a quantum fashion, just like presented
in Equation 11.

If the probability Pr(b = β) was not computed in a
trigonometric space (that is, it is not quantum), then, it is
straightforward that the quantum normalization applied in
Equation 11 will give a value bigger than 1. Since we are not in
the context of quantum probabilities, the quantum normalization
factor will fail to normalize the interference term, and will
produce a number bigger than the normalization factor. Under
these circumstances, the Quantum-Like Approach incorporates
the generalization of hyperbolic probabilities, arguing that the
context in which these probabilities were computed was in a
Hyperbolic context (Khrennikov, 2009a, 2010; Nyman, 2011a).

Under Hyperbolic contexts, the Quantum-Like Approach
contextual probability formula becomes:

λθ = cosh(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

±2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cosh(θ) (15)

In summary, according to the values computed by the indicator
function λθ , the Växjö Model enables the computation of
probabilities in the following contexts:

• If |λθ | = 0, then there is no interference and the Växjö Model
collapses to classical probability theory.

• If |λθ | ≤ 1, then we fall into the realm of quantum mechanics
and the context becomes a Hilbert space. The indicator
function is then replaced by the trigonometric function
cos(θ).

• If |λθ | > 1, then we fall into the realm of hyperbolic
numbers and the context becomes a hyperbolic space. The
indicator function is then replaced by the hyperbolic function
cosh(θ).

4.3. The Quantum Prospect Decision
Theory
The Quantum Prospect Decision Theory was developed
by Yukalov and Sornette (2008, 2011) and developed throughout
many other works (Yukalov and Sornette, 2009a,b, 2010a,b). The
foundations of this theory are very similar to the previously
presented Quantum-Like Approach.

In the Quantum-Like Approach, we start with two
dichotomous observables. In the Quantum Prospect Decision
Theory, these observables are referred to intensions. An intension
can be defined by an intended action and a set of intended actions
is defined by a prospect.

Each prospect can contain a set of action modes, which are
concrete representations of an intension. Making a comparison
with the Quantum-Like Approach, a prospect can be seen as a
random variable and the set of action modes are the assignments
that each random variable can have. For instance, the intension to
play can have two representations: play action A or play action B.

Following the work of Yukalov and Sornette (2011), two
intensions A and B with the respective representations: A = x
where x ∈ a1, a2 and B = y, where y ∈ b1, b2. The corresponding
state of mind is given by:

| ψs (t)〉 =
∑

i,j

ci,j (t) | Ai Bj〉 (16)

Equation 16 represents a linear combination of the prospect basis
states. From a psychological perspective, the state of mind is
a fixed vector characterizing a particular decision maker with
his/her beliefs, habits, principles, etc. That is, it describes each
decision maker as a unique subject.

The prospect states corresponding to the intensions A and
B are given by Equation 17. The ψ symbol corresponds to
quantum amplitudes associated with the prospect state. Under
the Quantum Prospect Decision Theory, these amplitudes
represent the weights of the intended actions, while a person is
still deliberating about them.

|πA=a1〉 = ψ11|A = a1B = b1〉 + ψ12|A = a1B = b2〉
|πA=a2〉 = ψ21|A = a2B = b1〉 + ψ22|A = a2B = b2〉 (17)

The probabilities of the prospects can be obtained by computing
the squared magnitude of the prospect states (just like in the
Quantum-Like Approach and the Quantum Dynamical Model).
Consequently, the final probabilities are given by:

Pr(πA=a1 ) = Pr(A = a1,B = b1)+ Pr(A = a1,B = b2)

+InterferenceA=a1

Pr(πA=a2 ) = Pr(A = a2,B = b1)+ Pr(A = a2,B = b2)

+InterferenceA=a2

(18)

Where the interference term in defined by:

InterferenceA=a1 = 2 · ϕ(πA=a1 )
√

Pr(A = a1,B = b1)·
√

Pr(A = a1,B = b2)

InterferenceA=a2 = 2 · ϕ(πA=a2 )
√

Pr(A = a2,B = b1)·
√

Pr(A = a2,B = b2)

(19)
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In Equation 19, the symbol ϕ corresponds to the uncertainty
factor and is given by:

ϕ(πA=a1 ) = cos
(

arg (ψ11 · ψ12)
)

ϕ(πA=a2 ) = cos
(

arg (ψ21 · ψ22)
)

(20)

The interference term corresponds to the effects that emerge
during the process of deliberation, that is, while a person
is making a decision. These interference effects result from
conflicting interests, ambiguity, emotions, etc. (Yukalov and
Sornette, 2011).

One can notice that the Quantum Prospect Decision Theory
is very similar to the Quantum-Like Approach proposed
by Khrennikov (2009c). Both theories end up with the same
quantum probability formula. However, the Quantum Prospect
Decision Theory provides some heuristics in how to choose the
uncertainty factors. This information will be addressed in the
next section.

4.3.1. Choosing the Uncertainty Factor
In order to accommodate the violations of the Sure Thing
Principle, the uncertainty factor must be set in such a way that
it will enable accurate predictions. Two methods were proposed
by Yukalov and Sornette (2011) to estimate the uncertainty
factor: the Interference Alternation method and the Interference
Quarter Law.

• Interference Alternation—Under normalized conditions, the
probabilities of the prospects p

(

πj
)

must sum to 1. This
normalization only occurs if one characterizes the interference
term as an alternation, such that the interference effects
disappear while summing the probability of the prospects. The
interference alternation property is in accordance with the
findings of Epstein (1999): the destructive interference effects
can be associated with uncertainty aversion. This leads to a
less probable action under uncertainty conditions. In contrast,
the probabilities of other actions that contain less uncertainty
are enhanced through constructive quantum interference
effects. This uncertainty aversion happens quite frequently in
situations where the Sure Thing Principle is violated. This
implies that one of the probabilities of the prospects must be
enhanced, whereas the other must be decreased.

sign
[

ϕ(πA=a1 )
]

= −sign
[

ϕ(πA=a2 )
]

where
∣

∣ϕ(πA=ai )
∣

∣ ∈ [0, 1] (21)

• Interference Quarter Law—the interference terms generated
by quantum probabilistic inferences, have a free quantum
parameter, which is the uncertainty factor. The Interference
Quarter Law corresponds to a quantitative estimation of this
parameter. The modulus of the interference term q can be
quantitatively estimated by computing the expectation value
of the probability distribution of a random variable ξ in the
interval [0, 1].

q ≡
∫ 1

0
ξ · pr (ξ) dξ =

1

4
(22)

The probability distribution p(ξ ) is given by Equation 22 and
can be computed by making the average of two probability
distributions.

Pr (ξ) =
1

2

[

pr1 (ξ)+ pr2 (ξ)
]

= δ (ξ)+
1

2
2(1− ξ) (23)

4.4. Quantum-Like Bayesian Networks in
the Literature
There are two main works in the literature that have contributed
to the development and understanding of Quantum Bayesian
Networks. One belongs to Tucci (1995) and the other to Leifer
and Poulin (2008).

In the work of Tucci (1995), it is argued that any classical
BayesianNetwork can be extended to a quantum one by replacing
real probabilities with quantum complex amplitudes. This means
that the factorization should be performed in the same way as in
a classical Bayesian Network.

One big problem with Tucci’s work was the lack of methods
to set the phase parameters. The author states that, one could
have infinite Quantum Bayesian Networks representing the same
classical Bayesian Network depending on the values that one
chooses to set the parameter. This requires that one knows a
priori which parameters would lead to the desired solution for
each node queried in the network (which we never know). So, for
these experiments, Tucci’s model (Tucci, 1995) cannot predict the
results observed, since one does not have any information about
the quantum parameters.

In the work of Leifer and Poulin (2008), the authors argue that,
in order to develop a quantum Bayesian Network, a quantum
version is required of probability distributions, quantum
marginal probabilities and quantum conditional probabilities
(Table 3). The authors made a preliminary study on these
concepts. Generally speaking, a quantum probability distribution
corresponds to a density matrix contained in a Hilbert space,
with the constraint that the trace of this matrix must sum to
1. In quantum probability theory, a full joint distribution is
given by a density matrix ρ. This matrix provides the probability
distribution of all states that a Bayesian Network can have.
The marginalization operation corresponds to a quantum partial
trace (Nielsen and Chuang, 2000; Rieffel and Polak, 2011). In
the end, these models from the literature fail to provide any
advantage relatively to the classical models, because they cannot
take into account interference effects between random variables.
So, they provide no advantages in modeling decision-making
problems that try to predict decisions that violate the laws of total
probability.

TABLE 3 | Relation between classical and quantum probabilities used in

the work of Leifer and Poulin (2008).

Classical probability Quantum probability

State Pr(A)
∣

∣

∣
eiθψA

∣

∣

∣

2

Joint probability distribution Pr(A,B) ρAB

Marginal probability distribution Pr(B) =
∑

A Pr(A,B) ρB = TrA (ρAB )

Conditional state Pr (B|A) ρB|A
∑

b∈B Pr(b|A) = 1 Tr(ρB|A ) = IA
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5. PROBLEMS WITH CURRENT
CLASSICAL AND QUANTUM-LIKE
APPROACHES

In this section, we summarize the three main models that were
presented in the previous sections (Table 4) and point out the
advantages and disadvantages of each one of them.

The Quantum-Like Approach is a very simple framework that
enables the computation of quantum probabilities by performing
the direct mapping between classical real probabilities and
quantum probability amplitudes through Born’s rule (Zurek,
2005, 2011). Although this model can be extended for N
random variables and also go beyond quantum probabilities by
incorporating hyperbolic spaces, this model cannot be called
predictive, since there are no mechanisms to estimate the
quantum θ parameters. One is required to know a priori the
outcome of the decision scenario in order to fit the quantum
parameters. So, this model has an explanatory nature in what
concerns accommodating the paradoxical findings derived from
violations of the Sure Thing Principle.

The Quantum Dynamical Model provides an elegant
framework that can estimate decisions though time evolution.
However, it also suffers from a major disadvantage related to
Hamiltonian matrices. Creating a manual Hamiltonian is a very
hard problem. It is required that all possible interactions of
the decision problem are known and this specification must be
made in such a way that the matrix is double stochastic. For
more complex decision scenarios, this process is intractable.
Furthermore, the Hamiltonian matrix grows exponentially with
the complexity of the decision problem and the computation
of a Unitary operator from such matrices is a very complex
process. Most of the times, approximations are used, because
of the complexity of the calculations involved in the matrix
exponentiation operation.

The Quantum Prospect Decision Theory is a model very
similar to the Quantum-Like Approach, but it is not extended
to the hyperbolic spaces. The main advantage of the Quantum
Prospect Decision Theory toward the other known quantum
models is its predictive nature. The Quantum-Like Approach and
the Quantum Dynamical model are more explanatory models.
That is, they require that the outcome of an experiment is known
in order to fit the parameters of the model and explain the

paradoxical findings. The Quantum Prospect Decision Theory,
on the other hand, contains an heuristic (the interference quarter
law) that enables the estimation of the quantum parameters,
turning the model predictive. However, the interference quarter
law is a static heuristic. This means that, independently of the
decision scenario and independently of the complexity of the
decision, this interference term remains constant for every
problem.

All of the above models exhibit different growth rates in
parameters. For instance, the Dynamical Model parameterizes
actions plus an additional parameter to model cognitive
dissonance effects. So the number of parameters would be static
if we consider the N-Person Prisoner’s Dilemma Game. That is,
instead of having only 2 players, this would be extended to N
players. In the case of the Quantum-Like Approach, we would
have 2N parameters for the N-Person Prisoner’s Dilemma Game.
The number 2 comes from the fact that each player has two
actions (either Defect or Cooperate). The same applies to the
Quantum-Like Bayesian Networks and to the Quantum Prospect
TheoryModel. If we extend thesemodels forN random variables,

the number of parameters grows at a rate of N
Nperson

actions , but these
parameters will be automatically set using the Law of Quantum
Interference, in the case of the Quantum Prospect Theory.
The same is applied to the proposed Quantum-Like Bayesian
Network, but instead of a static heuristic, we automatically set
these parameters using a dynamic heuristic.

At this point, the reader might be thinking that the Quantum
Dynamical Model provides great advantages toward the existing
models, since the number of parameters required corresponds
to the players actions with an additional cognitive dissonance
parameter. Although this line of thought is correct, one should
also take into account how the model unfolds. Although the
numbers of parameters do not grow exponentially large as
in the Quantum-Like Approach, the size of the Hamiltonian
does. In fact, it grows exponentially large with the following

size: N
Nplayers

actions × N
Nplayers

actions , where Nactions represents the number
of actions of the players and Nplayers corresponds to the
number of players. The computation of a unitary operator from
such matrices is a very complex process. Most of the times,
approximations are used, because of the complexity of the
calculations involved in the matrix exponentiation operation.
Table 5 summarizes the parameter growth rate of each approach.

TABLE 4 | Summary of the most relevant quantum decision models of the literature.

Model State representation Quantum interference Predictive Comments

Quantum dynamical model Superposition of Shröedinger’s No . requires Enables time

subject’s beliefs equation manual fit evolution

Quantum-Like approach Contextual probabilities Measure of No. requires Can deal with

(observables/random variables) supplementarity manual fit hyperbolic spaces

Quantum prospect Contextual probabilities Interference Yes. Uses a It is predictive

decision theory (prospects/random variables) quarter law static heuristic uses a heuristic

Quantum-Like Contextual probabilities None No. Can easily scale

Bayesian networks (observables/random variables) manual fit to more complex scenarios
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TABLE 5 | Comparison of the different growth rates in parameters for

some models proposed in the literature.

Approach Parameter Comments

growth

Busemeyer et al.,

2009;

Quantum

dynamical model

Nactions Hamiltonian size

exponential:

Pothos and

Busemeyer, 2009

N
Nperson
actions

Khrennikov, 2009c Quantum-Like

approach

N
Nperson
actions

Number of parameters

Grows exponentially

large

Yukalov and

Sornette, 2011

Quantum prospect

decision theory

N
Nperson
actions

Static heuristic

Interference quarter law

For these reasons, in this work, we propose a network
structure framework that can easily scale to more complex
decision scenarios. In other words, we propose a quantum-
like Bayesian Network formalism, which consists in replacing
classical probabilities by quantum probability amplitudes.
However, since this approach also suffers from the problem of
exponential growth of quantum parameters that need to be fit, we
also propose a similarity heuristic that automatically computes
this exponential number of quantum parameters (Shah and
Oppenheimer, 2008).

6. A QUANTUM-LIKE BAYESIAN
NETWORK FOR DECISION AND
COGNITION

The reason why we chose Bayesian Networks is because it
provides a link between probability theory and graph theory. And
a fundamental property of graph theory is its modularity: one
can build a complex system by combining smaller and simpler
parts. It is easier for a person to combine pieces of evidence
and to reason about them, instead of calculating all possible
events and their respective beliefs (Griffiths et al., 2008). In the
same way, Bayesian Networks represent the decision problem
in small modules that can be combined to perform inferences.
Only the probabilities, which are actually needed to perform the
inferences, are computed.

A Quantum-Like Bayesian Network can be defined in the
same way as a classical Bayesian Network with the difference that
real probability numbers are replaced by quantum probability
amplitudes (Tucci, 1995). Figure 1 shows an example of
the proposed Quantum-Like Bayesian Network, containing
quantum probability amplitudes, ψi,j, instead of real probability
values.

In this sense, the quantum counterpart of the full joint
probability distribution corresponds to the application of Born’s
rule to Equation 4. This results in the quantum like version of the
full joint probability distribution:

Pr(X1, . . . ,Xn) =

∣

∣

∣

∣

∣

n
∏

i=1

ψ(Xi|Parents(Xi))

∣

∣

∣

∣

∣

2

(24)

FIGURE 1 | Example of a Quantum-Like Bayesian Network. The terms

ψi,j correspond to quantum probability amplitudes. The variables X1, X2, and

X3 correspond to random variables.

In order to perform exact inference in Bayesian Networks, the
probability amplitude of each assignment of the network is
propagated and influences the probabilities of the remaining
nodes. That is, every assignment of every node of the Bayesian
Network propagate throughout the network until they reach
the node representing the query variable. Note that, by taking
multiple assignments and paths at the same time, these trails
influence each other producing interference effects.

The quantum counterpart of the Bayesian exact inference
formula corresponds to the application of Born’s rule to the
classical marginal probability distribution equation (Equation 5).

Pr(X|e) = α

∣

∣

∣

∣

∣

∣

∑

y

N
∏

x=1

ψ(Xx|Parents(Xx), e, y)

∣

∣

∣

∣

∣

∣

2

(25)

Expanding Equation 25, it will lead to the quantum
marginalization formula with interference effects (Moreira
and Wichert, 2014):

Pr(X|e) = α

|Y|
∑

i=1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = i)

∣

∣

∣

∣

∣

2

+2·Interference

(26)

Interference =
|Y|−1
∑

i=1

|Y|
∑

j=i+1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = i)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = j)

∣

∣

∣

∣

∣

· cos(θi − θj)

In the Quantum Dynamical Model, since it uses unitary
operators, the double symmetric property of these operators
does not require the normalization of the computed values. In
the proposed approach, on the other hand, since we do not
have the constraints of double stochastic operators, we need to
normalize the final scores that are computed in order to achieve
a probability value. In classical Bayesian inference, normalization
of the inference scores is also necessary due to assumptions made
in Bayes rule. The normalization factor corresponds to α in
Equation 26.

Note that, in Equation 26, if one sets (θi − θj) to π/2, then
cos(θi − θj) = 0, which means that the quantum Bayesian
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TABLE 6 | Table representation of a quantum full joint probability

distribution.

X1 ... XN ψ
(

X1, ...,XN
)

T · · · T ψ1 · eiθ1

T · · · F ψ2 · eiθ2
.
.
.

.

.

.
.
.
.

.

.

.

F . . . F ψM · eiθM

Network collapses to its classical counterpart. That is, the
proposed Quantum-Like Bayesian Network can behave in a
classical way, if one sets the interference term to zero. Setting the
angles to right angles means that all cosine similarities are 0 or 1.
This transforms a continuous-valued system to a Boolean-valued
system. Moreover, in Equation 26, if the Bayesian Network has N
binary random variables, we will end up with 2N free quantum θ

parameters.
The proposed Bayesian Network leaves an open research

question regarding the quantum θ parameters: how can one
compute such parameters in order to obtain realistic inferences? By
realistic, we mean the probability that an event that was observed
in an experiment. These probabilities are impossible to compute
using exact Bayesian inference in experiments where the Sure
Thing Principle is being violated. In the next section, we answer
this question by proposing a similarity heuristic that is able to
compute the quantum θ parameters through vector similarities
between beliefs/actions in superposition.

6.1. Representation of Beliefs/Actions
The superposition quantum vector, comprising all possible
events, is given by the quantum full joint probability distribution
already presented in Equation 24. The full joint probability
distribution can be illustrated in table form just like it is presented
in Table 6.

The quantum probability inference formula is composed of
two parts: one representing the classical probability and the other
representing the quantum interference term. The interference
term performs a summation over several combinations of
the entries of the full joint probability distribution in groups
of two variables:

∑N−1
i=1

∑N
j=i+1 |ψi|

∣

∣ψj

∣

∣ cos
(

θi − θj
)

. For each

pair of variables, we will represent them as a 2-dimensional
vector: one component represents the probability of ψi and the
other corresponds to ψj. Moreover, the different probabilities
represented in the full joint probability distribution table can be
seen as the different beliefs/actions that one might have available
before making a decision.

a(X = T) =

[

∣

∣ψi · eiθi
∣

∣

2

∣

∣ψi · eiθj
∣

∣

2

]

b(X = F) =

[

∣

∣ψi · eiθi
∣

∣

2

∣

∣ψj · eiθj
∣

∣

2

]

(27)

We always have two vectors, because the proposed Quantum-
Like Bayesian network only supports binary random variables,
that is, the query that it is performed to the network corresponds
to a yes or no answer. In other words, one vector corresponds to

FIGURE 2 | Vector representation of two events representing a certain

state.

the probability of the query random variable returning a positive
answer, and the other corresponds to the probability of the query
random variable returning a negative one. In a geometric space,
these vectors are represented as in Figure 2. From these two
vectors, similarity measures like the angles between the vectors
or the distances between them can be computed. These similarity
measures will be addressed in more detail in Section 6.2.

One could ask why these feature vectors are represented
by probabilities. In our model, the goal is to find a quantum
parameter that can be used to compute quantum probability
inferences. The only information that one has are the probability
distributions of a given scenario, which are encoded in the
Bayesian Network.

In quantum mechanics, quantum states are always
represented by unit length vectors. Since the proposed model is
inspired by quantum formalisms, one might be wondering why
the vectors are not unit length as well. There are two reasons
for this choice. First, this representation of beliefs/actions as
probabilities in feature vectors is not new, and it is a common
practice in the literature (Osherson, 1995). Second, since our
model is represented by a Bayesian Network and the vectors
extracted directly from the network (through the representation
of the full joint probability distribution), we do not need to have
unit length vectors. Instead, this normalization will be performed
during the inference process through the computation of the
normalization factor α.

In the end, the quantum interference term is computed
by computing different vector representations for each pair of
variables that are being computed (Figure 3). These vectors are
extremely important to compute, since they will enable the
calculation of different quantum θ parameters.

6.2. Acquisition of Additional Information
It is important to note that, over the current literature, quantum
parameters must be assigned manually in order to obtain a
prediction. So, for different experiments, we will have disparate
quantum parameters. For this reason, it is very hard to create
a universal heuristic that can assign quantum parameters for
different applications. In this work, we propose a heuristic that
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FIGURE 3 | Illustration of the different 2-dimensional vectors that will be generated for each step of iteration during the computation of the quantum

interference term.

is able to perform accurate predictions for the several different
experiments reported in the literature related to the Prisoner’s
Dilemma Game and the Two Stage Gambling Game.

The goal of this similarity heuristic is to determine an angle
between the vectors a and b (Equation 27) that can be used
as the θ parameter in Equation 26. Moreover, by computing
the Euclidean distance between vectors a and b, one can obtain
vector c. Equation 28 shows how to obtain the norm of vector
c through vectors a and b (Figure 2). Additional information
is gained by comparing the similarity between the two vectors.
This new information allows one to infer hidden properties
of a participant’s beliefs/actions from visible ones. This vector
representation is similar to the approach proposed in the
work of Pothos et al. (2013), where the authors represent a
person’s beliefs/actions in an n-dimensional vector space and
the similarity between the vectors is measured by a projection
operator, which corresponds to the computation of the squared
length of the projected vector. This is similar to our approach,
since we are also computing the length between the vectors a

and b.

||c|| =

||a− b|| =
√

(

a1 − b1
)2 +

(

a2 − b2
)2 + · · · +

(

an − bn
)2

(28)

Since we are interested in the angles that these vectors make
between each other, we used trigonometric laws, such as the law
of cosines, to determine these angles. The law of cosines is given
by Equations 29–31, where θA corresponds to the angle between
vectors b and c. θB corresponds to the angle between vectors
a and c. And θC corresponds to the angle between vectors a

and b. Since we know the coordinates of vectors a and b, one
can also compute angle θC through the similarity between two
vectors using the cosine similarity measure: cos (θC) = a·b

||a||·||b|| .

However, since we only know the length of vector c, we need to
compare the similarity of the vectors through the law of cosines.

||a||2 = ||b||2 + ||c||2 − 2 · ||b|| · ||c|| · cos (θA)⇔ θA

= cos−1

(

||b||2 + ||c||2 − ||a||2

2 · ||b|| · ||c||

)

(29)

||b||2 = ||a||2 + ||c||2 − 2 · ||a|| · ||c|| · cos (θB)⇔ θB

= cos−1

(

||a||2 + ||c||2 − ||b||2

2 · ||a|| · ||c||

)

(30)

||c||2 = ||a||2 + ||b||2 − 2 · ||a|| · ||b|| · cos (θC)⇔ θC

= cos−1

(

||a||2 + ||b||2 − ||c||2

2 · ||a|| · ||b||

)

(31)

6.3. Definition of the Similarity Heuristic
Violations to the Sure Thing principle imply a decrease in
the final probability values when compared to the classical
theory. This suggests that, somehow, we need to force the
quantum parameters to have a destructive interference effect.
This can be obtained by setting the quantum parameter to π
(which is the angle that provides the smallest cosine value). The
additional information that we incorporated in Figure 2, namely
the Euclidean distance between vectors and their similarities, is
translated into a triangle. This shape has a well-known property
that all their inner angles must sum to 180◦ or π radians.
Moreover, we would like to have a destructive interference effect
that takes into account the similarity of the original vectors.
Equation 32, shows how one can obtain this relationship.

θA + θB + θC = π ⇔ π − θC = θA + θB (32)

⇔ π −
θC

2
=
θA + θB + π

2

When, the similarity of the vectors is very small, that is θC is very
small, then we can add a third relationship:

θA + θB + θC = π ⇔ π = θA + θB

In this sense, we can formulate the general formula of the
proposed similarity heuristic :

h
(

a, b
)

=







π if φ < 0
π − θC/2 if φ > 0.2
π − θC otherwise

(33)

We also came up with a similarity measure φ, which is given by
the ratio between all the angles that the vectors make between
them. In order words, it represents the similarity between
the additional information found by manipulating the original
vectors and is given by Equation 34.

φ =
θC

θA
−
θB

θA
(34)

The thresholds shown in the proposed similarity heuristic were
taken by observing the data from several experiments violating
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the Sure Thing Principle. These include several experiments in
the literature of the Prisoner’s Dilemma Game and the Two
Stage Gambling Game. Yukalov and Sornette (2011) also did
something similar. They analyzed the experiments violating the
Sure Thing Principle and came up with a static interference term
(the Interference Quarter Law) that allows them to apply their
model without knowing exactly a priori the outcome of some
specific experiment. The proposed model works under similar
conditions. We analyzed several experiments from the literature
from different games and mapped the trends of the data into
a dynamic heuristic. So, in the end, the proposed model works
under some rules that enables a dynamic behavior (after all
each experiment is unique, so there should be the freedom of
different quantum interferences) and also enables the application
of the model without specific a priori knowledge from a specific
experiment.

In quantum mechanics, the θ parameter corresponds to the
phase of a wave. When representing a quantum state in a Hilbert
space, this phase is given by the inner product between two
quantum states (Busemeyer and Bruza, 2012). The proposed
similarity heuristic is motivated by the same idea. For two vectors
representing a person’s belief/action, we find which angle (or in
this case, a combination of angles) that can lead to the observed
probabilities for the Prisoner’s Dilemma and for the Two Stage
Gambling game.

6.4. Summary of the Proposed Model
The proposed model is built based on observed data to perform
quantum probabilistic inferences. We are using a similarity
heuristic, which relies in the data of the Bayesian Network to
indicate the parameters that will allow us to perform quantum
probabilistic inferences. One should keep in mind that this
function is a heuristic: it generally provides good results in many
situations (in this case, the Two Stage Gambling game, and the
Prisoner’s Dilemma), but at the cost of occasionally not giving us
very accurate results (Shah and Oppenheimer, 2008).

In sum, the proposed model works as follows:

• Definition of a quantum-like Bayesian Network containing
cause/effect relationships of a given scenario. Each node of the
Bayesian Network corresponds to a binary random variable
and is associated to a conditional probability table. These
tables represent conditional probability distributions, which
can be converted to quantum amplitudes through Born’s rule.

• When performing a query to the quantum-like Bayesian
Network, a set of quantum parameters will emerge, because
of the application of Equation 26. These parameters can be
determinedwith the similarity heuristic that takes into account
similarities between vectors.

• The proposed similarity heuristic takes into account two
2-dimensional vectors. Each vector corresponds to one
assignment of the query variable (for instance, the probability
of the query being true or the probability of the query being
false).

• The two features of each vector correspond to each entry of the
full joint probability distribution of the Bayesian Network that
has the same assignment of the query variable. For instance,

all entries of the distribution that have the assignment of the
query variable set to true.

• After knowing the similarities that the vectors share between
them, we can apply the proposed similarity heuristic given
in Equation 33 to obtain a θ parameter that enables the
computation of the final probability value of the query.

One might be thinking that we use two of the three data points
directly in the model (known Defect and known Collaborate).
Then, they use one free parameter to account for the remaining
data point (the probability of Defection in the unknown
condition). However, this is not what we state with this work.
As already mentioned, this work is a nonparametric method for
estimating inference effects from a statistical point of view. It
is a statistical model that is simpler than the previous quantum
dynamic and quantum-like models proposed in the literature.
Again, this work is not about simulation methods of fitting.
We are simply providing a Bayesian Network structure that
enables a simple representation of more complex decision-
making scenarios, and the incorporation of a similarity heuristic
(which results from algebraic manipulations) in order to assign
values to quantum parameters in such a way that provides
accurate predictions (that is, it can represent the data accurately).

In the next sections, we will present a full example of how
the proposed Quantum-Like Bayesian Network can be applied
(Section 6.5). We will also present experimental results of
the proposed model applied to several works of the literature
concerned with the Prisoner’s Dilemma game (Section 7.1) and
the Two Stage Gambling game (Section 7.2).

6.5. Example of Application of the
Proposed Model
In this section, we will demonstrate how the proposed Bayesian
Network can be applied to the average results presented
in Table 1 for the Prisoner’s Dilemma game. The proposed
Quantum-Like Bayesian Network can be summarized in the
following steps:

• Step 1: Create a Bayesian Network Representation of the

Problem: In the Prisoner’s dilemma game, if nothing is told
to the participants, then there is a 50% chance of the first
participant choosing to Defect or Cooperate. The decision of
the first participant is then followed by the decision of the
second participant. A Bayesian Network representation of this
problem is illustrated in Figure 4.

FIGURE 4 | Bayesian Network representation of the Average of the

results reported in the literature (last row of Table 1). The random

variables, which were considered, are P1 and P2, corresponding to the

actions chosen by the first participant and second participant, respectively.

Frontiers in Psychology | www.frontiersin.org 12 January 2016 | Volume 7 | Article 11

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Moreira and Wichert Quantum-Like Bayesian Networks

TABLE 7 | Quantum full joint probability distribution representation of the

Bayesian Network in Figure 4.

P1 P2 Pr(P1, P2)

Defect Defect
√
0.5 · ei·θ1 ×

√
0.87 · ei·θ3 = 0.6595 · ei·

(

θ1+θ3
)

= 0.6595 · ei·θA

Defect Cooperate
√
0.5 · ei·θ1 ×

√
0.13 · ei·θ4 = 0.2550 · ei·

(

θ1+θ4
)

= 0.2550 · ei·θB

Cooperate Defect
√
0.5 · ei·θ2 ×

√
0.74 · ei·θ5 = 0.6083 · ei·

(

θ2+θ5
)

= 0.6083 · ei·θC

Cooperate Cooperate
√
0.5 · ei·θ2 ×

√
0.26 · ei·θ6 = 0.3606 · ei·

(

θ2+θ6
)

= 0.3606 · ei·θD

FIGURE 5 | Vector representation of events P2Defect and P2Cooperate
plus the euclidean distance vector c.

• Step 2: Compute the Vectors associated to each action. Since
we want to determine the Pr(P2 = Defect), this probability
will be given by the quantum full joint probability distribution,
which is represented in Table 7.

P2Defect =

[

∣

∣0.6595 · ei·θA
∣

∣

2

∣

∣0.6083 · ei·θC
∣

∣

2

]

=
[

0.435
0.370

]

P2Cooperate =

[

∣

∣0.2550 · ei·θB
∣

∣

2

∣

∣0.3606 · ei·θD
∣

∣

2

]

=
[

0.065
0.130

]

(35)

This way, one can build feature vectors using classical
probabilities. For instance, the probability of Pr(P2 = Defect)
is given by a 2-dimensional feature vector with entries:
Pr(P1 = Defect) · Pr(P2 = Defect|P1 = Defect) and Pr(P1 =
Cooperate) · Pr(P2 = Defect|P1 = Cooperate). The feature
vector corresponding to the action Cooperate can be achieved
in the same way (Equation 35).

• Step 3: Determine the quantum parameters using the

proposed similarity heuristic: Since we only have two
random variables, we only need to compute one θ parameter.
This parameter can be obtained by directly by first computing
the Euclidean distance between P2Defect and P2Cooperate, and by
computing the inner angles of the resulting triangle (Figure 5).

||c|| =
∣

∣

∣

∣P2Defect − P2Cooperate
∣

∣

∣

∣

=
√

(0.435− 0.065)2 + (0.37− 0.13)2 = 0.4410 (36)

The norm of vectors P2Defect and P2Cooperate is given by:

∣

∣

∣

∣P2Defect
∣

∣

∣

∣ =
√

0.4352 + 0.3702 = 0.5711
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣ =
√

0.0652 + 0.1302 = 0.1453 (37)

The inner angles of the triangle formed by vectors P2Defect and
P2Cooperate and c can be computed from the law of Cosines
presented in Equations 38–40.

A = cos−1

(
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 −
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 + c2

2 · c ·
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

)

= 2.6102

(38)

B = cos−1

(
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 −
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 + c2

2 · c ·
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

)

= 0.1294

(39)

C = cos−1

(
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 +
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 − c2

2 ·
∣

∣

∣

∣P2Defect
∣

∣

∣

∣ ·
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

)

= 0.4023

(40)
Given that θC

θA − θB
θA = 0.1046, then the final quantum θ

parameter can be computed by using the third condition of
Equation 33

θ = π − θC = π − 0.4023 = 2.7393 (41)

• Step 4: Perform the Probabilistic Inference. In order to
compute Pr(P2 = Defect) we also need to compute the
opposite probability, that is, Pr(P2 = Cooperate). Equation 42
represents quantum amplitudes through the symbol ψ . The
sub indexes D and C correspond to the actions Defect and
Cooperate, respectively.

Pr(P2 = Defect) = α
[

∣

∣ψP2=D|P1=D

∣

∣

2 +
∣

∣ψP2=D|P1=D

∣

∣

2

+2 ·
∣

∣ψP2=D|P1=D

∣

∣ ·
∣

∣ψP2=D|P1=C

∣

∣ · cos (θ)
]

(42)

Pr(P2 = Defect) = α [0.5× 0.87+ 0.5× 0.74

+2×
√
0.5× 0.87×

√
0.5× 0.74 cos (2.7393)

]

(43)

Computing the probability of Pr(P2 = Cooperate) in the same
way, we obtain:

Pr(P2 = Defect) = α · 0.0667
Pr(Cooperate) = α · 0.0258 (44)

• Step 5: Compute Normalization Factor and Final
Probabilities.

α =
1

0.0667+ 0.0258
=

1

0.0925
= 10.8108 (45)
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The final probabilities are given by Equation 45. Note that
in Table 1, the observed probability of a player choosing to
Defect was 0.64. The proposed Bayesian Network estimated
this probability to be approximately 0.72, which corresponds
to a fit error percentage of 12.63%.

Pr(P2 = Defect) = 0.7208 Pr(P2 = Cooperate) = 0.2792
(46)

7. EXPERIMENTAL RESULTS

Violations to the Sure Thing Principle are hard to verify in
complex decision-making problems. For this reason, there is not
much data available in the literature for validation purposes. So,
in this work, we will validate our model for several different
experiments made to detect violations of the Sure Thing Principle
in the Prisoner’s Dilemma Game (Section 7.1) and for the Two
Stage Gambling game (Section 7.2).

7.1. Quantum Bayesian Network Applied to
the Prisoner’s Dilemma Game
In this section, we apply our model to predict the results
obtained for the Prisoner’s Dilemma game for several works in
the literature.

It is common (and good) practice in cognitive science to
compare the results of one’s model to the results of leading
comparable models. The fit error percentages that we present in
the following sections would be much easier to interpret if there
could be other models to compare with. However, we cannot
perform this comparison directly, because the current models of
the literature only work for isolated experiments, just like it was
shown for the Quantum Dynamical Model (Section 4.1) and the
Quantum-Like Approach (Section 4.2). That is, each time there
is a new experiment, the parameters of their respective models
would need to be tuned manually in order to perform correct
predictions. We propose a general and scalable framework that is
able to perform predictions in several different setting with small
amounts of fit errors.

In this sense, we modeled each result reported in Table 1

with the proposed Bayesian Network and using the proposed

similarity heuristic. We obtained the results that are presented
in Figure 6.

For a more detailed analysis of Figure 6, Table 8 shows the
quantum θ parameters that were computed for each experiment
and the quantum parameter that would be expected to achieve a
0% fit error. The fit error is a percentage value and was computing

in the following way: (1− computed_probability
observed_probability

)∗100. In Table 8, the
term computedprobability corresponds to the column Pr(Defect)
predicted and the term observed_probability corresponds to the
column observed_probability.

In Table 8, one can see that the proposed similarity heuristic
was able to perform good approximations to the data. The
dynamical heuristic enabled to perform different estimations of
quantum interference effects for different decision problems.
However, since it is an heuristic, it can sometimes lead to
overestimations, which was the case in the work of Busemeyer
et al. (2006a). These overestimations occur due to the sensitivity
of the quantum parameters. That is, a small change in a quantum
parameter will lead to a completely different probability value.
This will be discussed in more depth in Section 7.1.2.

As one might have noticed, the work of Croson (1999) was not
taken into account in the analysis of these results. We decided to
analyse these results in the next section, because they contained
properties that were different from the remaining works. In
Croson (1999), the participants were never told about the actions
of the other player. The author asked for the participants to first
try to guess what action the other player chose and then make a
decision. In another setting, participants were just asked to make
a decision.

7.1.1. The Special Case of Croson’s (1999)

Experiments
In work of Croson (1999), we used the results reported for the
first two payoff matrices tested in their work and performed the
average of the results. When trying to compute the optimum
quantum θ parameter that would lead to the computation of
the probability with a 0% fit error, we could not find any. There
was no possible parameter that could be obtained from the two
feature vectors representing the probability of choosing either a
Defect action or a Cooperate action.

FIGURE 6 | Comparison of the results obtained for different works of the literature concerned with the Prisoner’s Dilemma game.
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TABLE 8 | Analysis of the quantum θ parameters computed for each work of the literature using the proposed similarity function.

Literature Expected θ Computed θ Pr(Defect) Pr(Defect) predicted Fit error

Shafir and Tversky, 1992 2.8151 2.8057 0.6300 0.6408 1.71

Li and Taplin, 2002b 3.3033 3.0121 0.7200 0.7122 1.09

Busemeyer et al., 2006a 2.9738 3.3628 0.6600 0.7995 21.13

Hristova and Grinberg, 2008 2.8255 2.7400 0.8800 0.8968 3.01

Average 2.8718 2.7393 0.6400 0.7208 12.63

Expected θ corresponds to the quantum parameter that leads to the observed probability value in the experiment. Computed θ corresponds to the quantum parameter computed with

the proposed heuristic.

b corresponds to the average of all seven experiments reported.

TABLE 9 | Results for the two games reported in the work of Croson (1999) for the Prisoner’s Dilemma Game for several conditions: when the action of

the second player was guessed to be Defect (Guessed to Defect), when the action of the second player was guessed to be Cooperate (Guessed to

Collaborate), and when the action of the second player was not known (Unknown).

Croson, 1999 Guessed to Defect Guessed to Cooperate Unknown Unknown predicted Violation of STP

Game 1 0.1700 0.6800 0.2250 0.5877 No

Game 2 0.4700 0.6500 0.3750 0.4390 Yes

Average 0.6700 0.32 0.3000 0.5053 Yes

FIGURE 7 | Possible probabilities that can be obtained from Game 1 (left), Game 2 (center) and the average of the Games of the work of Croson (1999),

using the quantum law of total probability.

As a first thought, we noticed that the average of the results
could be the cause of such impossibility, because they were not
the true probabilities of the events reported. So, we decided to
analyse the outcome of each experiment of the work of Croson
(1999) individually. Table 9 specifies those results.

We again analyzed the individual results of Table 9, and again,
we could not find any quantum θ parameter that would lead
to the computation of probabilities with a 0%. On the contrary,
the minimum fit errors found were 64.89, 83.25, and 17.06% for
Game 1, Game 2 and the Average of these games, respectively.
Figure 7 present all possible probabilities that can be computed
using the quantum law of total amplitude.

Analysing Game 1 (Figure 7, left), the probability that leads
to the smallest fit error is obtained when both θ parameters are
set to zero, with a probability of 0.4123. The observed probability
reported in this experiment corresponds to 0.2250, leading to a
computed fit error of 64.69%.

For Game 2 (Figure 7, center), when θ1 = 0 and θ2 = π , we
obtain the probability that leads to the smallest fit error, which is
0.4390, with a fit error of 83.25 %.

When computing the average of both games (Figure 7, right),
the quantum θ parameters found were θ1 = 0 and θ2 = 0. This
leads to a probability of 0.4947, corresponding to a fit error of
17.06%.

7.1.2. Analysing Li and Taplin (2002) Experiments
Table 10 specifies the results collected by Li and Taplin (2002),
which corresponded to the average of the results obtained in
seven different experiments for the Prisoner’s Dilemma game.
In this section we analyse each of these seven experiments, by
trying to predict their outcome using the proposed Bayesian
Network.

The results reported in the experiments conducted by Li
and Taplin (2002) are presented in Table 10. Note that Games
3, 6 and 7 are not violating the Sure Thing Principle,
because: Pr

(

Defect
)

≥ Pr
(

Unknown
)

≤ Pr
(

Cooperate
)

or
Pr
(

Cooperate
)

≥ Pr
(

Unknown
)

≤ Pr
(

Defect
)

. Additionally,
the results reported for the unknown condition in Games 3,
6 and 7 are very close to the classical probability theory. The
goal of the study performed by Li and Taplin was to question
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TABLE 10 | Experimental results reported in work of Li and Taplin (2002) for the Prisoner’s Dilemma game for several conditions: when the action of the

second player is known to be Defect (Known to Defect), when the action of the second player is known to be Cooperate (Known to Collaborate), and

when the action of the second player was not known (Unknown).

Li and Taplin, 2002 Known Defect Known Cooperate Unknown Classical probability Violation of STP

Game 1 0.7333 0.6670 0.6000 0.7000 Yes

Game 2 0.8000 0.7667 0.6300 0.7833 Yes

Game 3 0.9000 0.8667 0.8667 0.8834 No

Game 4 0.8333 0.8000 0.7000 0.8167 Yes

Game 5 0.8333 0.7333 0.7000 0.7833 Yes

Game 6 0.7667 0.8333 0.8000 0.8000 No

Game 7 0.8667 0.7333 0.7667 0.8000 No

Average 0.8200 0.7700 0.7200 0.7950 Yes

The column Violations of STP corresponds to determining if the collected results are violating the Sure Thing Principle. The values in bold represent the experiments that are not violating

the Sure Thing Principle.

FIGURE 8 | Comparison of the results obtained for different experiments reported in the work of Li and Taplin (2002) in the context of the Prisoner’s

Dilemma game.

if there was really violations of the Sure Thing Principle under
the Prisoner’s Dilemma game. According to Table 10 three of the
seven experiments did not show a violation, and reported results
very similar to the classical probability theory.

By applying the proposed quantum-like Bayesian Network
each game in Table 10, we obtained the results illustrated in
Figure 8.

The experiments that achieved the highest fit error rates
correspond to Games 2 and 6. Game 6 corresponds to a situation
where the Sure Thing Principle was not being violated. This leads
to the conclusion that the proposed Bayesian Network can also
predict classical probabilities, but with some fit errors.

Table 11 shows the quantum parameters that were computed
and compares them with the parameters that would be expected
in order to obtain the smallest fit error percentage. One
thing worth mentioning in the computation of these quantum
parameters is their sensitivity. Consider the row of Table 11

addressing the results of Game 2. The difference between
expected quantum parameter with the one that was computed
using the similarity heuristic corresponds to a difference of just
0.0322. However, this small difference introduced a fit error
of almost 11.28% in the computation of the final probabilities.

Figure 9 illustrates the relation between the quantum θ

parameter and the final probabilities that can be obtained in Li’s
Game 2, Game 6 and the work of Busemeyer et al. (2006a).

Small changes in the θ parameters can lead to a completely
different probability outcomes. This has some relation with
deterministic chaos, in which small differences in initial
conditions yield widely diverging outcomes in a system. This
chaos suggests how difficult the task of predicting human
decisions is and how random it can be (Sterman, 1989).

7.2. Quantum Bayesian Network Applied to
the Two Stage Gambling Game
For the Two Stage Gambling Game, the overall results reported
very small fit errors. The highest fit error percentage achieved was
16.3% and corresponds to the work of Kuhberger et al. (2001).
Once again, the work of Kuhberger et al. (2001) is not showing
a violation to the Sure Thing Principle, enhancing the previous
conclusion that the proposed quantum-like Bayesian Network
works best in situation where this violation exists.

In what concerns the work of Lambdin and Burdsal (2007)
the proposed Quantum-Like Bayesian Network could not make
accurate predictions. Figure 10 show all possible probabilities
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TABLE 11 | Experimental results reported in work of Li and Taplin (2002) for the Prisoner’s Dilemma game.

Li and Taplin, 2002 Expected θ Computed θ Unknown Unknown predicted Fit error %

Game 1 3.0170 2.9845 0.6000 0.6313 5.21

Game 2 3.0758 3.0436 0.6300 0.7011 11.28

Game 3 2.8052 2.9810 0.8667 0.8113 6.39

Game 4 3.2313 3.0306 0.7000 0.7341 4.87

Game 5 2.8519 2.8511 0.7000 0.7006 0.08

Game 6 1.5708 2.9350 0.8000 0.7169 10.39

Game 7 3.7812 2.7365 0.7667 0.7159 6.63

Average 3.3033 2.9888 0.7200 0.7122 1.09

The entries highlighted correspond to games that are not violating the Sure Thing Principle. Expected θ corresponds to the quantum parameter that leads to the observed probability

value in the experiment. Computed θ corresponds to the quantum parameter computed with the proposed heuristic.

FIGURE 9 | Possible probabilities that can be obtained in Game 2 of the work of Li and Taplin (2002) (left). Possible probabilities that can be obtained in

Game 6 of the work of Li and Taplin (2002) (center). Possible probabilities that can be obtained in the work of Busemeyer et al. (2006a) (right).

FIGURE 10 | Possible probabilities that can be obtained in the work of Lambdin and Burdsal (2007). The probabilities observed in their experiment and the

one computed with the proposed quantum-like Bayesian Network are also represented.

that can be obtained by varying the quantum parameters. As one
can see, the minimum value that we can obtain corresponds to
0.4593. However, the observed probability reported by Lambdin
and Burdsal (2007) corresponds to 0.41. This leads to a fit error
of 12.02%.

In the work of Busemeyer et al. (2012), the authors applied
the quantum dynamical model to reproduce the results obtained

for the Two Stage Gambling Game and also explored the use
of Hierarchical Bayesian methods to estimate the values of
quantum parameters to simulate the player’s personal profile: risk
aversion, loss aversion, memory and choice. In the recent work
of Busemeyer et al. (2015), the authors also compare the quantum
model with a classical model using Bayes factor. They concluded
that the quantum approach was preferred by the Bayes Factor.
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7.3. Comparison with Other Works of the
Literature
In this section, we compare the results obtained with the
proposed Quantum-Like Bayesian Network with the Quantum
Prospect Decision Theory (Yukalov and Sornette, 2011). From
all the analyzed models, this is the only one that can be called
predictive due to its static heuristic: the Interference Quarter
Law. The reason why we proposed a dynamic heuristic is because
every decision problem is different and, consequently, quantum
interference effects should also be different and not static. In the
Quantum Prospect Decision Theory, the quantum interference
term is fixed by the Interference Quarter Law, that is, the
quantum interference term in the law of total probability is fixed
to 0.25.

In the current model, since each decision problem is different,
the proposed heuristic will compute a quantum θ parameter
through similarities that the vector make between each other and
these vectors are constructed from the experimental data. So,
the vectors take into account the properties of each experiment,
making it possible to compute different quantum interference
terms for different decision problems.

Table 12 shows the results obtained for the Quantum Prospect
Decision Theory and for the Quantum-Like Bayesian Network
for the different works of the literature that tested violations to
the Sure Thing Principle in the Prisoner’s Dilemma Game and
the Two Stage Gambling Game.

In the end, the results from Table 12 demonstrate that, in
general, the proposed Quantum-Like Bayesian Network together
with the dynamic heuristic managed to fit the observed results
in the several different experiments with an average fit error of
6.3%, whereas the Quantum Prospect Decision Theory achieved
an average fit error of 16.51%.

One needs to take into account that in the Quantum
Prospect Decision Theory and in the proposed Quantum-Like
Bayesian Network, heuristics are used to estimate the quantum
interference effects. This means that the heuristic can lead to
a good fit of the data most of the times, but, in some cases, it
can lead to completely wrong results. In the Quantum Prospect
Theory, for instance, one can see the static Interference Quarter
Law heuristic performed several estimations with big fit errors.
The same is applied to the proposed Quantum-Like Bayesian

Network. The difference is that this last model makes use of
dynamic heuristics. Table 12 shows that the proposed dynamic
heuristic overestimated the results in the works of Busemeyer
et al. (2006a) and Kuhberger et al. (2001). This also happens
due to the sensitivity of the θ parameters already discussed in
Figure 9.

We also applied the Quantum Prospect Theory and the
proposed Quantum-Like Bayesian Network to all experiments
performed in the work of Li and Taplin (2002). Table 13 shows
again great discrepancies between the average fit error obtained
with the static heuristic of the Quantum Prospect Decision
Theory. In general, the proposed model manages to fit all the
different seven experiments with an average fit error of 6.41%,
whereas the Quantum Prospect Decision Theory achieved an
error of 24.23%. Most of the times, the Interference Quarter
Law managed to produce lower estimations of the results
observed during the several experiments. This shows that having
a dynamical heuristic that is able to adapt to the different
decision problems brings advantages in terms of predictive
effectiveness.

8. DISCUSSION AND CONCLUSION

In this work, we proposed an alternative quantum structure
to perform quantum probabilistic inferences to accommodate
the paradoxical findings of the Sure Thing Principle. We
proposed a Quantum-Like Bayesian Network, which consists
in replacing classical probabilities by quantum probability
amplitudes. However, since this approach suffers from the
problem of exponential growth of quantum parameters, we also
proposed a similarity heuristic that automatically fits quantum
parameters through vector similarities. This makes the proposed
model general and predictive in contrast to the current state of
the art models, which cannot be generalized for more complex
decision scenarios and that only provide an explanatory nature
for the observed paradoxes.

In Section 1.3, we established a set of research questions that
we would like to address with the present research work. Their
answers are detailed below.

1. Why do we need another quantum-like model to explain
violations to the Sure Thing Principle?

TABLE 12 | Comparison between the Quantum Prospect Decision Theory (QPDT) model and the proposed Quantum-Like Bayesian Network (QLBN) for

different works of the literature reporting violations to the Sure Thing Principle.

Literature Pr(Defect) Pr(Defect) Fit error Pr(Defect) Fit error

Observed Computed (QPDT) (QPDT) Computed (QLBN) (QLBN)

Shafir and Tversky, 1992 0.6300 0.6550 0.0397 0.6408 0.0171

Li and Taplin, 2002b 0.7200 0.5450 0.2431 0.7122 0.0108

Busemeyer et al., 2006a 0.6600 0.6250 0.0531 0.7995 0.2113

Hristova and Grinberg, 2008 0.8800 0.7000 0.2045 0.8968 0.0191

Tversky and Shafir, 1992 0.3700 0.3850 0.0405 0.3641 0.0159

Kuhberger et al., 2001 0.4800 0.3450 0.2813 0.4018 0.1629

Lambdin and Burdsal, 2007 0.4100 0.2900 0.2927 0.4085 0.0037

Average fit error – – 0.1651 – 0.0630

b corresponds to the average of all seven experiments reported. The values in bold represent the models that obtained the lowest Fit error.
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TABLE 13 | Comparison between the Quantum Prospect Decision Theory (QPDT) model and the proposed Quantum-Like Bayesian Network (QLBN) for

all the different experiments performed in the work of Li and Taplin (2002).

Literature Pr(Defect) Observed Pr(Defect) Computed (QPDT) Fit error (QPDT) Pr(Defect) Computed (QLBN) Fit error (QLBN)

Game 1 0.6000 0.4502 0.2497 0.6313 0.0522

Game 2 0.6300 0.5333 0.1535 0.7011 0.1129

Game 3 0.8667 0.6334 0.2692 0.8113 0.0639

Game 4 0.7000 0.5667 0.1904 0.7341 0.0487

Game 5 0.7000 0.5333 0.2381 0.7006 0.0009

Game 6 0.8000 0.5500 0.3125 0.7169 0.1039

Game 7 0.7667 0.5500 0.2826 0.7159 0.0663

Average fit error – – 0.2423 – 0.0641

The values in bold represent the models that obtained the lowest Fit error.

Many of the models that have been proposed in the literature
cannot be considered predictive. Most of these models require
a set of quantum parameters to be fitted and, so far, the only
way these models have to fit the parameters is to use the final
outcome of the experiment to set the parameters in order to
explain the experimental outcome. There is, however, one model
in the literature that proposed a static heuristic to compute
the quantum interference effects and can be called predictive.
This model is the Quantum Prospect Decision Theory, proposed
by Yukalov and Sornette (2011).

2. What is the advantage of the proposed approach? How can
it make a difference toward the current well-established quantum
models that have been proposed in the literature?

Since each decision problem is different, we believe that
a quantum decision model would benefit from a dynamic
heuristic that could take into account the decision problem’s
settings and come up with estimations for the quantum
interference parameters. In the proposed model, quantum
parameters are found based on the correlations that the
vectors share between them. These correlations are explored
through vector similarities that are computed using the Law
of Cosines in a vector space. In this sense, we suggest that
the quantum parameters that arise from interference effects
might represent some degree of similarity between events. The
previous work of Moreira and Wichert (2015) point out this

semantic relation between vectors. In the end, the proposed

model can be seen as a nonparametric method for estimating
inference effects from a statistical point of view. It is a
statistical model that is simpler than the previous Quantum
Dynamical Model (Pothos and Busemeyer, 2009) and Quantum-
Like Approach (Khrennikov, 2010) models proposed in the
literature. The method makes use of the principles of Bayesian
Networks, in order to obtain a more general and scalable model
that can produce competitive results over the current state of the
art models.

Experimental data demonstrated that the proposed heuristic
managed to produce accurate fits to the data, overcoming the
previously proposed Quantum Prospect Theory. This suggests
that taking into account a dynamic estimation of quantum
parameters is a good direction to build quantum-like predictive
models.
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