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There is a growing consensus that a fuller understanding of social cognition depends on
more systematic studies of real-time social interaction. Such studies require methods
that can deal with the complex dynamics taking place at multiple interdependent
temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of
analysis. We demonstrate the value of adopting an extended multi-scale approach by
re-analyzing movement time-series generated in a study of embodied dyadic interaction
in a minimal virtual reality environment (a perceptual crossing experiment). Reduced
movement variability revealed an interdependence between social awareness and
social coordination that cannot be accounted for by either subjective or objective
factors alone: it picks out interactions in which subjective and objective conditions
are convergent (i.e., elevated coordination is perceived as clearly social, and impaired
coordination is perceived as socially ambiguous). This finding is consistent with the claim
that interpersonal interaction can be partially constitutive of direct social perception.
Clustering statistics (Allan Factor) of salient events revealed fractal scaling. Complexity
matching defined as the similarity between these scaling laws was significantly more
pronounced in pairs of participants as compared to surrogate dyads. This further
highlights the multi-scale and distributed character of social interaction and extends
previous complexity matching results from dyadic conversation to non-verbal social
interaction dynamics. Trials with successful joint interaction were also associated with
an increase in local coordination. Consequently, a local coordination pattern emerges
on the background of complex dyadic interactions in the PCE task and makes joint
successful performance possible.

Keywords: time-series analysis, social interaction, social cognition, embodied cognition, enactive, complexity

INTRODUCTION

Recently cognitive science has started to adopt a multi-scale and dynamical systems account for
different aspects of human behavior (Dumas et al., 2014). Complexity sciences are a formal way for
adopting such an approach, as they have the advantage of studying a wide variety of phenomena
from both holistic and dynamic perspectives. This way of thinking has yielded many insights
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into the behavior and underlying patterns of many processes in
different fields like sociology, economics, medicine, biology, and
cognitive sciences (Gershenson and Heylighen, 2005).

Compatible with complexity sciences is the enactive approach
to cognition, which is based upon two main ideas. Firstly,
the mind is considered as embodied so it cannot be reduced
to the brain activity, and similarly, the body cannot be only
regarded as a sensorimotor reservoir (Thompson, 2007). Via our
embodiment we are intentionally directed toward and entangled
with the world. Secondly, the lived experience of the cognitive
agent, which is embedded into an environment, influences its
actions (Froese and Di Paolo, 2011; Colombetti, 2014).

Therefore, the interactions between environment, body and
brain become relevant to the understanding of the mind and thus,
the components involved in human cognition cannot be studied
as isolated entities, but rather as a whole dynamical system
(Beer, 2000). This dynamic approach can be generalized from the
individual to the dyadic situation such that social interaction is
considered to be a relational property of the whole embodied and
situated two-agent system (Froese et al., 2013b).

A way of studying social cognition from a dyadic, dynamical
and embodied perspective is the perceptual crossing experiment
(PCE), originally introduced by Auvray et al. (2009). In this
paradigm, pairs of participants are situated in an invisible one-
dimensional and periodic virtual space (i.e., a loop) in which they
move their avatars. Participants make haptic contact with three
types of objects when they pass over them in the virtual space.
Two of these, slightly spaced apart, constitute the partner’s avatar
and its ‘shadow’; only the avatar also coincides with the partner’s
contact sensor and thereby enables responsive interaction. The
remaining object is a static decoy which does not change its
position over time.

The PCE has proved to be a successful paradigm for
considering embodiment and the relevance of the interactions
that take place in social cognitive tasks (Rohde, 2010; Auvray
and Rohde, 2012). It has also been able to take into account
the subjective experience of the participants as well as support
the idea that in some cases social cognition of an individual is
constituted by its social interaction with others (De Jaegher et al.,
2010; Froese et al., 2014a).

Consequently, the interaction itself has become a process
thoroughly studied by the PCE and the study of it has supported
the development of new theories of social cognition like second-
person neuroscience, in which the interaction dynamics between
two engaged subjects are of the utmost importance (Schilbach
et al., 2013).

Recent work by Bedia et al. (2014) have pointed out
that existing analyses of the PCE, both in the simulation
and the human behavioral scenarios, have implicitly assumed
that the emergence of social movement phenomena can be
reduced to a single and relatively short time scale, thereby
neglecting potentially the multi-scale organization of interaction
dynamics constituted by long-range correlations and other fractal
phenomena. Indeed the human behavior has been formally
studied from a systemic point of view. Particularly, social
interaction has been regarded as a process to which some
dynamical systems tools can be applied (Froese et al., 2013a). So it

is sensible to focus on the coordination among multiple temporal
scales, rather than on isolated scales or even on a single one (Ihlen
and Vereijken, 2013).

In this way, systems biology and complexity sciences become
pertinent because they focus on the interactions rather than on
the individual components of any given system. Particularly,
time-series analysis (a tool used for studying complex systems,
e.g., Hardstone et al., 2012; Fossion et al., 2013) allows a
dynamical assessment of the interactions underlying a system’s
behavior. Furthermore, this approach provides high temporal
resolution, as well as holistic and multi-scale accounts of such
systemic interactions (Fossion and Zapata-Fonseca, 2015).

In the context of embodied social interaction, the slower
time scales involving conversation and body movements have
been shown to mediate important parts of the social exchange
(Schmidt et al., 2014). Bedia et al. (2014) confirmed the multi-
scale character of human–human interaction in a modified and
constrained version of the PCE.

Taking into account the criticism by Bedia et al. (2014)
and appealing to the pervasiveness of scaling laws in the
human behavior (Kello et al., 2010), we have adopted a
time-series analysis perspective for studying embodied social
interaction. These analytical tools permitted the consideration
of the dynamics occurring over the full length of the trials in
the PCE study carried out by Froese et al. (2014a). Besides, it
was possible to measure both the individual and dyadic levels
of embodied dyadic social interaction and to account for the
presumed presence of scaling properties.

The frequency and variability domains were assessed by means
of the standard Fourier spectral analysis, yielding different results
according to different qualities of social interaction, both at the
objective and subjective levels.

The scaling domain’s assessment was done by computing
multiple Allan factor coefficients within each time-series. Such
method was chosen due to the nature of the signals obtained from
the current experiment (further details in Section “Allan Factor
Analysis for Temporal Clustering”). Afterward we calculated
the complexity matching between the Allan factor coefficients
of individuals conforming a pair. Complexity matching is
a particular case of distributional matching (DM), but it is
important to notice that complexity matching is rather a general
method in the sense that it can be computed using correlation
coefficients, DFA exponents, or Allan factor values, as it was
the case in this research. Complexity matching was carried out
in order to test out the theoretical hypothesis that recognizes
embodied interaction as a multi-scale phenomenon.

Importantly, it is possible that complexity matching of binary
event series is a trivial consequence of local coordination and
of the multi-scale dynamics exhibited at the individual level. In
particular, if the dyad members somehow become synchronized,
irrespective of the complex motor behavior exhibited at the
level of the individual, then complexity matching will necessarily
follow from the synchronization. This would greatly weaken the
potential evidence that complex multi-scale interactions support
dyadic embodied coordination in the PCE.

To this end we quantified local coordination using methods
that are only sensitive to direct local coordination. Two different
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methods were used because there is a lack of an a priori
understanding of how to operationalize local coordination in the
PCE task which has a special and novel character: (1) the cross-
correlation between the series of movement onset-offset intervals
of both partners; and (2) an event synchronization metric
developed for neural spike trains. The latter, albeit used outside its
traditional domain, is directly applicable because the movement
onset-offset events constitute a binary temporal representation of
the motor behavior (details can be found in the Supplementary
Material). These events are a relevant dimension of coordination
because the ideal way to perceive the presence of a human
avatar at a given moment in the PCE setup is when the perceiver
is not moving while the avatar is moving in the vicinity. So
coordination of periods of movement and no movement between
partners facilitates the successful performance of the task.

The upshot of our analyses is that applying time–
series analysis to embodied dyadic social interaction allows
investigating the whole dynamics of the different modalities of
social interaction observed in the PCE. Moreover, different scales
of temporal resolution intrinsic to social phenomena can be
studied when adopting the approach here proposed perspective.
Particularly, our research suggests that due to the nature of
the task dynamics, important information about movement
coordination can be obtained by considering the PCE as a
point process instead of as continuously fluctuating signals.
Consequently, methods for binary event-based series, such as the
Allan factor, are required.

Remarkably, our work showed that the time-series from
the PCE and those from dyadic conversations share certain
properties. Specifically, our findings are compatible with previous
evidence in which complexity matching proved to be a suitable
tool for measuring higher-order complex coordination coupling
at the dyadic level (Abney et al., 2014).

Furthermore our results lead us to conclude that time-
series analysis, in the context of embodied dyadic social
interaction, is a potential tool for understanding how the on-
line social interaction is modulated by different environmental
contingencies, as well as by individuals’ and collective behavioral
dynamics (De Jaegher et al., 2010; Froese and Di Paolo, 2011;
Schilbach, 2016). Finally, this line of research could yield some
light into the search of behavioral markers of social interaction
impairments by means of time-series analysis (Fitzpatrick et al.,
2016).

MATERIALS AND METHODS

Minimal Social Cognition Experiment
The participants of the PCE that we analyzed (Froese et al.,
2014a) were healthy volunteers recruited from acquaintances at
the University of Tokyo (N = 34). There were 25 from Japan and
the rest were from diverse nations. Six were female. The mean age
was 29 years. The Ethical Committee of the University of Tokyo
approved the study. All of the participants gave their written
informed consent before taking part in the study. Readers already
familiar with the PCE can skip ahead to Section “Time-Series of
Player’s Instantaneous Velocities.”

The PCE is considered a minimal social cognition paradigm
because pairs of humans have to recognize and socially interact
with each other within a very constrained environment (Auvray
and Rohde, 2012). The variation of this paradigm employed by
Froese et al. (2014a) consists of an invisible one-dimensional
virtual space of 600 pixels width with connected endpoints, thus
forming a 1D loop, into which two participants aim to encounter
each other’s avatars and establish an enduring interaction. Each
trial lasts for 60 s and 15 trials were performed by each dyad.
Additionally, each player can encounter two different equally
sized objects other than her partner in the virtual shared
environment, namely a fixed object with a constant position
and the so-called shadow or lure object that moves exactly
as the partner but lagged in position. The interaction in this
experimental set-up occurs by means of haptic feedback and
active movements throughout the horizontal axis. The movement
in the virtual space was mediated by a trackball controlled by
the dominant hand of the participants and the haptic feedback
by a vibrating device located in the non-dominant hand. The
haptic feedback was discrete in nature and enabled when the
sensor crossed any of the three objects (static decoy, avatar of
the partner, and shadow avatar of the partner) in the virtual
space (Figure 1A). Such feedback consists of a vibration with
both fixed intensity and duration regardless of the object that
is encountered. Participants were instructed to click (at most
once per trial) if they felt that they had found the other
player. This experimental setup was carried out on a team-
based competitive tournament basis so that the players were
encouraged to solve the task collectively. The winner dyad was
the one that more accurately performed in the each other’s
recognition task measured by clicks accuracy.

From such a set-up, it follows that the strongest
interaction happens when both players’ sensors are turned
on simultaneously, and consequently both participants feel a
vibration at the same time (Figure 1B). In contrast, participant
A feels a vibration when Pa-sensor crosses Pb-shadow but
participant B does not receive any feedback. Participant A would
also feel a vibration when crossing the Pa-static object. The
difference here with respect to the previous two scenarios is that
the static object would always be there, it would not escape if one
crosses it and then returns to it. If one crosses either Pb-sensor
or Pb-shadow, however, one might not find them at the same
place when going back. These two virtual objects always move
in an identical manner, but only Pb-sensor can be responsive to
contact. Participants are assigned static objects individually and
uniquely. This means that Pa-static and Pb-static are at different
locations and can only be felt by their respective assigned
member of the dyad. Given that all three types of objects are
equal in size, the only way for recognizing the partner as such the
participant must rely on the dynamics of the sensorimotor loop
that emerges out of the interaction itself.

In order to quantify the success of the interaction, Froese
et al. (2014a) assessed the performance from both objective
and subjective perspectives. The experimenters asked the players
to make a click per trial whenever they considered that an
interaction with another human was taking place. The objectivity
of the social encounter was measured by the accuracy of the clicks
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FIGURE 1 | Experimental set up. (A) The participants are placed in separate locations and can only interact with each other by means of a minimal haptic
human–computer interface that provides all-or-nothing vibratory feedback depending on whether a player’s avatar overlaps with another virtual object or not. (B) The
virtual space consists of an invisible 1D circle that wraps over after 600 units of space and in which players can encounter three different objects of equal size: the
other’s avatar, the other’s shadow, and a static object. Adapted from Froese et al. (2014a).

that the players made. Importantly, the rate of click accuracy
was not disclosed to the participants until the end of the whole
experiment. Thus, the objective evaluation was an external and
detached one.

The subjective assessment was performed by means of the
participants’ reports at the end of each of the 15 trials. This first-
person report was based upon a Likert scale called Perceptual
Awareness Scale (PAS), originally proposed by Ramsøy and
Overgaard (2004) for the study of visual awareness. The scale was
adopted by Froese et al. (2014a) for the study of social awareness
assigning different values depending on the clarity of the other’s
presence that the participants experienced. The PAS was scored
as follows: 1, no experience; 2, vague impression; 3, almost clear
experience; and 4, clear experience.

Time-Series of Player’s Instantaneous
Velocities
Originally, 510 time-series were obtained corresponding to the
15 trials made per participant in the PCE carried out by Froese
et al. (2014a). As mentioned before each trial lasted 60 s and
because of the 100 ms sampling rate the time-series length was
approximately of 5980 points. Such points represent the sequence

of a player’s positions while exploring the shared virtual space
where the corresponding partner was also moving, that is, their
behavioral trajectories.

It is worth mentioning that the PCE space and the trackball
movements entail a periodic domain, i.e., the axis on which the
players move wraps over in a 1D circle fashion. Due to the
bounded periodic domain of the PCE space, the state trajectories
of positions could exhibit discontinuous jumps. These abrupt
changes were corrected using a standard unwrapping algorithm
for phase angle data. In Figure 2 an example of a trial is shown.

As in Bedia et al. (2014) we converted these sequences
of position measurements into time-series of velocity. The
instantaneous velocity (rate of change of positions) of each player
was calculated by subtracting the successive positions for every
point of the time-series and dividing by 0.01, the sampling
interval in seconds; so this procedure yielded the derivative of
position with respect to time (dx/dt).

The velocities were preferred to the positions because velocity
is directly related to players’ behaviors as a surrogate of the
track ball movements. Moreover, players did not have access
to their own position information so they were aware only of
their changes in positions. So the velocity was what they were
able to control. It is important to mention that the positions
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FIGURE 2 | Time-series of a representative trial. (A) Both participants’ positions are plotted, as well as the positions of the objects which they could encounter
with (shadow objects and static objects). In this example an interactive turn-taking of movements is taking place, and a jointly drifting through the virtual space is
conspicuous. (B) The instantaneous velocities (derivative of the players’ positions) are shown for both participants of the dyad. Notice that all the values oscillate
around zero, meaning that there is no trend in this new time-series.

exhibited strong recurrent long-range trends. This has been
identified as a source of spurious results in the sort of scaling
analysis considered here (Bryce and Sprague, 2012). Fluctuations
in velocities, on the other hand, are centered on a constant mean
of zero velocity entailing a lack of trend.

Fourier Spectral Analysis
For this analysis we identified features of specific types of social
interaction by studying the cases in which subjects reported
having had a real experience, i.e., subjects whose PAS score
was equal to one, meaning no experience at all, were excluded.
Furthermore, PAS = 2 and PAS = 3 were grouped together
because both items referred to an ambiguous experience (AE),
in contrast to the clear experience (CE) of PAS = 4. This
arrangement yielded consequently two situations (“ambiguous”
and “clear experience”) for the subjective measure (SM).

It is also worth considering the comparison between trials
in which both players clicked correctly (“joint success,” JS)
and those in which there was at least one click response but
either one or none of the players clicked correctly (“individual
response,” IR). Two groups were identified according to this
objective measure (OM): players whose clicking was indicative
of collaboration and players who were less well coordinated
with their partner but who still produced a response. The
second group is indicative of a judgment regarding the partner’s
presence which was made under conditions of less effective
coordination.

Thus, four groups were assessed with this method, namely:
IR and AE (n = 87); JS and AE (n = 135), IR and CE
(n = 28); JS and CE (n = 115). Taking into account such
classification we identified two general types of situations
depicted in Figure 3:

(1) Convergent: Both OM and SM of social interaction matched
with each other (purple and black cells); and

(2) Divergent: OM did not match with the SM (red and orange
cells).

The standard Fourier spectral analysis was made for 365 time-
series of individuals’ velocities after excluding 145 time-series
belonging to participants whose performance were not useful for
the present study according to the criteria described above (no
click at all or a click with PAS score of 1).

The Fourier transform was applied in order to assess the
frequency domain and to get a general notion of the signals’
structure. As there was no trace of any power-law distribution
regarding the frequencies, scaling methods were not considered
in this first evaluation.

As a common practice, when assessing a time-series, the first
step is to compute the Fourier power spectra. Accordingly, in
the current study we firstly applied the Fourier transform to the
individuals’ time-series of instantaneous velocities.

The Fourier transform is a linear transformation that
decomposes a discrete time-series x (n) = x1, x2, . . . xN of N
successive observations as the sum of periodic basis functions
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FIGURE 3 | Classification of social interaction. The black cell represents the most social way of interacting, in which both players succeeded in making a correct
click and also reported having had a clear experience of each other. In contrast, the opposite cell (purple) stands for a less social way of interacting, since the
objective and subjective evaluations show that encounters were uncoordinated (individual response only) and ambiguous. The sample sizes for each cell are referred
in the main text. The arrows correspond to the gradient toward which the quality of interaction moves from less to more social interaction, being optimal in the lower
right corner. OM, objective measure; SM, subjective measure; IR, individual response; JS, joint success; AE, ambiguous experience; CE, clear experience.

eiωkn
= cos(ωkn)+ i sin(ωkn) (Butz, 2006),

x(n) =

N−1∑
k=0

Xkeiωkn

where Xk are complex Fourier coefficients that serves as weights
for the periodic functions,

Xk =
1
N

N∑
n=1

x(n)e−iωkn

where the frequency ωk = ± 2πk/N indicates k complete
cycles over the whole duration of N data points and where
frequencies can be positive and negative. The so-called Fourier
power spectrum,

P(k) = {|Xk|
2, k = 0, ..., N − 1}

is then the collection of the power |Xk| 2 contained in each of
the periodic basis functions and where the powers are ordered
according to frequency ωk.

It is worth to mention that the variability of the time-series
can also be studied when applying such transformation due to
the fact the power |Xk| 2 can be interpreted as a partial variance.
Specifically, Parseval’s theorem establishes that cumulative sum
over all partial variances equals the total variance (Var) of the
original time-series,

Finally, the Nyquist theorem establishes that the maximal
frequency is ωk = ± 2π(N/2), i.e., N/2 complete cycles over
the whole duration of the time-series with length N, or 1 cycle
every 2 data points (Butz, 2006). Therefore, the power spectra are
usually plotted for half of the length of the time-series, as it is

symmetrical when plotting all the frequencies without neglecting
the sign. More information about power spectral analysis with the
Fourier transform can be found in the “Fourier Spectral Analysis”
of the Supplementary Material.

The main advantage of Fourier spectral analysis is that the
single value of the total variance Var of the time-series is
decomposed in contributions at different frequencies, which
allows distinguishing between time-series with equal Var but
dominant contributions from different frequency ranges.

Additionally, the power spectrum can also be used for
assessing power-law distributions that might be presence in a
given time-series, which would mean that low frequencies or
slow waves contribute more to the series than high frequencies
or rapid waves (Muñoz-Diosdado et al., 2005). Such a behavior
is formalized by the relation P(k) ∝ 1/kβ, where the scaling
exponent β is the slope of the fitted line in the double logarithmic
plot of the power spectra.

Distribution of Movement and
Non-movement Intervals
Proper selection of analytical tools requires taking into account
not only the theoretical hypothesis but also the properties of
the signal that is being analyzed. In the present experiment,
the beginnings and ends of activity make a salient feature of
the perceptual crossing task dynamics. Figure 4 suggests that
participants did not move continuously but made frequent stops
during which they were “silent.” Supplementary Figure S1 shows
the distribution of such “silences” which reveals a wide range of
silent periods. Note that they appear to obey the same scaling
law as the distribution of movement periods (see IEI Power-Law
Distribution).
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FIGURE 4 | Continuous and discrete representations motor activity. Two partners’ velocities from a sample trial are shown in the lower half of each panel. The
upper series are the corresponding point processes obtained from the initial and terminal points of zero-acceleration.

On average 42% of the velocity time-series across all trials
and participants consisted of silences that lasted ten or more
consecutive samples (100 ms or more). This means that nearly
half of each trial is not singular and would greatly bias analyses
such as DFA that assume everywhere-singular behavior (see
Supplementary Material for more in-depth discussion).

This behavioral pattern can be seen preferentially in terms of
binary series of onsets (events) and endings of activity, i.e., as a
point process (see Figure 4), in which the inter-event intervals
(IEI) become more relevant than the fluctuations of the data
points.

This type of mixture between continuous and discrete motor
activity in the PCE and the distribution of the intervals led us to
adopt an analysis of Poisson-like processes. Accordingly, a point
process of zeros and ones (see Figure 4) was obtained for each
trial and individual by taking the first and last points of zero
acceleration in each bout of constant velocity (zero acceleration).
Then the distribution of the intervals of acceleration onsets and
offsets (IEI) was computed as a preliminary step before applying
the scaling analysis that we describe in Sections “Complexity
Matching” and “Local Coordination.”

Complexity Matching
The motor behavior in the PCE task is reminiscent of speech
time-series in the sense that both exhibit clustering of discrete
events (movement or speech onsets) on multiple time scales.

Recently, a study on dyadic conversations showed that the
scaling relation of clustering in acoustic events (speech onsets)
taken as a point process reveals important information about the
dynamics of conversational speech (Abney et al., 2014).

Particularly, the authors reported that speech in conversation
exhibits a power-law or heavy-tail distribution over the available
time scales of activity. Also, they found evidence for complexity
matching, meaning that the power-laws characterizing two
partners’ speech tended to converge when they were engaged,
especially when in an affiliative conversational style.

Complexity matching is considered to be a special case of so-
called DM and theoretically is thought to be a form of higher-
order coordination related to the maximization of information
exchange between coupled complex systems (West et al., 2008).

It is important to mention that complexity matching is
the multi-scale systemic variation of behavioral matching
(BM) which has been used to refer to coupling phenomena
like alignment, entrainment, convergence, and synchronization
(Louwerse et al., 2012; Abney et al., 2014).

We quantified the complexity matching for the whole data
set (N = 510) corresponding to every trial (N = 15) for
every member of the dual teams (N = 34). This decision is
also supported by the fact that the aim of this part of our
research was to have a comprehensive understanding of the
embodied interaction as a whole instead of trying to classify the
phenomenon in terms of its success as we did in the power spectra
analysis.

Allan Factor Analysis for Temporal Clustering
Following Abney et al. (2014), we computed the complexity
matching on the basis of the individual Allan factor coefficients of
dyad members in each trial. Allan factor is a form of variance for
point processes. Consequently, complexity matching compares
the power-law clustering in two point processes by comparing
their scaling functions.
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For a given point-process, the Allan factor variance A (T) is
obtained as follows:

• The signal is segmented into M adjacent windows of size
T, determined by the number of non-overlapping windows
covering the time-series.
• The number of events Nj is counted within each window M.

The number of events are indexed by j= 1 to j=M.
• Afterward, a ratio similar to a coefficient of variation is

obtained. The expected value of the squared differences
d(T) = Nj+1(T)− Nj(T) in counts between adjacent windows
of a given size T is normalized by the mean counts of events
per window,

The A (T) for timescale T is given by:

A(T) =
〈d(T)2

〉

2〈N(T)〉

The relation A(T) ∼ Tα indicates a Poisson process when α = 0,
i.e., A(T)∼1 for all T, whereas if α > 0 it means that the
distribution of the clustering follows a different power-law.

In the present study, the number of windows ranged from 212

to 23 which resulted in a minimum window size T of 14.6 ms
and maximum of 7.50 s. In the Section “Movement Invariants
in the Frequency and Time Domains Classify Social Interaction”
we suggest the kinds of motor behavior that might be included
within these temporal scales.

To determine complexity matching between two participants
in a given trial, a distribution similarity index is calculated by
comparing the respective Allan factor functions,

Da,b = −
∑

T

log |A(Ta)− A(Tb)|

Local Coordination
Cross-Correlation
As suggested by Abney et al. (2014), BM in the form of
local coordination can be studied by the cross-correlation.
Consequently, the cross-correlation analysis of the movement
durations was computed for all the 510 trials like in the
complexity matching analysis, as the main purpose was to assess
the embodied dyadic interaction from a more general perspective.
Movement duration is defined as the time between motion onset
and subsequent end of motion so that the events can take
only two values. From each trial time-series of an individual
series of movement durations was obtained. This is passed
through a cross-correlation with the partner’s series. Cross-
correlation is an iteratively repeated correlation where the one
series is lagged relative to the other. We used the peak positive
correlation between the movement durations of the two partners
for each trial, as well as the lowest negative correlation (negative
peak). These were analyzed separately as two separate dependent
variables.

Event Synchronization as Spike-Train
Synchronization
Due to the binary character of the events series, the most direct
way to quantify local coordination is to use measures developed

for detecting synchronization among neural spike trains (see
Supplementary Figure S2). The SPIKE-distance measure (Kreuz
et al., 2013), which is based and improves on the former ISI-
distance method (Kreuz et al., 2007), addresses several important
issues associated with correlation-based measures of spike train
synchronization. It is scale-independent, parameter-free, and
sensitive to individual synchrony events even when they are
mixed with many non-synchronous events. The details of the
algorithm are described in the Supplementary Material. Note that
the sort of local coordination where the events in the one series
are matched in time by the events in the other series implies
complexity matching but the reverse is not necessarily true. For
this reason, SPIKE-distance is appropriate for testing whether
local coordination of complex individual behavior is what drives
dyadic complexity matching.

Statistical Analysis
Linear Mixed-Effects Modeling
In the current experiment, subjective experience (PAS scores)
and objective performance (either presence or absence of JS)
are trial-by-trial covariates of motor behavior that hypothetically
are associated with it. In order to account simultaneously
for this association while also controlling for a potential
practice (trial) effect, we employed linear mixed-effects modeling
(LMEM), a technique developed for the statistical analysis of
longitudinal studies with multilevel designs (Singer and Willett,
2003). It resembles the regression of an outcome variable
against multiple predictors but can also deal simultaneously
with predictors at different levels, i.e., time-varying predictors
as well as constant randomly assigned grouping factors such
as participant identity. It treats each participant’s trials as a
trajectory of successive observations and uses dummy variables
as trial-varying predictors to represent the Performance (Per) and
Experience (Exp) observed in the respective trials. The model
template consisting of all predictors and two-way interactions is

Y ij = β00 + σ0i + β10Trialij + β20Expij + β30Perij

+ β40ExpijTrialij + β50PerijTrialij + β60ExpijPerij + σij

This combines the IR trajectories into Y, a 17 × 15 (dyads*trials)
matrix. The predictors are also matrices of the same size. For
example, Trial is a 17 × 15 matrix which has identical rows
growing from zero to 14.

To facilitate the interpretation of the fitted models, consider
that when a given predictor is time varying but binary, as is
the case with Experience (clear or ambiguous) and Performance
(JS or IR), its effect is to impose a constant shift in the
outcome variable in a trial-dependent manner. The magnitude
of this shift is estimated by the coefficients for the respective
predictors. Maximum-likelihood-estimated LMEM coefficients
are comparable (but not equal) to regression slopes and intercepts
estimated using least-squared-error. For example, a coefficient
of β30 estimated for JS trials means that trials where JS was
observed tended to be β30 higher on the outcome variable than IR,
regardless of their order. A coefficient of β50 for the interaction
between Trial and Per means that each subsequent trial where
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JS was observed tended to be β50 higher than the previous trial
where JS was observed.

The relevant variables (total power, cross-correlation of IEI,
SPIKE-distance) were fitted independently against Trial, Exp, and
Per using a recommended model development procedure (Singer
and Willett, 2003) in lme4, a dedicated statistical package for
R (Bates et al., 2015). The procedure consists of incrementally
including the predictors and their interactions in a sequence of
models and evaluating the increase in goodness-of-fit associated
with each expanded model. A thorough explanation of this
modeling can be found in the Supplementary Material.

Surrogate Dyads
For stronger statistical confirmation of complexity matching, a
test is performed by constructing surrogate dyads comprised
of the signals from participants who did not interact and then
comparing the Da,b

Original and Da,b
Surrogate values using a t-test.

For the surrogate test, a large sample of fake dyad trials was
produced by coupling the point process from each trial and each
participant with a point process, randomly selected between the
two members of a dyad, from each other trial of each other dyad.
This means that each point process was paired with half (240) of
all possible point processes produced by members of other dyads.
The resulting two samples of Da,b (for each member of the dyad)
were pooled and averaged to obtain a surrogate Da,b for the given
trial. These were further averaged to obtain a single Da,b

Surrogate

per dyad to be compared to the Da,b
Original for the dyad. This

procedure was based on the one described by Abney et al. (2014).
The same surrogate analysis was applied to the cross-

correlation and SPIKE distance.

RESULTS

Optimal Social Interaction Is Associated
With Reduced Movement Variability
The significant coefficients in Table 1 for the final model
Yij = β00 + σ0i + β30Perij + β40ExpijTrialij + β60ExpijPerij + σij
of power show that power tended to be higher in JS trials by about
0.106 units, tended to increase by 0.013 units in each successive
trial where Exp was reported, but was lower by about 0.126 units
if JS and clear experience occurred in the same trial. Therefore,
trials characterized by both elevated objective (joint clicking)
and subjective (clear experience) sociality (convergent case of
an ideal interaction) exhibited less variability in comparison
to the divergent cases in which either the coordination was
less successful or subjective assessment was uncertain (see
Figure 5). The other convergent case consisting of both reduced
objective and subjective sociality was also correlated with reduced
variability. Figure 6A shows the form of the fitted model. The
complete statistical outcomes of the model can be found in the
Supplementary Table S1.

IEI Power-Law Distribution
The distributions of IEI were consistent with a power-law
or heavy tail distribution (see Figure 7A). The exponent γ

quantifying the P (IEI) ∼ IEIγ relation was calculated separately

TABLE 1 | Linear mixed-effects modeling (LMEM) for total power,
cross-correlation and spikes distances.

Total power Cross-correlation SPIKE-distance

Fixed effects

β00: Intercept 3.430 (0.066)∗∗∗ 0.213 (0.008)∗∗∗ 0.314 (0.006)∗∗∗

β10: Trial 0.005 (0.005) −0.002 (0.001)∗ 0.000 (0.000)

β20: Exp −0.045 (0.069) −0.011 (0.019) 0.014 (0.010)

β30: Per 0.106 (0.047)∗ 0.021 (0.008)∗∗ 0.000 (0.006)

β40: Exp∗Trial 0.013 (0.006)∗ 0.005 (0.002)∗∗ −0.001 (0.001)

β60: Exp∗Per −0.126 (0.058)∗ −0.024 (0.015) −0.003 (0.007)

β50: Per∗Trial −0.007 (0.006) 0.002 (0.001)∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The models are specified in terms of
the fitted predictor parameters and random effects. Parameter standard errors
are shown in brackets. Participant (PP) acts as a grouping factor. To interpret
the coefficients, consider that both clear experience and joint click success were
treated as predictors of the outcome variable and coded as time-dependent binary
variables. Experience (Exp) = 0 indicated in a given trial means no clear experience
and Exp = 1 clear experience. Similarly, in each trial Performance (Per) = 1 if both
members produced a correct response and Per = 0 otherwise; the coefficient
interpretation is analogous. Trial indicates a practice effect and an interaction with
Trial indicates a condition-dependent practice effect.

per each trial and then the average was obtained. The average
scaling relation γ (M = −2.01, SD = 0.23) was consistent
with the premises associated with complex systems (West et al.,
2008). Similarly, the distribution of non-movement intervals
also obeyed an inverse scaling relation with γ = −2. Note that
this wide distribution of non-movement intervals implies that
the motor behavior is not a 1/f process (for details on this
issue, see Distribution of Movement and Non-movement of the
Supplementary Material).

Allan Factor Scaling and Complexity
Matching in Real Embodied Dyadic
Social Interaction
As Figure 7B suggests, on average the Allan factor of all
individual times series scaled with clustering window size T as
a power-law with a positive exponent.

The surrogate analysis showed that complexity matching
among dyads (teams) was higher than expected by chance
(Figure 7C). The average Da,b

Original (M = 12.468, SD = 1.888)
was higher than surrogate Da,b

Surrogate (M= 11.779, SD= 0.595),
t(16)= 1.877, p < 0.05.

No association between Da,b and clear experience, JS, or
practice was found (results not shown) when applying the linear-
mixed modeling procedure as previously described. The different
types of interaction shown in Figure 2 were not characterized by
different levels of complexity matching between the two members
of the dyad.

Complexity Matching Is Not Driven by
Local Coordination Patterns
Cross-Correlation
The surrogate analysis showed that cross-correlation between
real dyads was not different from the cross-correlation of the
surrogate pairs. The average for the peak positive correlation
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FIGURE 5 | Power spectra for different types of interaction. The median Fourier spectra for the four modalities of social interaction have similar shapes with a
broad maximum in the range 0.5–5 Hz, and negligible power for higher frequencies. The time-series from the purple and black spectra (convergent cases) show less
variability as shown by the smaller area under the spectra, in contrast with the orange and red spectra (divergent cases) in which the surface beneath the spectra are
bigger. Insets: The red spectrum has the highest power; the purple and the black spectra have the smallest power; and the orange spectrum has intermediate
power. The x axes are trimmed at the maximal possible frequency’s value according to Nyquist’s theorem (see details in Section “Fourier Spectral Analysis,” and in
“Fourier Spectral Analysis” of the Supplementary Material). IR, individual response; JS, joint success; AE, ambiguous experience; CE, clear experience.

FIGURE 6 | Model predictions. The linear mixed-effects model fits for the four scenarios determined by trial outcome according to clicks made (joint success or
individual response) and the self-reported experience (clear or ambiguous). (A) The final models for total power, (B) cross-correlation, and (C) SPIKE-distance are
shown. IR, individual response; JS, joint success; AE, ambiguous experience; CE, clear experience.

Da,b
Original (M = 0.215, SD = 0.020) was not significantly

different than the average for the surrogate pairs Da,b
Surrogate

(M = 0.215, SD = 0.009), t(16) = −0.010, p = 0.992. The
same outcome was observed for the peak negative correlation
Da,b

Original (M = −0.170, SD = 0.015), when compared
to the surrogate Da,b

Surrogate (M = −0.167, SD = 0.008),
t(16)=−0.782, p= 0.446.

There was no correlation between cross-correlations of
movement durations and complexity matching: r(253)=−0.069,

p= 0.275 for the peak positive correlation, and r(253)=−0.012,
p= 0.849 for the peak negative one.

The significant coefficients in Table 1 for the final model
Yij = β00 + σ0i + β30Perij + β40ExpijTrialij + β60ExpijPerij + σij
of the IEI cross-correlations show that JS trials were associated
with cross-correlation 0.021 units higher than in non-JS trials.
Furthermore, cross-correlation tended to decrease with trials by
a very small amount of 0.002 but increase by 0.004 units over
trials that also resulted in clear experience report (Exp). Figure 6B
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FIGURE 7 | Complexity matching in dyadic embodied social interaction. (A) The distribution of inter-event intervals (IEI) contains the bin-averaged probability
P (IEI) for each participant. (B) The relation between Allan Factor and window size for each participant averaged (SE) across all subjects and all trials. (C) Complexity
matching for all original dyad trials (15 trials × 17 teams) and surrogate dyad trials.

shows the form of the fitted model. An expanded version of these
results is provided in the Supplementary Table S2.

Motivated by the statistics showing higher peaks in JS trials,
we repeated the surrogate analysis to compare peak cross-
correlations in all JS trials against surrogate pairs. For the peak
positive the average was M = 0.2231 (SD = 0.0526); and for
the peak negative one was M = 0.2112 (SD = 0.0246). The
comparison between these averages yielded a small but significant
effect: t(130) = 2.3471, p = 0.0204. Note that to increase power
we used all trials (n = 131) vs. the trial-averaged data as we did
with Da,b.

Synchronization and SPIKE-Distance
A statistical test for direct event synchronization consisted of
the same procedure using surrogate pairs that was also applied
to the complexity matching measure. The null-hypothesis of no
synchronization was not rejected, the average SPIKE-distance
metric for real pairs (M = 0.324, SD = 0.022) was not different
from the one for surrogate pairs (M = 0.323, SD = 0.006),
t(16) = 0.30, p = 0.77. Consequently, direct synchronization
between the movement start/stop events of the two members
did not occur in the PCE task in the present study. A small
but significant negative correlation between SPIKE-distance
and complexity matching Da,b was observed across all trials,
r(253) = −0.237, p < 0.001, see Figure 8A. A small but
significant positive correlation between SPIKE-distance and IEI
cross-correlations was observed across all trials, r(253) = 0.276,
p < 0.001, see Figure 8B.

The significant coefficients in Table 1 for the final model
Yij = β00 + σ0i + β50PerijTrialij + σij of SPIKE-distance show
that dissimilarity tended to increase but only in the JS trials,
by about 0.002 units per trial. Figure 6C shows the form of
the fitted model. The surrogate test was repeated to compare
JS trials against surrogate pair trials. In this case there was a
very small difference in the means of the original (M = 0.334,
SD= 0.034) and surrogate pairs (M = 0.321, SD= 0.013) which,
however, was statistically significant, t(130)= 4.31, p < 0.001, in a
paired-samples t-test using all trials and participants as samples.

The complete information regarding this model is included the
Supplementary Table S3.

DISCUSSION

Dynamical and Scaling Accounts of
Social Interaction
In the present study a time-series approach to dyadic embodied
social interaction was adopted as a response to the critical claim
by Bedia et al. (2014), who pointed out that the previous PCE
analyses were limited to a single time-scale, failing to account
for the whole dynamics of dyadic social interaction. Specifically,
Bedia et al. (2014) used to DFA and multifractal DFA to show
that the fluctuations of such an interaction followed a power
law distribution characteristic of 1/f β noise (with β≈1), as
well as that this type of interaction could be considered as
a multifractal system in which multiple scales were involved,
meaning that more than one scaling exponents would be needed
to fully characterize the dynamics of the system (Kantelhardt,
2008).

Therefore, the objective of our research was to study the
dynamics of the social interaction in the above mentioned
minimal cognition environment, and particularly to look for
scaling properties in the time-series obtained from the modified
version of the PCE carried out by Froese et al. (2014a). In
such experimental setup the players were required to perform
a joint action consisting of finding and recognizing each
other in a shared virtual space. A human-computer interface
allowed the creation of changing sensorimotor loops so that the
players could socially interact in real time and in an embodied
fashion.

The series of the movements that each dyad made throughout
the virtual space during the trials were analyzed with various
techniques to assess different domains of the signals, namely time,
frequency and scaling. These types of analyses were carried out as
a complementary study to the previous single scaled behavioral
analyses made by Froese et al. (2014a).
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FIGURE 8 | Scatter plots for SPIKE-distance. (A) There is a negative
correlation between the dissimilarity index Ds and complexity matching (Da,b).
(B) The dissimilarity index Ds and the maximum peak of the cross-correlation
of IEI (CIEI

MAX) show that are positively correlated positive correlation.

Consistent with the body of literature that acknowledges
the ubiquity of multiple scales and power-law distributions in
biological systems, as well as in human behavior (Ihlen and
Vereijken, 2010; Kello et al., 2010; Bedia et al., 2014), we found
a multi-scale pattern in the current study. Specifically, both
frequency and amplitude of the time-series here assessed notably
change over different time windows entailing that the dynamics
of the behavioral data depend on the scale that is being taken
into account. Therefore, our study supports the intuition (Bedia
et al., 2014; Schmidt et al., 2014) that dyadic social interaction
analysis should not be limited to short time scales alone and
that a thorough evaluation (such as time-series analysis) of the
phenomenon is required in order to gain a better understanding
of it. In Sections “Movement Invariants in the Frequency and
Time Domains Classify Social Interaction” and “PCE As a

Minimal Dyadic Conversation,” the different types of analysis
applied in this research are discussed.

Movement Invariants in the Frequency
and Time Domains Classify Social
Interaction
The amplitude and the speed of variation over time (frequency)
are essential components of every signal and to measure them
is usually the first step when aiming to analyze a time-series.
Accordingly, a first coarse-grained inspection of such properties
was carried out. Different frequency scales of motor activity
were present. Examples of these include: fast fluctuations;
oscillations around a hypothetical object (which could be the
other human-avatar, its shadow, or the static decoy); slow steady
movement through the space; or sustained periods with absence
of movement.

Afterward, we decided to study in detail the basic power
spectra and the global variance of the signals. The most
conspicuous finding was that different types of social interaction
(in terms of objective and subjective evaluations) have distinct
Fourier power spectra and thus, classifying the modalities and
quantifying their differences in terms of the signals’ amount of
variability were possible.

In the present context the frequency range 3–5 Hz in the power
spectra likely corresponds to the “palpitating” rapid oscillations
of one avatar around the other one. The low frequency range 0.5–
3 Hz corresponds to slow swaying movements through the whole
virtual space when one avatar is trying the find the other one. The
fraction P(3− 5Hz)/P(0.5− 3Hz) might be a quantification of
the “functional time” spent on interaction to “dead time” spent
on searching.

Regarding the variability domain, the lower variance in the
velocities time-series means that a slower rate of change in
positions is happening. Therefore, relatively constant and low
amplitude oscillations around a particular value (in this case,
zero) are yielding rather stable dynamics, in which abrupt
changes are absent and constant fluctuations are more likely.
These properties of the time-series are consistent with the
gestures observed and also previously studied in Froese et al.
(2014b).

The statistical analysis shown in Table 1 suggests that clear
experience by itself is initially unrelated to the variability of
movement, but over trials becomes associated with increased
variability. JS by itself is also related to increased variability,
but with no effect of trial-by-trial practice. Intriguingly, when
JS is associated with clear experience we find a decrease in
variability, which is the opposite of what we might expect
from their combination. The fact clarity of experience was
associated with increasing amount of activity (total variability
of movement) over subsequent trials is consistent with the
diachronic analysis performed by Froese et al. (2014b),
which showed an increase in the frequency of reporting
of clear experiences over trials (e.g., their Figure 6), as
well as an increase in the variability of movements or
at least not a simple convergence on regular turn-taking
interactions.
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However, we need to keep in mind that only this latter
effect is indicative of a convergent situation of mutually
veridical perceptual experience, whereas clear experience by itself
can include false experiences, while JS by itself can include
veridical interactions that were ambiguously experienced. In
other words, both the divergent possibility that there is a
clear experience of the other which is not veridical, and that
a judgment is veridical but not based on a clear experience,
are related to increased variability. Veridical perception of
each other, i.e., an interaction in which both participants
are clearly perceived and identified in a correct manner,
stands out as a special case related to reduced variability in
movement.

This makes sense because when the players do not succeed in
terms of interaction, it means that their movements across the
environment are not being sufficiently meaningful to each other.
For instance, interactions that are less stable tend to suddenly
and also more frequently break up. It is also worth mentioning
that there is a limit to the reduction in variability because such
minimal variability and the concomitant rigidity would indicate
a non-interactive behavior as there would be no change of the
individual whatsoever. This could be seen in the hypothetical case
a player decides to just oscillate for the whole the trial around the
static object.

Indeed, such a rigid behavior can be thought as a dysfunction
in terms of social interaction, which would be expected for
instance in individuals with autism spectrum disorder (ASD).
Such individuals are characterized by an abnormal social
approach like failure to initiate or respond to social interactions
neglecting the contingencies of the environment, as well as
deficits in understanding gestures, such as turn-taking. Also
autistic patients present obsessive traits restricting and repeating
their patterns of behavior, such as stereotyped movements or
extreme distress at small changes and difficulties with transitions
(American Psychiatric Association [APA], 2013). Intriguingly,
perhaps the PCE could be used to characterize and even diagnose
autism on the basis of time-series analyses of their embodied
social interaction.

An important aspect to consider in this particular
experimental set up is the fact that the presence or absence
of a click is closely related to and even a direct consequence
of the awareness. Indeed the recently developing field of
second-person neuropsychiatry suggests that making sense
of each other’s and engaging in social interaction entails a
dynamical and non-detached process (Schilbach, 2016). So
whereas the clicks in the PCE are single scale point events,
perception of the environment can be regarded rather as
a flow of integrated and continuously active engagement
that will or will not eventually create an impression of the
situation. It is plausible to assume that the trajectory of this
dynamical process will yield an impression only if two conditions
are met:

(1) Sufficient attention is paid to the sensorimotor loop in
which the players are being entrained; and

(2) Co-regulation is reached, so the collective modulation of
the entrained sensorimotor loop is constantly maintained.

In this sense, the reduced variability can also be interpreted
as focalized and stable attention which would explain why it
is more related to accurate awareness (convergent situations)
rather than with clicking accuracy. Moreover, our results suggest
that such dynamics allow the players to detect subtleties in the
environment, namely the contingencies provided by the different
objects encountered.

PCE As a Minimal Dyadic Conversation
It is important to mention that the study by Bedia et al. (2014)
cannot be compared directly with the present one because of
some differences in the experimental setup. The most relevant
are: the lack of both a joint action task and a tournament based
competition; and the fact that participants could only encounter
one type of object in the virtual space.

Even though such discrepancy, we searched for long-range
correlations and fractal features in the fluctuations of the
velocities time-series. To do so we attempted to apply Detrended
Fluctuation Analysis (results not shown), a method that has
been used for studying continuous movement fluctuations such
as, for instance, posture control (e.g., Duarte and Zatsiorsky,
2000). However, our data set suggest that such measures were not
meaningful in the current PCE paradigm due to the composition
of a fluctuating signal and constant signal. Instead we consider
that a more appropriate frame of reference is to treat PCE as a
form of conversation and point processes that require different
methods such as the clustering statistics of discrete actions or
discrete events.

Worth to mention is that in contrast to Bedia et al. (2014)
considering the relative velocities as a proxy of collective behavior
was disregarded in the current research. This decision is based
upon the finding that such series did not provide any additional
information about the dynamics, and even caused the loss of
patterns related to the social interaction itself (results not shown).
For instance, turn-taking gestures disappeared after compacting
the two individuals’ series into a “collective” one. Importantly,
such patterns can be considered as a form of synchrony between
players. Therefore, we avoided losing such information as our
main purposes in this study were: on the one hand, to characterize
situations in which people make sense of each other; and on
the other hand, to potentially generate a behavioral marker
of successful social interaction integrating both objective and
subjective perspectives.

In the present study we consider the possibility that the
PCE converges not only methodologically but also theoretically
with the multi-scale coordination that is affiliative dialog. This
possibility is consistent with the claim that dialog is a joint
action at different levels, including non-linguistic or embodied
aspects (Garrod and Pickering, 2009). Besides, it is clear that
in both the PCE and dyadic conversations two participants
are collaboratively solving a problem. Collaborative interaction
implies that the partners need to coordinate each other’s
activity. This activity is embedded inside a single communication
dimension (acoustic pressure wave in the conversation and
lateral excursion of the pointer in the perceptual crossing setup).
Furthermore, the paradigms for studying complexity-matching
in conversational styles (Abney et al., 2014; Coey et al., 2016)
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and the present perceptual crossing study contain important
similarities in terms of the abstract description of their task
spaces.

Indeed, by adopting such a perspective we found a power-
law distribution of the IEI when considering the series in
binary form (point processes). The Allan factor coefficients of
such series also showed a power-law distribution, compatible
indeed with multi-scale dynamics in the behavioral activity of
the players during the PCE social interaction. In addition, the
comparison between different Allan factor coefficients within
dyads showed the presence of the so-called complexity matching.
Additionally, these distribution similarity indices were compared
to the respective ones obtained from surrogate dyads and
revealed a statistical significant difference, meaning that our
finding is different from the expected by chance, and therefore we
regard this measure of synchrony between dyads interaction as
a marker of real-time social interaction under this experimental
setup. It is interesting though, that complexity matching was not
significantly different for trials that gave rise to a clear experience
of the other and/or jointly successful clicks. It therefore seems to
measure a more general alignment of activity that is independent
of subjective impression and objective performance of mutual
recognition. This notion is compatible with the results presented
by Coey et al. (2016), that posit complexity matching as a more
general rather than specific behavioral marker.

However, as it has been mentioned previously, it might be
the case that complexity matching arises from local coordination
patterns, rather than from higher-order dynamics. Accordingly,
the SPIKE-distance and cross-correlation methods were crucial
in order to confirm and strengthen our findings. The spikes
distance measures direct synchronization among events on an
inverted scale (zero is maximum and one is no synchronization).
The negative correlation between spike distances and the
complexity matching metric Da,b in addition to the fact that
complexity matching passed the surrogate test but the direct
synchronization did not, suggests that multi-scale generalized
interaction processes increases the chances for local coordination
to occur but local coordination is not what drives the interaction
among partners in the PCE task. Thus, complexity matching
is picking up something distinct that cannot be reduced to the
standard measures of local coordination.

Moreover, it is not surprising that the SPIKE-distance and the
IEI cross-correlations were found to be correlated since both are
sensitive to direct local coordination. The positive sign of the
correlation can be explained by the fact that cross-correlation
can detect alignment with a lag whereas the SPIKE-distance
method is time-localized. Even if JS implies the emergence of local
coordination this coordination was still likely to be characterized
by a delay. The cross-correlation measure can shift the series to
align them whereas the measure of SPIKE-distance cannot. It
follows that in joint successful trials partners managed to engage
in behavior that was momentarily dissimilar but matching with a
delay, consistent with turn-taking where one of the participant’s
waits and “listens” for the other to move and the two switch
roles.

Importantly, these finding are consistent with the claim
that aspects of bodily interactive alignment during dialog can

be incidental and that individuals engaged in the interaction
are typically unaware of this alignment processes (Garrod and
Pickering, 2009). In particular, Pickering and Garrod (2004)
proposed that the most important way in which alignment occurs
is via a process of automatic, i.e., non-conscious and effortless,
imitation at different levels. Perhaps this explains our finding
of scale-free complexity matching across all trials. It is also
consistent with Froese and Di Paolo’s (2011) hypothesis that
the user experience in a PCE only takes on a social quality
when interaction is co-regulated in such a way that an action’s
conditions of success and failure are distributed across the
interactors, a situation which may have to be measured in terms
of local coordination methods.

The PCE is a novel and unique task. The multi-scale
coordination behavior that makes complexity matching possible
needs further investigation. Observation of participants’ behavior
suggests that they engaged in several kinds of sensorimotor
coordination patterns characterized by different time-scales.
Examples of these include fast fluctuations, oscillations around a
hypothetical avatar (which could be real, its shadow, or the static
decoy), slow steady movement through the space, or periods of
sustained non-movement.

Complexity matching accounts for the fact that partners
tended to match the relative distributions or frequencies of these
coordination patterns within a trial. These patterns were not
aligned as implied by the lack of local coordination. Cross-
correlations and spike-coincidence require that the separate
movement patterns are matched not only in frequency but
also in order between partners. In fact, the emergence of local
coordination early in the experiment would be unexpected
because participants were not continuously coupled but only
received feedback of each other’s activity sparingly and in
categorical manner. There was some evidence, however, that local
coordination tended to appear in later trials when those were
jointly successful. This suggests that participants were beginning
to discover a form of simple local coordination which allowed
them to guess each other’s presence. Thus, exploring of the
task space and searching for the partner in a very limited and
uncertain medium are complex multi-scale processes but the
successful bounding between partners consists of the emergence
of a local coordination pattern akin to joint synchrony. The
performance is complex but the finale is simple.

Future Work and Potential Clinical
Implications
This is among the first studies to find evidence for a longer time
scale of coordination emerging in the PCE as a paradigmatic
instance of real-time embodied social interaction, following
the pioneering study by Bedia et al. (2014). The matched
multi-scale clustering we found in our analysis indicates a
behavioral dynamics extending beyond the immediate response
to isolated perceptual crossings or an individual short-scale
strategy. In the context of conversation, complexity matching
is interpreted as coordinated alignment at multiple levels
of verbal communication such as individual acoustic events,
words, sentences, turn taking, etc. (Abney et al., 2014;
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Fusaroli et al., 2014), which is likely to extend to non-verbal
aspects of dialog as well (Garrod and Pickering, 2009).

The significant interaction that we found between clear
social experience and jointly successful clicking suggested such
relation could not have been explained by either clear social
experience or JS separately. Such results support ecological
and phenomenological accounts of genuinely inter-subjective
experience because it allows for the possibility that the actual
coupling between the participants at least partially co-constitutes
their mutually shared awareness. Indeed, such a relational
interpretation would also help to make sense of the otherwise
surprising fact that reduced variability of movements not only
picks out situations of correctly shared clear social awareness,
but is additionally characteristic of trials in which IRs are paired
with ambiguous social awareness. And if the presence of an
inter-subjective relation can be constitutive of a certain mode of
cognition, perhaps the absence of that relation could be similarly
constitutive of perceiving a lack of another person.

Remarkably, time-series analysis in the frequency and
variability domains quantified such a dyadic relation, suggesting
that this type of analysis could enlarge the scope for studying
such a phenomenon and it could also be of help for considering
relevant properties of embodied interaction that simpler and
less thorough assessments would neglect. Clearly, there is much
to be done in order to get a deeper understanding of social
interaction. To this end various additional methods might be
of the utmost relevance, such as the cross-wavelet transform
for measuring time-frequency couplings (Issartel et al., 2015),
phase space reconstruction and cross recurrence quantification
analysis for capturing synchronization as well as synergetic and
non-linear properties (Kantz and Schreiber, 2004; Fusaroli et al.,
2014).

Crucially, the PCE as an embodied social interaction paradigm
enables to study from a minimally cognition perspective
both motor and sensory aspects, although here we limited
our investigation to motor aspects alone. We expect that
key characteristics of the sensorimotor time-series would be
different when produced by participants with social impairments.
Therefore, time-series analysis in this context could be extended
into the realm of social interaction disorders to search for
potential behavioral markers that would help clinicians for a
better assessment of patients suffering from a social interaction
disorder. Particularly, time-series analysis of the movements
has been proved useful for detecting subtle traits like hindered
synchronization and patients with ASD when compared to
healthy controls (Fitzpatrick et al., 2016).

Moreover, due to the contingencies that are located in the
PCE virtual space, it is possible to also investigate the role that
the environment is playing in individuals with embodied social
interaction impairments like Möbius syndrome (Michael et al.,
2015) or ASD, for in the latter case there is thought to be a
dissociation between what is taking place in the environment,
and what is being perceived by the patients. So even though
the objects are the same for both players, the affordances that
would be enacted would be hypothetically different based upon
the sensorimotor loop sustained throughout the interaction itself.
Such an endeavor could bring some light into the flourishing
fields of social neuroscience and second-person psychiatry, which
have been intensively studying real-time interaction between
actively engaged subjects, and also have suggested that social
phenomena should be understood and investigated in terms
of their dynamics across different timescales (Schilbach et al.,
2013).
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