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In conventional structural equation modeling (SEM), with the presence of even a tiny

amount of data contamination due to outliers or influential observations, normal-theory

maximum likelihood (ML-Normal) is not efficient and can be severely biased. The

multivariate-t-based SEM, which recently got implemented in Mplus as an approach for

mixture modeling, represents a robust estimation alternative to downweigh the impact

of outliers and influential observations. To our knowledge, the use of maximum likelihood

estimation with a multivariate-t model (ML-t) to handle outliers has not been shown in

SEM literature. In this paper we demonstrate the use of ML-t using the classic Holzinger

and Swineford (1939) data set with a few observations modified as outliers or influential

observations. A simulation study is then conducted to examine the performance of fit

indices and information criteria under ML-Normal and ML-t in the presence of outliers.

Results showed that whereas all fit indices got worse for ML-Normal with increasing

amount of outliers and influential observations, their values were relatively stable with

ML-t, and the use of information criteria was effective in selecting ML-normal without

data contamination and selecting ML-t with data contamination, especially when the

sample size was at least 200.

Keywords: structural equation modeling, robustness, outliers, data contamination, fit indices

Although identification of outliers and influential observations is a standard practice in regression
models, less attention has been given to such issues in structural equation modeling (SEM) (Pek
and MacCallum, 2011). Nevertheless, as pointed out in previous literature (e.g., Yuan and Bentler,
2001; Yuan and Zhong, 2013), normal-theory based SEM is not robust to data contamination,
and a small proportion of outliers and influential observations can bias parameter estimation, the
likelihood ratio test statistic (LRT; also commonly referred to as the modelχ2), and fit indices based
on LRT. While robust modeling by replacing the normality assumption with one that assumes the
error terms follow a heavier-tailed t distribution has long been discussed in regression models
and multilevel models (e.g., Pinheiro et al., 2001; Gelman and Hill, 2006), not until recently
are multivariate-t SEM models accessible to researchers, and there has been very little research
on the usefulness of such models in the presence of data contamination. In this paper we first
provide brief background information on the use of the multivariate t distribution for robust
SEM modeling. We then demonstrate with a real data set how five outlying cases can have a
severe impact on model fit and parameter estimates under normal-theory SEM (ML-Normal), and
show that estimation using a t model (ML-t) produces similar inferences with and without data
contamination. Finally, we conduct a simulation study to evaluate the performance of commonly
used fit indices of ML-Normal, ML-t, and the use of Huber-type weights with and without data
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contamination, and the effectiveness of information criteria in
selecting between ML-Normal and ML-t, across conditions of
model misspecifications, sample sizes, and proportions of outliers
and influential observations.

OUTLIERS AND INFLUENTIAL
OBSERVATIONS

Whereas topics related to outliers, or more generally data
contamination, are commonly discussed in quantitative research
methodology textbooks, in practice researchers do not always
agree on their definitions and how best to handle them. For
instance, in a review of organizational research, Aguinis et al.
(2013) found 14 different definitions of outliers (which include
but are not limited to cases with high leverage and with
large influence on parameter estimates and model fit) and 20
different ways to handle them. Also, outliers of different nature
require different treatments, and Aguinis et al. summarized
the definitions of outliers in three categories: (a) those due
to correctable errors such as input error, (b) those exhibiting
idiosyncratic characteristics and of interest themselves (c) those
exerting disproportionately large influence on the substantive
conclusion regarding a model of interest. In this paper we
focus on robust inference in SEM with data contamination in
category (c).

Following Pek and MacCallum (2011), in this study we
distinguish between outliers and influential observations for SEM,
as they may have differential impacts on parameter estimation
and model fit indices. Outliers are cases that lie far away from
most other data points. In regression with only one response
variable, outliers are cases with a large deviation from its
predicted value based on the regression line. In multivariate
analyses such as SEM, the distance of an observation from the
center of most of the data points is commonly quantified by the
Mahalanobis distance (d), where:

di =

√

(yi − µ)⊤6(yi − µ), (1)

yi = [y1i, . . . , yki] is the data vector for the ith observation
on p observed variables, µ and 6 are the mean vector and the
covariance matrix of the p observed variables. On the other hand,
influential observations are those that exert large influence on
model fit and parameter estimation; in other words, parameter
estimates and model fit indices will show relatively large changes
when the influential cases are removed. Despite the conceptual
differences between outliers and influential observations, they
are not mutually exclusive as some outliers can also exert strong
influence on the results.

Although in this paper we focus on methods to obtain fit
indices and parameter estimates that are robust to extreme
observations without necessarily identifying the outliers and
influential observations, researchers are generally recommended
to carefully inspect observations and identify correctable data
entry errors and truly idiosyncratic observations. Examples of
techniques for identifying outliers and influential observations in
SEM were Cook’s distance, Mahalanobis distance, and likelihood

distance. Readers can consult Aguinis et al. (2013), Pek and
MacCallum (2011), and Yuan and Zhang (2012) for more in-
depth discussions on tools and procedures for identifying outliers
and influential observations.

Here we borrow the notations from Asparouhov and Muthén
(2015) for the linear SEM model and define outliers and
influential observations as discussed in Yuan and Zhong (2008,
2013). For a model with p observed variables measuring q
latent variables, we assume that the observed p-variate observed
variable Y has a measurement model:

Y = ν + 3η + e, (2)

where ν is a p× 1 vector of measurement intercepts, 3 is a p× q
factor loading matrix, and e is a p× 1 random vector containing
measurement error terms. η is a q-variate latent variable with a
structural model:

η = α + Bη + ŴX+ ξ, (3)

where the effects among latent factors were captured by B,
the effects of exogenous covariates X were captured by Ŵ,
ξ is a random vector of disturbance terms, and α contains
the latent regression intercepts. It is common to impose the
normality assumption such that the joint distribution of e and
ξ is multivariate normal, with:

(e, ξ) ∼ Np+q

(

0,

[

2 0

0 9

])

. (4)

As discussed in Yuan and Zhong (2008), outliers in SEM have
large values of e, and will inflate the covariance matrix of the
outcome variables 6. However, it may or may not have large
values in η. On the other hand, influential observations have
extreme values in ξ and will inflate 9 and also 6. Influential
observations can be good or bad: good influential observations
have extreme ξ but not extreme e values, and will not negatively
impact model fit as it is not considered outliers; bad influential
observations, on the other hand, have both extreme ξ and e

values, and will negatively impact model fit.

Impact of Outliers and Influential
Observations
Under the normal model, a very small portion of outliers and
influential observations can have a huge impact on parameter
estimates and model fit. For example, Yuan and Bentler (2001)
showed mathematically that existence of outliers can greatly
inflate the Type I error rates of LRT and related test statistics
adjusting for non-normality under ML-Normal, and the LRT
statistic could be inflated by more than five times in values in
an example given in Yuan and Zhong (2008); Yuan and Zhong
(2008) also showed that in confirmatory factor analysis (CFA),
about 3% of outliers could substantially bias the factor loading
estimates by more than 50% and inflate the latent factor variance
and covariance estimates by 3–10 times, whereas 3% of bad
influential observations could produce even greater biases on all
parameter estimates in CFA. Yuan and Zhong (2013) showed
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mathematically and illustrated with modified real data sets that
outliers lead to worse fit indices such as RMSEA and CFI, whereas
bad influential observations can lead to worse RMSEA but also
better CFI in some situations. In summary, a few outliers and
bad influential observations can lead to biased and inefficient
parameter estimates and produced misleading and sometime
contradictory information about model fit.

Despite the documented impact of outliers and influential
observations, detection and diagnostics of such observations
were rarely performed and reported in real research, and the
use of SEM methods that are robust to data contamination has
been scarce. For example, Aguinis et al. (2013) reviewed 232
methodological and substantive journal articles in organizational
science journals that addressed issues about outliers and
influential observations, and only five of them were related
to SEM, despite the popularity of SEM in the past two
decades. One possible reason is that practical guidelines on
handling outliers and influential observations were developed
more recently (e.g., Pek and MacCallum, 2011; Aguinis et al.,
2013). Another possible reason is that existing methods for
detecting and handling outliers and influential observations in
SEM require researchers to use specialized programs (e.g., Sterba
and Pek, 2012; Yuan and Zhang, 2012), thus creating additional
burden for researchers if they are not familiar with those
programs.

Existing Robust Estimation Methods in
SEM
Because a small proportion of outliers and bad influential
observations can produce invalid assessment of model fit and
parameter estimates, it is important to have methods that
produce consistent and efficient estimation and give robust
model fit information in the presence of data contamination,
assuming that those extreme values are not due to correctable
errors (e.g., data entry errors) and the goal is to obtain inferences
based on the majority of the sample. One such method in SEM
is to replace the squared loss function in estimating the mean
vector and covariance matrix by one that downweighs cases
exerting unproportionally large influence on the model (Yuan
and Bentler, 1998a,b, 2000; Yuan et al., 2000, 2004), which has
been commonly used in robust regression. One popular choice
of the weight function is the Huber-type weight function, which
replaces the squared loss function by a linear function when the
Mahalanobis distance of a case exceeds a prespecified cutoff, u,
where u2 is the (1 − ϕ)th quantile of a chi-square distribution.
In other words, ϕ is the theoretical proportion of cases to be
downweighed under normality with no data contamination.

In the two-stage robust method (TSR; Yuan and Bentler,
1998a), one first obtains robust means and covariances estimates
with Huber-type weights:

µ̂TSR =

∑n
i= 1 w1(di)yi

∑n
i= 1 w1(di)

,

6̂TSR =
1

n

n
∑

i= 1

w2(di)(yi − µ̂TSR)(yi − µ̂TSR)
⊤,

where di is the Mahalanobis distance of the ith observation as
defined in (1), and the Huber-type weights are:

w1(d) =

{

1 if d ≤ u

u/d if d > u
,

w2(d) = [w1(d)]
2/τ ,

and τ is a constant to ensure that 6̂TSR is unbiased for 6. µ̂TSR

and 6̂TSR can then be input into common SEM software to
obtain robust parameter estimates. However, with TSR, the LRT,
fit indices, and standard errors reported in standard software
outputs cannot be used; instead, one needs to compute those
according to the formulas given in Yuan and Bentler (1998b),
which are also available in R using the rsem package (Yuan and
Zhang, 2015). An alternative is the direct robust method (Yuan
and Zhong, 2008), which uses iteratively reweighted least squares
to obtain the Mahanobis distance of each observation based on
êi, downweighs the cases with large Mahanalobis distance, and
re-estimates the other model parameters until convergence. For
more discussions on TSR and the direct robust method, please
consult Yuan and Zhong (2008) and Yuan and Hayashi (2010).

Previous work has shown, mathematically and through
empirical examples and simulation studies, that TSR and the
direct robust method provided less biased parameter estimates
with smaller sampling variability (i.e., greater efficiency) and
adjusted LRT relatively insensitive to data contamination. Yuan
and Zhong (2013) also demonstrated that TSR and the direct
robust method provided fit indices closer to the population value
with no outliers or influential observations. However, there are
two drawbacks of using Huber-type weights, including (a) the
need to select a tuning parameter that determines the proportion
of observations being downweighed, and (b) the difficulty
in obtaining likelihood-based information criteria for model
selection. Therefore, the multivariate-t model implemented in
Mplus (Muthén and Muthén, 1998–2015), which implicitly also
has the effect of downweighing extreme cases but solves the
difficulties (a) and (b), will be an attractive alternative to some
researchers given its ease of use.

Multivariate-t Based SEM
An alternative to handle outliers in regression is to replace
the normality assumption on the error terms by a heavy-tailed
distribution, where the heavier tails reduce the impact of extreme
cases on inferences of the center and variability of the data.
One common choice of heavy-tailed distributions is the Student’s
t distribution (Zellner, 1976), with a degree of freedom (df )
parameter controlling the tail density; a smaller df put more
weight on the tails, whereas a df > 30 effectively makes the t
distribution closely match the normal distribution. Such a class of
models has long been discussed in regression (Gelman and Hill,
2006) and in multilevel modeling (Pinheiro et al., 2001).

In SEM, estimation involving the multivariate t distribution is
not new. Indeed, as stated in Yuan and Bentler (1998b), by using a
specific weighting scheme of the observations in a way analogous
to the Huber-type weights, one can obtain robust estimates of
mean vector and covariance matrix for the observed variables
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as the maximum likelihood estimates based on a multivariate t-
distribution. Yuan and Bentler (1998b) and Yuan et al. (2004)
showed that using robust covariances based on the multivariate t
distribution also performed well in terms of providing less biased
parameter estimates and more robust LRT results. However,
the procedure discussed in Yuan and Bentler (1998b) required
pre-defined degrees of freedom parameter and had not been
implemented in statistical software.

Recently, a multivariate-t model for SEM has been
incorporated into the software Mplus, together with the
skew-normal and skew-t family (Asparouhov and Muthén,
2015). The documented usage of such models is for mixture
modeling with skewed and heavy-tailed compositions to avoid
spurious latent classes, and to our knowledge there has been no
discussion on using the t-based model for robust SEM in the
presence of data contamination. The multivariate t distribution,
tp(µ,6, df ), is a p-variate generalization of the Student’s t
distribution with a single df parameter, a location vector µ, and
a scale matrix 6. The mean of the distribution is µ and the
covariance matrix is [df /(df − 2)]6 for df > 2. Therefore, when
df is small, estimates of parameters in6 in the t-based model has
a different interpretation than those in the normal-based model.

Continuing from themodel defined in Equations (2)–(4), with
t-based SEMone simply replaces the distributional assumption in
(4) by:

(e, ξ) ∼ tp+q

(

0,

[

2 0

0 9

]

, df

)

. (5)

This is equivalent to the model with the conditional distribution
Y|X ∼ tp(µ,6, df ), where

µ = ν + 3(I− B)−1(α + ŴX), (6)

6 = 3(I− B)−1
9[3(I− B)−1]⊤3

⊤. (7)

As the model likelihood can be specified, maximum likelihood
can be used to estimate all model parameters as well as df ,
thus avoiding the need to choose a tuning parameter as in
using Huber-type weights. This also allows the computation of
information criteria such as AIC (Akaike Information Criteria),
BIC (Bayesian Information Criteria), and SABIC (sample-size
adjusted BIC in Mplus).

Although previous studies have shown that the use of
robust covariance matrix based on weights corresponding
to a multivariate t distribution provided good parameter
estimates and LRT statistics similar to those obtained without
outliers under ML-Normal (Yuan and Bentler, 1998b), to our
knowledge no analytic and simulation studies have evaluated
the performance of LRT and fit indices obtained under the
multivariate-t-based SEM as implemented in Mplus (i.e., ML-
t), with df being estimated instead of specified by users. Given
that parameter estimates are not trustworthy when the model
fit is sup-optimal, accurate assessment of model fit for an
SEM model is of paramount importance. Therefore, this study
is an important first step in examining SEM models with
ML-t as a robust option in handling outliers and influential
observations.

It should be clarified that our discussion is limited to
robust models that are insensitive to the influence of data
contamination, which is different from SEM methods that
are robust to non-normality, such as the corrections in
LRT and standard errors proposed by Satorra and Bentler
(1994). Although there are some commonalities between the
two topics, the former focuses on downweighing extreme
observations to obtain estimates and inferences when the
normality assumption still holds approximately for the majority
of the data, and robust SEM methods for non-normality focuses
on obtaining inferences when the normality assumption is
violated in general. Whereas the latter has received much
attention in SEM literature (e.g., Bentler, 1983; Browne, 1984),
they generally require estimation of some higher moments
of the sample data, which would be highly unstable in
the presence of data contamination. Indeed, as would be
mentioned in the discussion, we found the Satorra-Bentler
correction performed sub-optimally in the presence of data
contamination.

REAL DATA DEMONSTRATION

We now briefly demonstrate the use of SEM with ML-t using the
classic Holzinger and Swineford (1939) data set and a modified
version where five observations were changed to have strong
influence to model fit. The nine variables are cognitive test
scores for 145 students. Using ML-Normal with the original
data set, a 3-factor CFA model with a cross-loading of item
9 on factor 1 fit the data well, with χ2(df=23,N=145)=28.29,
p=0.205, RMSEA=0.040, CFI=0.989, SRMR=0.040. One can
also use the DIST=TDISTRIBUTION option in Mplus to
fit the same model with t-likelihood, and add the OUTPUT:
H1MODEL option to obtain χ2 statistic and fit indices. Using
the same data, one obtains χ2(df=23,N=145)=25.29, p=0.335,
RMSEA=0.026, CFI=0.994, which were close to the values with
ML-Normal. SRMR is not yet obtainable as it does not directly
depend on χ2. The estimated df using maximum likelihood
is 24.5, with a 95% confidence interval (CI) of [15.9, 34.1].
Using TSR as implemented in the R package rsem with the
same CFA model and data, we have χ2(df=23,N=145)=26.82,
p=0.264, RMSEA=0.034, CFI=0.992, SRMR=0.038. AIC, BIC,
and SABIC all preferred ML-t over ML-Normal with differences
of 8.5, 5.5, and 8.7 respectively, indicating some evidence
for slightly heavier tails in the sample distributions even
without modifications.1 However, the fit information and
parameter estimates (as shown in Table 1) under all three
methods were similar, so the choice is trivial and one can
be more confident that data contamination should not be an
issue.

We then use a modified data set described in Yuan and
Zhong (2013, p. 131, Data Set D4) containing five bad
influential observations (i.e., 3%). The Mahanalobis distances

1It is still an open question how information criteria should be defined when using

TSR, and whether the values obtained can be compared with information criteria

obtained using maximum likelihood. Therefore, we did not report information

criteria with TSR.
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TABLE 1 | Parameter estimates and standard errors from the real data demonstration.

ML-Normal ML-t TSR

Parameters Original Modified Original Modified Original Modified

λ11 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—)

λ21 0.66 (0.14) 1.14 (0.06) 0.63 (0.14) 0.73 (0.13) 0.62 (0.13) 0.77 (0.14)

λ31 0.84 (0.15) 0.43 (0.04) 0.82 (0.15) 0.74 (0.12) 0.78 (0.13) 0.73 (0.12)

λ42 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—)

λ52 0.99 (0.09) 1.47 (0.06) 1.02 (0.09) 1.09 (0.10) 1.04 (0.09) 1.07 (0.09)

λ62 0.96 (0.08) 1.14 (0.05) 0.97 (0.09) 0.95 (0.08) 0.96 (0.09) 0.93 (0.08)

λ73 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—) 1.00 (—)

λ83 1.27 (0.23) 1.49 (0.06) 1.27 (0.24) 1.37 (0.20) 1.18 (0.19) 1.29 (0.16)

λ91 0.56 (0.12) 1.18 (0.20) 0.55 (0.12) 0.56 (0.12) 0.51 (0.11) 0.52 (0.14)

λ93 0.64 (0.14) 0.49 (0.21) 0.63 (0.14) 0.66 (0.13) 0.65 (0.13) 0.69 (0.14)

ψ11 0.67 (0.16) 3.95 (0.55) 0.64 (0.16) 0.72 (0.16) 0.70 (0.16) 0.81 (0.21)

ψ22 0.94 (0.15) 3.11 (0.42) 0.85 (0.15) 0.85 (0.15) 0.87 (0.14) 0.97 (0.16)

ψ33 0.50 (0.13) 3.33 (0.47) 0.46 (0.13) 0.52 (0.13) 0.50 (0.13) 0.62 (0.14)

ML, maximum likelihood; TSR, Two-stage robust methods with Huber-type weights downweighing 10% of observations; λ, factor loading; ψ, factor variance. Standard errors were

shown in parentheses.

of the five modified observations were between 4.22 and
128.26, compared to 1.41 to 24.84 for the other observations.
ML-Normal gave χ2(df=23,N=145)=57.80, p < 0.001,
RMSEA=0.095, CFI=0.984, SRMR=0.020. Although both χ2

and RMSEA indicated worse model fit, the impact on CFI
was small and SRMR actually indicated better model fit.
Therefore, with the presence of bad influential observations,
ML-Normal gave ambiguous fit information. ML-t, on
the other hand, gave χ2(df=23,N=145)=24.81, p=0.360,
RMSEA=0.023, CFI=0.996; TSR gave χ2(df=23,N=145)=30.55,
p=0.134, RMSEA=0.048, CFI=0.987, SRMR=0.037. Thus,
the fit information using ML-t or TSR was comparable
with or without the bad influential cases, and AIC, BIC,
and SABIC all strongly favored ML-t over ML-Normal
with differences in values of more than 300. The parameter
estimates were shown in Table 1, which shows that
whereas estimates were strongly affected by the influential
observations using ML-Normal, they were robust with ML-t and
TSR.

SIMULATION STUDY

We conducted a Monte Carlo simulation study to compare
the performance of fit indices (χ2, RMSEA, and CFI) under
ML-Normal, ML-t, and TSR, as well as model comparisons
between ML-Normal and ML-t using AIC, BIC, and SABIC.
Note that SRMR is not available in Mplus 7.4 with ML-
t. A 2 (type of data contamination) × 4 (proportion of
outliers/influential observations) × 2 (model misspecification)
× 3 (sample size) design was used, as described later. For
all simulation conditions, data were generated first from
a 3-factor 9-indicator model similar to the previous real
data demonstration, which was also used in Zhong and
Yuan (2011), with a cross-loading of item 9 on Factor 3.

Specifically,

3 =





1.0 0.9 1.1 0 0 0 0 0 0.5
0 0 0 1.0 0.7 0.55 0 0 0
0 0 0 0 0 0 1 1.3 1.25





⊤

,

9 =





1 0.25 0.25
0.25 1 0.25
0.25 0.25 1



 ,

and 2 = I is a 9 × 9 identity matrix. All
factor means and intercepts were set to zero for
simplification. For each simulation condition, we ran 2,000
replications.

Factor scores, ξ ∼ N(0,9), and multivariate normal data,
denoted as y(1), were generated according to the above model
using R 3.3.1 (R Core Team, 2016), and outliers or bad influential
observations were introduced using methods described in Zhong
and Yuan (2011). Let ε = 0, 0.05, 0.075, or 0.10 be the
proportion of cases that are either outliers or bad influential
observations. For conditions with outliers, εN observations were
modified as ymod

i = y
(1)
i + hi3

oξi, where hi ∼ exp(zi)
and zis were randomly generated from independent N(0, 1)
distributions and varied across replications; 3

o is the modified
loading matrix such that 3

⊤
3

o = 0 as discussed in Yuan and
Zhong (2013). For conditions with bad influential observations,

εN observations were modified as ymod
i = hiy

(1)
i . The sample

size (N) was either 100, 200, or 500, as most studies using SEM
had N ≥ 100 (Jackson et al., 2009), and SEM was generally
not recommended with a small sample size (Kline, 2011). The
Mahalanobis distances for the outliers or influential observations
varied across replications, and for each replication the maximum
M-distance was 15.8–76.0, 19.7–149.5, 14.5–350.1 for N = 100,
200, and 500 with outliers (see Figure 1 for an example), and
29.1–92.2, 30.3–190.4, 26.7–472.5 for N = 100, 200, and 500
with bad influential observations. For each generated data set, we
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FIGURE 1 | An example quantile-quantile plot of the sample Mahanalobis

distance against the theoretical values of a chi-squared distribution with 9

degrees of freedom for the condition with N = 100 and 5 outliers. Multivariate

kurtosis = 9.66 for this simulated data set.

either fit a correctly specified model or a misspecified model with
no cross-loading (with population RMSEA = 0.061, population
CFI = 0.96), and for each model we used either ML-Normal or
ML-t and obtain fit indices in Mplus, and used rsem to obtain fit
indices with TSR (10% observations downweighed).

Evaluation Criteria
For each condition, we evaluated the rejection rates of LRT at
p < 0.05 using the three methods, with rates close to 5% being
optimal for conditions with a correctly specified model, and rates
close to the empirical power with no data contamination best
for conditions with a misspecified model. For RMSEA and CFI
we graphically examine the distributions of the sample fit values,
with preference given to methods providing sample fit values
close to population fit values and with small variabilities across
replications. Finally, we examined the empirical probability of
information criteria selecting ML-t over ML-Normal (i.e., having
smaller values for ML-t).

Simulation Results
Convergence
Convergence rates were above 90.5% for ML-Normal and above
93.3% for ML-t for conditions with correctly specified model,
and were above 89.7% and above 87.8% for conditions with
misspecified model. Convergence was better for conditions with
N ≥ 200 (> 98.3% for ML-t and > 92.5% for ML-
Normal); it was worst for ML-Normal with 10% bad influential
observations (90.5% for N = 100 and 92.8% for N = 200 for
correctly specified model and 89.7% for N = 100 and 92.5%
for misspecified model), and for ML-t with small sample size
(93.3–95.2% for correctly specified model and 87.8–91.0% for
misspecified model when N = 100). Convergence was generally
better for ML-t than for ML-Normal in conditions with outliers

or bad influential observations whenN ≥ 200. Convergence rates
were at least 99.2% with TSR.

Fit Indices
As shown in Figures 2–5, the results of ML-t and TSR were
almost identical, so in the following sections we mainly prsented
results for ML-Normal and ML-t.

Outliers with correctly specified model
Figure 2 showed the boxplots of sample values of LRT, RMSEA,
and CFI for conditions with a correctly specified model and the
presence of outliers. With ML-Normal, LRT, RMSEA, and CFI
became substantially worse and more variable with increasing
proportion of outliers. When N = 100, median LRT increased
slightly from 23.26 (adjusted median absolute deviation, SD =

7.28) with no outliers to 28.96 (SD = 19.63) with 10% outliers;
when N = 500, median LRT increased dramatically from 22.73
(SD = 6.82) with no outliers to 51.27 (SD = 71.74) with 10%
outliers. Empirical Type I error rates of LRT were inflated from
5.4 to 7.3% with no outliers to 31.0–77.7% with 10% outliers (see
Table 2). For RMSEA andCFI, the impact ofN was smaller: when
N = 500, median RMSEA increased from 0.000 (SD = 0.012)
to 0.050 (SD = 0.035); median CFI decreased from 1.00 (SD =

0.004) to 0.972 (SD = 0.066). Simiar trends were observed for
N = 100 and N = 200.

With ML-t, LRT, RMSEA, and CFI were relatively stable with
increasing proportion of outliers. When N = 100, LRT were
similar with no outliers, median = 23.15 (SD = 7.26), and with
10% outliers, 24.53 (SD = 7.51); when N = 500, median LRT
increased slightly from 22.56 (SD = 6.81) with no outliers to
28.71 (SD = 8.63) with 10% outliers. Empirical Type I error
rates were inflated from 5.2 to 7.2% with no outliers to 10.5–
22.7% with 10% outliers. For RMSEA and CFI, when N = 500,
median RMSEA increased from 0.000 (SD = 0.012) to 0.022
(SD = 0.015); median CFI decreased from 1.00 (SD = 0.004)
to 0.994 (SD = 0.008). Simiar trends were observed for N = 100
and N = 200.

Outliers with misspecified model
Figure 3 showed the boxplots of sample values of LRT, RMSEA,
and CFI for conditions with a misspecified model and the
presence of outliers. In general, the patterns were similar to
those observed with a correctly specified model, except that,
predictably, the fit was worse on all conditions.WithML-Normal,
when N = 100, median LRT increased slightly from 32.45
(SD = 9.37) with no outliers to 36.84 (SD = 20.88) with 10%
outliers; when N = 500, median LRT increased from 66.52
(SD = 15.33) with no outliers to 86.52 (SD = 71.38) with 10%
outliers. Empirical power of LRT was inflated from 34.6 to 99.1%
with no outliers to 51.5–99.8% with 10% outliers (see Table 2).
For RMSEA and CFI, when N = 500, median RMSEA increased
from 0.060 (SD = 0.011) to 0.072 (SD = 0.026); median CFI
decreased from 0.962 (SD = 0.013) to 0.938 (SD = 0.064). Simiar
trends were observed for N = 100 and N = 200.

With ML-t, LRT, RMSEA, and CFI were relatively stable
with increasing proportion of outliers and remained close to the
population values without data contamination, withmedians and
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FIGURE 2 | Values of fit indices across simulation conditions with a correctly specified model and the presence of outliers. LRT, likelihood ratio test; ε, proportion of

outliers. Square root was taken on the LRT values to reduce its skewness for better graphical presentations.

SDs stayed virtually the same regardless of ε. Empirical power was
32.7–99.0% with no outliers and 31.8–98.3% with 10% outliers.

Bad influential observations with correctly specified model
Figure 4 showed the boxplots of sample values of LRT, RMSEA,
and CFI for conditions with a correctly specified model and the
presence of bad influential observations. Given the nature of
such observations, their presence made a bigger impact on LRT,
RMSEA, and CFI than outliers did. When N = 100, median LRT
increased slightly from 23.26 (SD = 7.28) with no influential
observations to 47.02 (SD = 41.39) with 10% influential
observations; whenN = 500, median LRT increased dramatically
from 22.73 (SD = 6.82) with no influential observations

to 137.98 (SD = 139.53) with 10% influential observations.
Empirical Type I error rates were inflated from 5.4 to 7.3% with
no influential observations to 67.8–97.7% with 10% influential
observations (see Table 2). When N = 500, median RMSEA
increased from 0.000 (SD = 0.012) to 0.100 (SD = 0.047),

and median CFI decreased from 1.00 (SD = 0.004) to 0.915
(SD = 0.071). Simiar trends were observed for N = 100 and
N = 200.

With ML-t, LRT, RMSEA, and CFI were relatively stable with

increasing proportion of influential observations, with medians

and SDs stayed virtually the same regardless of ε. Empirical Type

I error rates were 4.4–7.1% with no influential observations and
4.2–7.2% with 10% influential observations.
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FIGURE 3 | Values of fit indices across simulation conditions with a misspecified model and the presence of outliers. LRT, likelihood ratio test; ε, proportion of outliers.

Square root was taken on the LRT values to reduce its skewness for better graphical presentations.

Bad influential observations with misspecified model
Figure 5 showed the boxplots of sample values of LRT, RMSEA,
and CFI for conditions with a misspecified model and the
presence of bad influential observations. In general, the patterns
were similar to those observed with a correctly specified model,
except that, predictably, the fit was worse on all conditions.
With ML-Normal, when N = 100, median LRT increased from
32.45 (SD = 9.37) with no outliers to 56.60 (SD = 43.27)
with 10% influential observations; when N = 500, median
LRT increased from 66.52 (SD = 15.33) with no outliers
to 186.28 (SD = 153.70) with 10% influential observations.
Empirical power was inflated from 34.6 to 99.1% with no
outliers to 82.3–100.0% with 10% outliers (see Table 2). For
RMSEA and CFI, when N = 500, median RMSEA increased

from 0.060 (SD = 0.011) to 0.116 (SD = 0.043); median
CFI decreased from 0.962 (SD = 0.013) to 0.882 (SD =

0.073). Simiar trends were observed for N = 100 and N =

200.
With ML-t, LRT, RMSEA, and CFI were relatively stable with

increasing proportion of influential observations and remained
close to the population values without data contamination, with
medians and SDs stayed virtually the same regardless of ε.
Empirical power was 32.7–99.0% with no outliers and 29.4–
97.6% with 10% outliers.

Information Criteria
Figure 6 showed the proportion of replications where AIC, BIC,
and SABIC favored ML-t over ML-Normal for conditions with
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FIGURE 4 | Values of fit indices across simulation conditions with a correctly specified model and the presence of bad influential observations. LRT, likelihood ratio

test; ε, proportion of bad influential observations. Square root was taken on the LRT values to reduce its skewness for better graphical presentations.

a correctly specified model, and the results were essentially
identical for conditions with a misspecified model. Under
a correctly specified model, with no outliers or influential
observations, in only 3.6–4.7% of the replications ML-t was
preferred over ML-Normal by AIC, 0.3–0.9% by BIC, and
2.4–5.4% by SABIC; with 10% outliers, ML-t was preferred
more often with increasing proportion of outliers and with
larger N, with AIC, BIC, and SABIC favoring ML-t in
97.5, 94.1, and 96.7% of the replications when N = 500.
Similarly, with influential observations, AIC, BIC, and SABIC
preferred ML-t in 76.5, 69.2, and 79.1% of the replications
when ε = 0.05 and N = 100 and well above 90%
for all conditions with either ε = 0.10 or N ≥

200.

DISCUSSION

Although the impact of and ways to handle outliers and
influential observations have received much attention in
regression literature, relatively less discussions on those issues
were found in the context of SEM. As pointed out in Yuan and
Zhong (2013), unlike general statistics software where diagnostic
tools for outliers and influential observations are common, such
tools are rarely accessible for SEM software, partly because of the
complexity of SEMmodeling.Whereas robust SEM using Huber-
type weights has been developed and shown to perform well, and
the rsem package is freely available in R, many researchers are
more familiar with other commonly used SEM software packages
such asMplus, and so it is important to have comparable tools for
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FIGURE 5 | Values of fit indices across simulation conditions with a misspecified model and the presence of bad influential observations. LRT, likelihood ratio test;

ε, proportion of bad influential observations. Square root was taken on the LRT values to reduce its skewness for better graphical presentations.

handling outliers and influential observations in other software.
With the t-based model recently added to Mplus, this study
brings attention to this easy-to-use strategy to clarify whether
suboptimal model fit is due to global misfit or just a small
proportion of extreme cases.

Our simulation results showed that outliers and influential
observations could hurt model convergence and dramatically
make model fit appear worse for both correctly specified and
misspecified SEMmodels with the usualML estimation assuming
normality. For example, with 25 outliers in a sample of 500
observations, the empirical Type I error rate for LRT was inflated
to 0.40 from the nominal level of 0.05, and it was inflated to 0.85
with 25 bad influential observations. Both RMSEA and CFI were

more likely to indicate worse model fit in the presence of outliers
and influential observations, as predicted in Yuan and Zhong
(2013). As it was not common that applied researchers check
for outliers and influential observations when conducting SEM
(Aguinis et al., 2013), such extreme values may make researchers
reject models with adequate fit or consider alternative models
that improve overall model fit mainly because of those few
observations.

On the other hand, themultivariate-tmodel as well as the two-
stage robust method were more robust to data contamination,
producing fit indices that were closer to what could have been
obtained without those extreme values. First, when sample size
was small (N = 100)ML-tmay have some convergence problems
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TABLE 2 | Rejection rates of the likelihood ratio test across conditions.

Outliers Bad Influential Observations

Model N Estimation ε = 0 ε = 0.05 ε = 0.075 ε = 0.10 ε = 0.05 ε = 0.075 ε = 0.10

Correct 100 ML-Normal 0.07 0.20 0.23 0.31 0.47 0.55 0.68

ML-t 0.07 0.09 0.08 0.10 0.07 0.07 0.07

TSR 0.08 0.09 0.09 0.11 0.09 0.09 0.11

200 ML-Normal 0.06 0.25 0.37 0.46 0.62 0.76 0.84

ML-t 0.06 0.08 0.11 0.12 0.05 0.05 0.05

TSR 0.07 0.08 0.11 0.12 0.08 0.08 0.09

500 ML-Normal 0.05 0.40 0.61 0.78 0.85 0.94 0.98

ML-t 0.05 0.09 0.17 0.23 0.05 0.06 0.05

TSR 0.06 0.09 0.16 0.22 0.08 0.09 0.09

Misspecified 100 ML-Normal 0.35 0.44 0.46 0.52 0.67 0.74 0.82

ML-t 0.33 0.32 0.30 0.32 0.31 0.30 0.29

TSR 0.34 0.35 0.33 0.35 0.39 0.37 0.40

200 ML-Normal 0.66 0.72 0.77 0.82 0.90 0.94 0.97

ML-t 0.66 0.60 0.60 0.63 0.59 0.59 0.58

TSR 0.67 0.64 0.64 0.65 0.67 0.69 0.69

500 ML-Normal 0.99 0.99 1.00 1.00 1.00 1.00 1.00

ML-t 0.99 0.98 0.98 0.98 0.98 0.97 0.98

TSR 0.99 0.98 0.99 0.99 0.99 0.99 0.99

Note. ε, Proportion of outliers and bad influential observations; ML, maximum likelihood estimation; TSR, Two-stage robust methods with Huber-type weights downweighing 10% of

observations.

in 5–7% of the replications with no model misspecifications and
in 9–12% of the replications with misspecifications; however,
with N = 200 or above the use of ML-t had improved
convergence rates over ML-Normal. Second, although to a
much less degree, with ML-t and TSR, LRT still increased with
increasing proportion of outliers, and empirical Type I error rates
increased to 0.10 and 0.11 for N = 100 and 0.23 and 0.22 for
N = 500 with 10% of outliers. Although this is certainly not
ideal, LRT under ML-t or TSR still performs much better than
under ML-Normal. Future studies can focus on how to obtain
adjusted test statistics for ML-t. Note, however, when the model
was misspecified, or when the extreme values were bad influential
observations, LRT, RMSEA, and CFI were all similar regardless
of proportions of data contamination, and the values under ML-
t were slightly closer to the population values than those under
TSR.

Third, information criteria was effective in picking ML-
Normal when no outliers or bad influential observations were
present in the data, and in picking ML-t when extreme values
were present, with better accuracy when sample size increased.
Under our simulation conditions, we found AIC and SABIC
showed higher sensitivity than BIC. Therefore, when researchers
are uncertain whether data contamination could be a problem, an
effective way in determining whether to use ML-Normal or ML-t
is to choose one that gives smaller AIC and SABIC.

It is generally recommended to use multivariate-t-based SEM
and other robust SEM methods, rather than directly deleting
outliers and influential observations, as the complexity of SEM
makes it more challenging to use general techniques such as

Mahalanobis distance and Cook’s distance to identify outliers and
influential observations (e.g., Flora et al., 2012; Sterba and Pek,
2012). Although these methods provided parameter estimates
and fit indices that are insensitive to the influence of outliers,
they do not replace the need for careful data screening work. As
suggested by Aguinis et al. (2013), one should always identify in
the data if there are any extreme cases due to correctible errors,
and correct them accordingly. Failure to do so may lead to loss of
valuable information. Also, after any such errors are corrected,
the use of robust SEM is justified only when the outliers and
influential observations are regarded as coming from a different
data generating process than the majority of the data, and the
goal of inference is to estimate a model that is representative of
most of the data. Sometimes outliers and influential observations
can be of interest in their own rights, and they can lead to
important research findings (Aguinis et al., 2013; O’Connell et al.,
2015). Also, a non-trivial proportion of such cases may indicate
unmodeled heterogeneity, where the use of mixture models may
be more appropriate. Recent methodological work has provided
accessible tools to identify outliers and influential observations
for SEM (Pek and MacCallum, 2011; Sterba and Pek, 2012),
which we recommend to be used in combination with robust
SEM methods.

Despite the contributions of the study, there are several
limitations that call for future studies. First, as a first step to
evaluate the multivariate-t-based SEM, we chose to first study
the performance of fit indices under such a model. An obvious
next step is to make sure that the parameter estimates are sensible
with the multivariate-t-based SEM, which appeared to be robust

Frontiers in Psychology | www.frontiersin.org 11 July 2017 | Volume 8 | Article 1286

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lai and Zhang Robust T SEM

FIGURE 6 | Proportion of replications where the multivariate t model has smaller information criteria than the multivariate normal model across simulation conditions

with a correctly specified model. AIC, Akaike information criteria; BIC, Bayesian information criteria; SABIC, sample-size adjusted information criteria; ε, proportion of

outliers.

based on the real data example and the results in Yuan and
Bentler (1998b) using weights corresponding to a multivariate t
distribution with one degree of freedom. Second, as pointed out
in Yuan et al. (2004), the use of multivariate-t-based SEM might
not be as efficient as the use of Huber-type weights under some
conditions, and future studies may compare the performance
of various robust methods in simulated and real data. At this
stage, we found that the use of the multivariate-t-based SEM is
accessible to researchers without the need to choose a tuning
parameter, allows conventional interpretations of information
criteria, and can be easily integrated into more complex SEM
models.

Third, it should be emphasized again that, in the current
study, we only focused on situations where a small proportion
of data is contaminated, whereas the majority of the data
still satisfies the normality assumption. Although the resulting
data also had skewness and kurtosis deviated from those
of a normal distribution, common SEM estimation methods
that are robust to non-normality may not work well in the
presence of data contamination. Whereas corrections for non-
normality such as the Satorra-Bentler procedure relies on
sandwich estimator and higher-order moments of the sample
data, ML-t as implemented in Mplus uses maximum likelihood
with the expectation-maximization algorithm to estimate the

model parameters, including degrees of freedom. To examine
our speculations, we re-analyze the simulated data using
the Satorra-Bentler correction procedure (ESTIMATOR=MLM
in Mplus), and found the resulting fit indices to still
be sensitive to data contamination, although not to the
extent as ML-Normal. For example, with N = 500, 10%
outliers, and a correctly specified model, median RMSEA =

0.041 with Satorra-Bentler, commpared to 0.050 for ML-
Normal and 0.022 for ML-t. Therefore, researchers should
distinguish between robustness against data contamination,
which can be handled with ML-t or Huber-type weights,
and robustness against non-normality, which can be alleviated
by the Satorra-Bentler correction or weighted least squares
estimator.

Fourth, our simulations did not cover sample sizes smaller
than 100. We had performed additional simulations withN = 50
and found that TSR had very low convergence rates (less than
5%) andML-t had convergence around 71–76%, and information
criteria preferred ML-t only 20% of the replications in the
presence of 10% outliers observations. Therefore, we recommend
using ML-t or the two-stage robust methods only with a sample
size of at least 100. Finally, in this study we only evaluated fit
indices with a factor model, and consider only misspecifications
in the form ofmissing one cross-loading. As the impact of outliers
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and influential observations on fit indices may vary depending
on types of SEM models, model complexity, and parameter
values, future studies can expand on the simulation conditions
to provide more complete information on this underresearched
area.
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