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Face adaptation is widely used as a means to probe the neural representations
that support face recognition. While the theories that relate face adaptation to
behavioral aftereffects may seem conceptually simple, our work has shown that
testing computational instantiations of these theories can lead to unexpected results.
Instantiating a model of face adaptation not only requires specifying how faces are
represented and how adaptation shapes those representations but also specifying how
decisions are made, translating hidden representational states into observed responses.
Considering the high-dimensionality of face representations, the parallel activation of
multiple representations, and the non-linearity of activation functions and decision
mechanisms, intuitions alone are unlikely to succeed. If the goal is to understand
mechanism, not simply to examine the boundaries of a behavioral phenomenon or
correlate behavior with brain activity, then formal computational modeling must be
a component of theory testing. To illustrate, we highlight our recent computational
modeling of face adaptation aftereffects and discuss how models can be used to
understand the mechanisms by which faces are recognized.
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INTRODUCTION

Adaptation aftereffects have been used as a tool for studying low-level vision (e.g., Gibson and
Radner, 1937; Blakemore and Sutton, 1969; Frisby, 1979; Wade, 1994; Anstis et al., 1998; Kohn,
2007; Thompson and Burr, 2009; Webster, 2015) and there has been of growing interest in their
potential for informing high-level vision. Like low-level aftereffects (color and tilt) just a few
seconds of adaptation are needed to bias the perception of high-level stimuli (faces, bodies, and
objects; Leopold et al., 2005; Rhodes et al., 2007; Javadi and Wee, 2012; Rhodes et al., 2013).
For example, brief adaptation to a face with a wide jaw and narrow eye separation will cause an
aftereffect, biasing perception toward a psychologically opposite stimulus, such that a subsequently
presented face may appear to have a narrower jaw and wider eye separation (Leopold et al., 2001;
Rhodes and Jeffery, 2006; Robbins et al., 2007; Tangen et al., 2011).

The face recognition literature has used adaptation to address debates about the nature of
face representations. Unlike low-level visual features, such as color or orientation, faces are
complex with high dimensionality. The concept of face space has pervaded theorizing about face
recognition, providing a framework for understanding how such multidimensional stimuli are
represented in the brain (Valentine, 1991). Faces are represented as points along a collection

Frontiers in Psychology | www.frontiersin.org 1 June 2016 | Volume 7 | Article 815

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.00815
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2016.00815
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.00815&domain=pdf&date_stamp=2016-06-13
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00815/abstract
http://loop.frontiersin.org/people/179646/overview
http://loop.frontiersin.org/people/12529/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00815 June 9, 2016 Time: 14:36 # 2

Ross and Palmeri Modeling Face Adaptation

of psychological dimensions, with the distance between points
reflecting the similarity between faces. Each dimension of
face space is assumed to represent some component of
variation across the population of know faces; dimensions could
correspond to physical differences, such as the distances between
the eyes, or more holistic sources (O’Toole et al., 1993; Burton
et al., 1999; Dailey and Cottrell, 1999; Wilson et al., 2002).

Debate has centered on the nature of the face representations
that reside within face space (see Valentine, 2001; Rhodes
et al., 2005; Rhodes and Leopold, 2011; Valentine et al., 2015).
Norm models propose that faces are represented with respect
to their deviation from a prototypical or average face, the norm
(Valentine, 1991; Byatt and Rhodes, 1998; Loffler et al., 2005;
Rhodes and Jeffery, 2006), whereas exemplar models propose
that faces are represented with respect to their similarity to
individually encoded faces, exemplars (Valentine, 1991; Lewis,
2004).

Although representations assumed by norm and exemplar
models are fundamentally different, both turn out to make
similar predictions about key aspects of face recognition, such as
effects of typicality and distinctiveness (e.g., Valentine and Bruce,
1986; Valentine, 1991) and effects of caricature (e.g., Lewis and
Johnston, 1998, 1999; Lewis, 2004). One seemingly promising
approach to differentiating predictions of norm and exemplar
models relies on face adaptation (e.g., Leopold et al., 2001; Rhodes
and Jeffery, 2006; Robbins et al., 2007).

FACE ADAPTATION AFTEREFFECTS

In a now classic paper, Leopold et al. (2001) had participants
first learn to identify four novel target faces (Adam, Jim, John,
and Henry) and then tested their ability to identify test faces as
one of the four studied targets. Test faces were positioned along
morph lines that projected from each of the target identities,
through the norm, to the opposite side of face space (Figure 1).
On some trials, participants were first briefly shown an adaptor
face for a few seconds and then identified a test face. Without
adaptation, the average face at the center of the space was equally
likely to be identified as one of the four targets. But with exposure
to an adaptor located on the opposite side of the norm from
a target, call it “anti-Adam,” the average face was more likely
identified as “Adam.” Relative to baseline without adaptation,
the psychometric function for identification as a function of the
distance of a test face from the average (identity strength), is
significantly shifted to the left by adaptation to a matching anti-
face (adaptation to anti-Adam, testing on morphs of Adam); this
contrasts with the psychometric function for non-matching anti-
faces (adaptation to anti-Jim, testing on morphs of Adam), which
is slightly shifted to the right.

Rhodes and Jeffery (2006) extended this paradigm with the
inclusion of a critical control condition. In addition to contrasting
adaptation along opposite morph trajectories that passed through
the norm (Leopold et al., 2001), they tested adaptation along non-
opposite morph trajectories that did not (Figure 1). Adaptation
affected face identification with respect to the norm, such that
post-adaptation identification thresholds were significantly lower

for faces along opposite trajectories, compared to those along
non-opposite trajectories. Rhodes and Jeffery (2006) reasoned
that since the magnitude of adaptation was dependent on
whether the morph trajectory passed through the norm (opposite
trajectories) or not (non-opposite trajectories), the psychological
representation of faces must make some reference to a norm face.

INTUITIONS ABOUT FACE ADAPTATION

Finding that adaptation biases face recognition with respect to
the norm rather than simply biasing recognition away from the
adaptor has been widely interpreted as evidence for norm-based
coding (Rhodes et al., 2005; Rhodes and Jeffery, 2006; Robbins
et al., 2007; Susilo et al., 2010; Rhodes and Leopold, 2011; Rhodes
and Calder, 2014; Short et al., 2014; Walsh et al., 2015, but see
Zhao et al., 2011; Storrs and Arnold, 2012). At its most simplest,
finding that face adaptation is sensitive to the norm intuitively
suggests that face representations are constructed with respect to
a norm.

Intuitions are also often supported by considering illustrations
of one-dimensional two-pool (norm) and multichannel
(exemplar) models (Figure 2). In a two-pool model, face
representation are assumed to be broadly tuned, responding
maximally to a particular extreme within face space. For example,
in Figure 2, the two pools encode variations in eye height, with
one pool preferring faces with extremely high eyes and the other
pool preferring faces with extremely low eyes. The location of
a face along a given dimension is encoded by the proportional
activity of the two opposing pools. Because the pools are explicitly
specified to intersect at the location of the norm face, two-pool
models are generally considered instantiations of norm models.
By contrast, in a multichannel model, face representations are
assumed to be narrowly tuned, preferring faces at a particular
location along some dimension. These are generally considered
analogous to exemplar models because faces are encoded only
with respect to other faces, rather than making reference to any
norm face.

For both two-pool and multichannel models, face
representations are assumed to adapt in proportion to their
level of activation to the adaptor. In the case of the two-pool
norm model, adapting one of the pools more strongly than the
other will cause a subsequent bias in the relative activation of
the two pools, with the effect that after adaptation, perception
will be biased toward the opposite extreme. By contrast, for
the multichannel exemplar models, adaptation will only affect
representations at the location of the adaptor, causing subsequent
perception to be biased away from the adaptor, not specifically
toward the opposite extreme.

A significant limitation of this past work is that nearly all
of the assumptions about how norm and exemplar models
might respond to face adaptation have been based on intuitions
and pictorial illustrations of one- or two-dimensions. Rarely
are these intuitions supported by explicit simulations, where
predictions are formally generated, compared, and evaluated. The
mechanisms involving face recognition undoubtedly involves
combinations of high-dimensionality, non-linear activation,
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FIGURE 1 | (A) Schematic face-space representation of the stimuli used in anti-face adaptation paradigms (adapted from Rhodes and Jeffery, 2006). In both
Leopold et al. (2001) and Rhodes and Jeffery (2006), an opposite adaptor (anti-face) was constructed to lie on the opposite side of the norm from each of four target
faces (only one shown here), with the opposite test trajectory lying in between. In addition, Rhodes and Jeffery (2006) included additional four non-opposite (control)
trajectories (only one trajectory is shown here) that lay between each target face and a corresponding non-opposite adaptor (matched to the opposite adaptor for
distance from the target). (B) Sensitivity to face identity in baseline (open circles), matched anti-face (closed circles) and non-matched anti-face (open circles)
conditions. The proportion of correct responses has been averaged across the four identity trajectories and a best-fitting four parameter logistic function is shown for
each condition. Left panel: behavioral data from Leopold et al. (2001). Right panel: simulated data from Ross et al. (2014) for the exemplar-based (left), traditional
norm-based (center), and two-pool norm-based (right) models. (C) Sensitivity to face identity on baseline (open circles) and adaptation (closed circles) trials along
both the opposite morph-trajectory (top) and non-opposite morph trajectory (bottom). Left panel: behavioral data from Rhodes and Jeffery (2006). Right panel:
simulated data from Ross et al. (2014) for the exemplar-based (left), traditional norm-based (center), and two-pool norm-based (right) models. Copyright (2013)
Psychonomic Society, reproduced from Ross et al. (2014) with permission from Springer Science & Business Media and the Psychonomic Society.

and parallelism – all properties of the human brain. Making
predictions based on intuition or illustration alone must be the
subject of scrutiny (e.g., see Hintzman, 1990; Burton and Vokey,
1998; Lewis, 2004; Palmeri and Cottrell, 2009), as we recently
illustrated (Ross et al., 2014).

MODELING FACE ADAPTATION
AFTEREFFECTS

Part of our motivation for a close examination of formal
predictions of norm and exemplar models comes from lessons
learned in the categorization literature. Posner and Keele (1968,
1970) had people learn to classify novel dot pattern stimuli
into different categories, each defined by a unique prototype.
Even though they never saw the prototypes during learning,
being trained only on distortions of prototypes, when tested
after learning, classification of unseen prototypes was better
than classification of distortions. The canonical interpretation of
prototype enhancement (e.g., Reed, 1972; Rosch, 1975; Homa,

1984) was that category learning involves some form of prototype
abstraction. How else could an unseen prototype be classified
so well than it had been abstracted as a product of learning?
These intuitions were challenged when prototype and exemplar
models were formalized in mathematics and simulations and
their predictions explicitly generated and compared to data.
Models that assume memory for category exemplars, without
any abstraction, account quite well for prototype enhancement
effects as well as phenomena that pure prototype abstraction
models cannot (e.g., see Busemeyer et al., 1984; Hintzman, 1986;
Nosofsky, 1992; Palmeri and Nosofsky, 2001). Could a similar
disconnect between intuition and formal prediction be the case
for norm versus exemplar debate in face recognition?

Ross et al. (2014), we instantiated an exemplar model of
face recognition, which bore similarities to exemplar models
of categorization (e.g., Nosofsky, 1986; Kruschke, 1992) and
descriptions of multichannel models (e.g., Robbins et al., 2007).
We also instantiated two versions of a norm-based model. One
version, which we referred to as a traditional norm-based model,
had been formalized previously by Giese and Leopold (2005);
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FIGURE 2 | Illustration of intuitive, hypothesized adaptation effects from a two-pool model (left) and exemplar-based model (right) reproduced from
Susilo et al. (2010). The dimension used in this illustration is eye height. In the two-pool model (left), eye height is encoded by opposing pools of face
representations, centered on the norm with the combined activity of the pools representing the location of a face on the eye height dimension. In the exemplar-based
model (right), eye-height is encoded by multiple representations with bell-shaped tunings. In both cases, adaptation is assumed to result in a decrease in activation
of each representation in proportion to its activation by the adapting stimulus. The effect of adaptation of the face representations is represented by the dashed line.
Simple illustrations such as these often drive theoretical intuitions about face adaptation aftereffects. Copyright (2010) Association for Research in Vision and
Ophthalmology (©ARVO).

the other, a two-pool model, was adapted from descriptions
of norm-based coding (e.g., Rhodes and Jeffery, 2006). In the
following descriptions, we omit many of the mathematical and
computational details, focusing instead on what we did and why,
and recommend the reader to refer to Ross et al. (2014).

Our core modeling framework is no different from dozens, if
not hundreds, of other models of perception and cognition. There
is an input layer that models the perceptual representation of the
face, an intermediate layer that models alternative assumptions
about face space (exemplar, traditional norm, and two-pool),
and an output layer that generates a decision about the face
(Adam, Jim, John, or Henry). Because we were interested in
directly comparing three alternative theories of face space, we
assumed the same input representation and output mechanism
for every model. All that varied was the internal face-space
representation.

To briefly outline, when a test face, say a particular face
along the Anti-Adam/Adam morph continuum, is presented
to the model for identification, a multidimensional perceptual
representation is created by the visual system. Instead of
attempting to model the complete processing hierarchy of
the ventral stream visual system that creates this perceptual
representation (e.g., Jiang et al., 2006; Serre et al., 2007), we
considered two simpler possibilities. The first made no specific
assumptions about how the perceptual representation of a face
is created from its 2D retinal image, and simply assumed that
a randomly sampled face is represented by a random sample
from a multivariate Gaussian (normal) distribution (see also
Lewis, 2004). The second used an actual 2D face image as input
and created a multidimensional input representation of it via
principal components analysis (PCA), much like many other
models (e.g., O’Toole et al., 1993; Burton et al., 1999; Dailey and
Cottrell, 1999; Giese and Leopold, 2005; Richler et al., 2007).

In both cases the perceptual representation is simply a vector
specifying the location of a given test face along each dimension
of face space. This face representation then activates exemplars,
norms, or pools in the face-space layer according to the rules for
that particular model of face space. In each case, we assumed
that pre-experimental experience populated face space with a
collection of exemplars, norms, or pools, depending on the
model. Like other exemplar-based face-space model (e.g., Lewis,
2004; Giese and Leopold, 2005), activation of a given exemplar in
face space is a non-linearly decreasing function of the distance
of that exemplar to the test face. For the traditional norm-
based model (Giese and Leopold, 2005), norm representations
are activated by a test face as a function of both the difference
in angular distance with respect to the norm as well as their
relative distance from the norm. And for the two-pool model
(e.g., Rhodes and Jeffery, 2006), competing pools of units on
opposite side of the norm are activated as a function of the relative
similarity of a test face to members of each pair in the pool.
Simple assumptions were made to implement adaptation within
the three models as a temporary rescaling of maximal activation
according to the similarity of each exemplar, norm, or pool to the
adaptor.

Finally, the distributed pattern of activity across these
exemplars, norms, or pools is associated with output nodes for
Adam, Jim, John, or Henry, with the relationship between a
given pattern of face-space activations and a particular identity
learned using a standard delta-rule learning algorithm. This step
mirrors the initial learning of face identities by participants in
the face adaptation experiments. Activation of the identity nodes
is readily translated into identification probabilities (following,
for example, Kruschke, 1992). While the actual identification
of the learned face is a critical component of face adaptation
experiments, most predictions described for different face-space
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models focus entirely on the face-space representation, largely
ignoring how the activation of those representations in face space
might be combined to generate the learned face identification
response that is the key measure in the task.

We tested the three models on how well they could
qualitatively predict the observed data from Leopold et al. (2001)
and Rhodes and Jeffery (2006), outlined earlier, as well as a related
data from Leopold and Bondar (2005). Each of the variants has a
small collection of free parameters, including such things as the
number of dimensions in the input perceptual representations,
the width of the tuning of exemplars, norms, or pools, and scaling
parameters that define things like the strength of adaptation
and how output activity is mapped onto response probabilities.
We explored a wide range of model parameterizations, and not
only looked for parameter combinations that provided a good
quantitative account of the observed data in each experiment, but
also evaluated whether models made parameter-free qualitative
predictions irrespective of particular parameterizations. Simply
put, outside of subsets of parameters that produced no significant
effect of adaptation at all – for example, having the scaling on
adaptation too low or the width of the tuning function too small –
in all cases, the quantitative predictions illustrated below map
onto the qualitative predictions across parameters sets.

All three models are able to account for the data from Leopold
et al. (2001) and only the exemplar model and the two-pool
model are able to account for the data from Rhodes and Jeffery
(2006), with the traditional norm-based model failing on that
score (Figure 1). Despite prevalent intuitions that face adaptation
aftereffects clearly support norm models over exemplar models,
those intuitions were not borne out when those models were
explicitly implemented and simulated and their predictions
compared to observed data. In fact, our variant of the traditional
norm-based model could not explain key aspects of the observed
face adaptation data.

WHY INTUITIONS FAIL

Why do common intuitions about norm and exemplar face
adaptation fail? To begin with, most illustrations depict one
or two dimensions but face space likely has 10, 20, 100,
or more dimensions. Human intuition beyond two or three
dimensions often fails miserably (e.g., DiCarlo and Cox, 2007).
Combine this high dimensionality with the non-linearities in
activation functions and decision rules, and intuition is bound
to fail.

Consider also the claim that representations in a multichannel
model must be narrowly tuned (e.g., Robbins et al., 2007). On
a single dimension perhaps this corresponds to a representation
having at most significant activation across one quarter of the
span of the dimension (Figure 2, right). But, consider instead
a representation in two dimensions; we now have a circle that
occupies significantly less than one quarter (one quadrant) of
the total space. While in one dimensions it seems that each
exemplar must be so broadly tuned that it would convey little
useful information to discriminate different faces, in multiple
dimensions this need not be the case.

Illustrations of exemplar models (Figure 2, right) also tend
to impose a complete tiling across face space. To begin with,
while a complete tiling might be feasible for one or even two
dimensions, the sheer number of nodes necessary to fully tile a
100-dimension face space is far more than the number of neurons
in the brain (and likely more than the number of atoms in the
known universe). More importantly, exemplar models assume
that face space will be populated based on specific experience with
faces, and do not assume any a priori covering map across space.
The combination of a finite number of face representations,
together with non-uniform exemplar distribution, along with
exemplar tuning widths required in high dimensions, creates a
situation in which face adaptation is dependent on the adaptor
faces location relative to the entire population of exemplars. Like
other examples from the face recognition and category learning
literatures (e.g., Lewis, 2004), the ability of the exemplar model
to make predictions that appear to require a norm is driven by
the fact that the average is implicitly represented in the statistical
distribution of faces, not any explicit norm representation.

DISCUSSION

Face adaptation aftereffects are used to draw mechanistic
conclusions about how faces are represented. Our work makes
clear that mechanistic conclusions really must be supported
by formalized computational models that delineate specific
testable assumptions about how faces are represented, how face
knowledge is represented and used, how adaptation works, and
how face identities are determined. Our assumptions about
any of these components may be wrong, or there may be
alternatives that we did not consider. But that is a strength of
formal modeling, not a weakness, especially when compared to
mechanistic predictions derived from intuitions or simplified
illustrations, as has been the case for much theoretical work
concerning face adaptation. In nearly every area of perception
and cognition where a computational modeling has been
deployed, there are examples of empirical phenomena that
intuitively point to one particular mechanistic explanation but
in fact can be explained as well or better by other explanations
when those alternatives are formally evaluated (e.g., Farrell and
Lewandowsky, 2010).
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