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Typical information processing is thought to depend on the integrity of neurobiological 
oscillations that may underlie coordination and timing of cells and assemblies within 
and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is asso-
ciated with cognitive processes essential to learning and depends on the integrity of 
cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant 
psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) 
neurochemical systems, preclinical studies on animal models may be an important step 
in defining and treating such syndromes. Many studies have shown that the amount of 
hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink 
conditioning and that impairment of this system substantially slows the rate of learning 
and attainment of asymptotic performance. Our lab has developed a brain–computer 
interface that makes eyeblink training trials contingent upon the explicit presence or 
absence of hippocampal theta. The behavioral benefit of theta-contingent training has 
been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold 
increase in learning speed over non-theta states. The non-theta behavioral impairment 
is accompanied by disruption of the amplitude and synchrony of hippocampal local 
field potentials, multiple-unit excitation, and single-unit response patterns dependent on 
theta state. Our findings indicate a significant electrophysiological and behavioral impact 
of the pretrial state of the hippocampus that suggests an important role for this MTL sys-
tem in associative learning and a significant deleterious impact in the absence of theta. 
Here, we focus on the impairments in the non-theta state, integrate them into current 
models of psychiatric disorders, and suggest how improvement in our understanding of 
neurobiological oscillations is critical for theories and treatment of psychiatric pathology.

Keywords: hippocampus, neurobiological oscillations, theta rhythm, brain–computer interface, cognitive 
dysfunction, psychiatric disorders

iNTRODUCTiON

Recent findings suggest that an estimated 18.1–36.1% of the global population will suffer from a 
mental disorder, as classified by the Diagnostic and Statistical Manual of Mental Disorders, during 
their lifetime (1). Onset of these conditions can begin as early as childhood or not appear until late 
adulthood. One of the primary areas affected by mental illness is cognitive functioning, including 
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attention and memory. Cognitive disruption is seen in a wide 
range of psychiatric disorders, including, but not limited to, 
major depressive disorder (MDD) (2), schizophrenia (3), and 
Alzheimer’s disease (AD) (4). Due to its efficacy in both humans 
and animal models, eyeblink conditioning (EBC) has proven 
valuable as a behavioral marker of cognitive impairment in men-
tal illness. Through studies of human patients and animal models, 
researchers have identified disruptions in electrophysiological 
activity in each of these disorders (5–8).

This review summarizes a series of findings on the rela-
tionship between theta oscillations in the hippocampus and 
EBC in the rabbit. We propose that EBC, which is remarkably 
similar behaviorally and neurobiologically in humans, can be a 
productive model system that can serve as a marker for psychi-
atric disorders and allow invasive local field potential (LFP) and 
single-unit analyses to investigate their neural substrates. We 
have developed a brain–computer interface that allows us to give 
training trials in the explicit presence (T+) or absence (T−) of 
theta in the CA1 region of dorsal hippocampus. A major feature 
of this interface is that, unlike drug, lesion, or genetic manipula-
tions, our method allows the phasic increases and decreases of 
theta that characterize intact hippocampal function and may 
be a critical aspect of theta’s influence on cognitive processes. 
We will show that EBC training in the explicit absence of theta 
reproduces several important behavioral and electrophysiologi-
cal dysfunctions similar to what is observed in major psychiatric 
disorders. We argue that the electrophysiological markers at the 
cellular level during disordered behavioral performance will aid 
in our understanding of these pathologies and set the course for 
manipulations or treatments that can restore function or prevent 
the progression of disease. A major theme will be that neurobio-
logical oscillations, especially theta, serve as important coordina-
tors and facilitators of distributed cognitive brain systems and 
that the disintegration of these areas is responsible for cognitive 
impairment and, in extreme cases, psychiatric disorders. We 
conclude with recommendations for the directions such research 
may take.

eYeBLiNK CLASSiCAL CONDiTiONiNG

Basic Behavioral Paradigm
Rabbit classical EBC is a widely used model of associative learn-
ing. It has been used in research involving humans (9) and non-
human animals to investigate the neural substrates of associative 
learning (10). The EBC paradigm typically involves the presenta-
tion of a relatively neutral conditioned stimulus (CS), such as a 
tone, paired with, but preceding, the presentation of behaviorally 
relevant unconditioned stimulus (US), such as a corneal airpuff. 
After sufficient pairings, the subject learns to perform an adaptive 
eyeblink conditioned response (CR) to the CS, prior to the arrival 
of the airpuff US. EBC is most commonly presented in one of two 
general paradigms, delay or trace conditioning.

In delay EBC, the CS and US overlap and coterminate. The 
essential neural circuitry for delay EBC is well established and is 
contained within the cerebellum [for review: (11)]. The primary 
site of plasticity has been localized in the interpositus nucleus 
(IPN). Lesions of the IPN completely prevent acquisition of CRs 

and eliminate responding in previously trained animals without 
preventing eyeblinks to the UR (12). In addition to the IPN, the 
cerebellar cortex has also been shown to be necessary for delay 
EBC (13), playing a role in the precise timing and amplitude of 
the CR. Information about the US projects from the inferior olive 
(IO) to Purkinje cells in the cerebellar cortex and granule cells 
of the IPN via climbing fibers. CS-related information projects 
from the lateral pontine nuclei (LPN) to the cerebellar cortex and 
IPN through the mossy fiber pathway. This cerebellar pathway is 
essential for delay EBC acquisition and performance, but there 
are also structures that seem to play a modulatory role. The 
hippocampus, a structure strongly implicated in learning and 
memory, is unnecessary for learning the delay paradigm (14), 
though electrophysiological studies have shown conditioning-
dependent changes in cellular response profiles over training 
(15, 16). Additionally, lesions of the amygdala have been shown 
to disrupt reflex facilitation in rabbits (17). Lee and Kim (18) 
provide evidence that the amygdala and hippocampus modulate 
the emotional and muscular components of EBC, respectively, 
interacting to allow for the overall learned behavior.

The trace form of EBC alters the paradigm by introducing a 
stimulus-free period between CS offset and US onset. This form 
of EBC still requires the cerebellar pathway discussed above (19), 
but lesion and inactivation studies have shown that it is influenced 
by the amygdala (20, 21), and requires the medial prefrontal cor-
tex (22) and hippocampus (23). Pharmacological inactivation of 
the hippocampus with scopolamine, a muscarinic acetylcholine 
(ACh) receptor antagonist, prevented learning; however, a day of 
training with saline infusions resulted in a gradual acquisition 
of the paradigm as if training had just begun (24). Disruption of 
hippocampal functioning via lesions or pharmacological inacti-
vation of major inputs has also been shown to cause behavioral 
deficits (25–27). Additionally, electrophysiological studies have 
identified conditioning-related changes in hippocampal cellular 
responding during the trace paradigm. Multiple-unit recordings 
have demonstrated gradual increases in response magnitude dur-
ing the late half of the trace period as training progresses (28). 
McEchron and Disterhoft (29, 30) have identified several unique 
response profiles for hippocampal pyramidal cells at the single-
unit level. The response profiles most associated with CR learning 
show increases in pyramidal cell firing to both the CS and US 
early in training; however, as the animal approaches behavioral 
asymptote, the response to the US, but not to the CS, begins to 
decrease. Additionally, recent work has shown that conditioning-
related increases in single-unit firing continue through retrieval 
of the consolidated memory (31).

Eyeblink conditioning does not serve solely as an animal 
model, having been used in human subjects for over a century 
(32). As in rabbits, patients with cerebellar damage are impaired 
in learning the delay and trace forms of EBC (33–35). Those 
suffering hippocampal damage fail to acquire trace, but are 
able to learn delay EBC (9, 36–38). Additionally, neuroimaging 
work has implicated a role for the prefrontal cortex in trace 
EBC (39, 40). Due to the well-defined circuitry necessary for 
successful EBC performance, this paradigm is able to provide 
critical input into the neural regions affected in several psychi-
atric disorders.
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Disruption of eBC in Psychiatric Disorders
Early research in patients with MDD implicated cerebellar 
dysfunction primarily through neuroimaging studies (41–43). 
The behavioral effects identified with EBC serve to corroborate 
regional dysfunction observed in neuroimaging studies. Training 
patients on both delay and trace EBC, Greer et al. (44) provided 
behavioral evidence indicating abnormalities in cerebellar 
processing. They found a significant decrease in the number of 
CRs in MDD patients compared to controls across both forms. 
While these results do not allow for differentiation of cerebellar 
and hippocampal dysfunction, comparison of the delay and trace 
paradigms has been used in other disorders to differentiate func-
tional regions. Grillon et al. (45) compared performance on both 
the delay and trace EBC paradigms in patients suffering from 
panic disorder. There was no difference in performance between 
patients and control subjects on the delay task; however, patients 
performed significantly worse on the trace paradigm, show-
ing a delayed acquisition rate. This pattern of results indicates 
hippocampal dysfunction and potential deficits in declarative 
memory in panic disorder patients. As panic disorder requires 
unexpected panic attacks, the authors posit that these deficits may 
underlie a patient’s inability to identify predictive cues. Results 
have been less clear in studies of schizophrenia. Early work indi-
cated a possible enhancement of delay EBC, with patients dem-
onstrating faster acquisition rates than controls (46, 47). More 
recently, several studies have found impaired delay EBC perfor-
mance through decreased acquisition rates (48–53), decreased 
CR amplitude (54), and less adaptively timed CRs (50) compared 
to controls, as well as linking those deficits to decreased cerebellar 
volume (49) and blood flow (52). Additionally, Marenco et al. (55) 
demonstrated an increase in short latency (non-adaptively timed) 
CRs during trace EBC in schizophrenic patients.

Eyeblink conditioning has been especially prominent in the 
study of AD, being used both in animal models and in human 
patients. Studies have shown deficits in acquisition rate for both 
the delay (33, 56–58) and trace paradigms (59–61), with a larger 
effect in the delay paradigm (59). Papka and Woodruff-Pak (62) 
identified the number of trials necessary to accurately assess delay 
EBC in AD patients, providing a more efficient test of cognitive 
performance that may serve as a diagnostic tool in differentiat-
ing normal aging from dementia (63). While delay EBC can be 
acquired normally after hippocampal removal, pharmacological 
disruption of the septo-hippocampal cholinergic system leads to 
deficits in performance (26, 64). As cholinergic disruption is a key 
component of AD pathology (65–67), parallel findings between 
rabbits with cholinergic dysfunction and AD patients provide 
validation of the animal model. Furthermore, galantamine, a 
cholinesterase inhibitor, facilitates EBC performance in aged, but 
not young, animals, suggesting that it counteracts the decrease in 
cholinergic activity associated with aging (68).

CHOLiNeRGiC DYSFUNCTiON iN 
PSYCHiATRiC DiSORDeRS

Cholinergic systems have long been associated with cognitive 
functions, such as attention and memory, that are often affected in 

psychiatric disorders (69). The basal forebrain cholinergic system 
is deserving of particular attention due to the target structures of 
its separate cholinergic neuron populations. The first originates 
in the horizontal limb of the diagonal band of Broca (DBB) and 
nucleus basalis and projects to areas of the cortex, such as the 
mPFC (70), an area involved in sustained attention (71). A sepa-
rate population of cholinergic projections originates in the medial 
septum and vertical DBB targeting the dorsal hippocampus, an 
essential region for encoding of declarative memory. Numerous 
lines of research have converged to show deficits in cholinergic 
functions underlying the cognitive deficits of several psychiatric 
disorders. In AD patients, postmortem studies have indicated a 
loss of cholinergic neurons in the nucleus basalis (72), a finding 
supported recently using MRI (73). Additionally, the primary 
treatments for AD involve acetylcholinesterase inhibitors as a 
means of increasing cholinergic activity (74–76). Other disorders 
linked to cholinergic dysfunction include schizophrenia and 
MDD. In humans, muscarinic antagonists have been shown to 
increase the severity and duration of both positive and cogni-
tive symptoms in schizophrenic patients (77, 78). Furthermore, 
anti-muscarinics can lead to a temporary psychosis resembling 
schizophrenia in healthy subjects (79). Postmortem studies have 
shown a decrease in muscarinic ACh receptors in schizophrenia 
patients (80, 81). Additionally, acetylcholinesterase inhibitors 
have been useful in treating hallucinations (82). These findings 
have been corroborated in animal models where muscarinic 
antagonists have led to cognitive impairments and psychosis 
indicating behaviors in rodent models (78). Though less research 
has been conducted in MDD patients, recent studies have shown 
antidepressant effects of scopolamine, a muscarinic receptor 
antagonist (83), and decreased levels of muscarinic receptors in 
MDD. As hippocampal theta power is positively correlated with 
ACh activity (84, 85), it may be possible to use our model system, 
in which the non-theta group likely shows diminished choliner-
gic activity immediately preceding conditioning trials, to explore 
electrophysiological and behavioral bases of these disorders.

eLeCTROPHYSiOLOGiOLOGiCAL 
DiSRUPTiON iN PSYCHiATRiC 
DiSORDeRS

Neurobiological oscillations have been associated with memory 
processes, feature binding, and consciousness through their ability 
to synchronize across and within brain regions, though a defini-
tive function has not been established (86–89). Synchronization 
of cellular activity within a region can be clearly seen in the strong 
relationship of single-units and neurobiological oscillations with 
many cells having preferred phases of the oscillation to increase 
their firing rates (90–93). Oscillatory potentials can be divided 
into a several frequency bands based on functional behaviors with 
which they are associated, as well as cellular and pharmacological 
mechanisms underlying their generation (88). It is important to 
note that these different oscillations do not operate in isolation, 
with multiple theories proposing an interaction between two 
frequency bands being essential for cognitive processes (89, 
94, 95). As normal functioning requires the complex interplay 
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of oscillatory activity across brain regions, lack of synchrony or 
perturbations of these endogenous signals can lead to detrimental 
effects associated with several psychiatric disorders.

In recent years, research into causes and potential treat-
ments for schizophrenia has increasingly emphasized a basic 
understanding the neural circuits and processes leading to the 
myriad of symptoms. Due to the large-scale network believed to 
be involved in the disorder, abnormalities in oscillatory dynam-
ics seem poised to play a major role in explaining the cognitive 
deficits (5). At a relatively broad level, schizophrenia has been 
associated with alterations in the relative power of several oscil-
latory frequencies associated with cognitive processes, including 
theta (4–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma 
(40–100 Hz) (5–8, 96, 97). Some research has also indicated the 
importance of understanding different frequency oscillations in 
the context of their cross-frequency modulation, particularly in 
regard to gamma and theta (97). Researchers have also attempted 
to examine disruptions in neural dynamics and relate them to 
specific disruptions of behavioral tasks (6). A common finding 
in electrophysiological research is phase locking of oscillatory 
activity following stimulus presentation, a phenomenon typically 
allowing for coordination of neuronal firing across a distributed 
system. However, schizophrenic patients have shown delays in 
phase locking following auditory (98) and visual stimulation (99), 
with the degree of phase locking correlated with the extent of 
visual hallucinations and thought disorders (100). Additionally, 
while increases in frontal midline theta are typically seen fol-
lowing initiation of working memory tasks (101), schizophrenic 
patients show no increase, and at times a decrease, of evoked theta 
at various degrees of working memory load (102). These distur-
bances have been linked to a lack of theta coherence between left 
frontal and temporal EEG recordings in schizophrenics com-
pared to controls (103). At the cellular level, a loss of synchrony 
may affect the optimal balance between excitation and inhibition, 
particularly in regard to activity of GABAergic interneurons (96).

Similarly, MDD has been characterized by alterations in oscil-
latory activity across theta, alpha, and beta bandwidths, but has 
also shown decreases in delta (0.5–3 Hz) activity (104, 105). These 
patterns result in changes of the relative ratio of each frequency, 
creating a highly heterogeneous state (104). MDD patients show a 
convoluted pattern of effects in terms of oscillatory synchroniza-
tion. While MDD is characterized by increased synchronization 
of alpha and beta, as well as frontal theta (105, 106), several studies 
have also demonstrated a decrease in frontal theta power relative 
to controls (107–109). Furthermore, increases in theta power 
following deep brain stimulation have been shown to predict 
long-term clinical efficacy of treatment (110). Extending beyond 
frontal theta, animal models of MDD have revealed the effects of 
theta in the medial temporal lobe (MTL). Zheng and Zhang (111) 
found a decrease in theta phase coupling between the ventral hip-
pocampus and medial prefrontal cortex that was associated with 
decrease in synaptic plasticity of the pathway. Furthermore, Sauer 
et al. (112) have shown reduced synchrony of theta and gamma 
oscillations in the prelimbic cortex attributed in part to a decrease 
of output from prelimbic GABAergic interneurons.

Finally, it is important to consider neurobiological oscilla-
tions in AD, a disorder most commonly noted for the presence 

of amyloid beta (Aβ) plaques. Recent work has shown the 
potential of oscillatory activity as a means of early AD diagnosis. 
Compared to controls, AD patients have shown lower theta phase 
locking to stimuli (8), as well as decreased functional connectiv-
ity as measured by phase synchronization (113–115). Utilizing 
Granger causality and stochastic event synchrony, Dauwels et al. 
(116) demonstrated that loss of EEG synchrony can accurately 
predict occurrence of AD based on pre-dementia data. Using 
EEG synchrony as a screening tool can potentially be improved 
upon by applying principal component analysis before estimat-
ing synchrony (117). Animal models of AD are also being used 
to characterize the cellular basis of maladaptive alterations in 
oscillatory and cellular activity. Increasing disruption of hip-
pocampal theta oscillations has been shown in Aβ overproducing 
transgenic mice as a function of age (118). Guitérrez-Lerma et al. 
(119) found that the two different types of hippocampal theta are 
affected differentially by a variety of Aβ peptides. Hippocampal 
pyramidal cells are disrupted in normal aging, showing a decrease 
in excitability over time (120, 121), as well as in AD models in 
which desynchronization of action potential generation leads to a 
shift in the excitatory/inhibitory equilibrium (122). Hippocampal 
Aβ also impacts functioning in target structures. For example, 
investigating a decrease in hippocampal theta power, Villette 
et al. (123) showed a reduction of firing activity in GABAergic 
neurons in the medial septum. Importantly, this reduction in fir-
ing was not caused by a loss of neurons, but rather an alteration 
in their normal firing pattern. Our model system permits analysis 
of specific electrophysiological responses to the conditioning 
stimuli in terms of LFP synchrony and cellular reactivity with 
precise control of hippocampal theta state.

THeTA-TRiGGeReD MODeL

Hippocampal Theta Oscillations
Though psychiatric disorders are accompanied by disruptions 
in several frequency bands, work in our lab has focused on the 
hippocampal theta rhythm (3–12 Hz). Across a range of species 
and tasks, hippocampal theta has been implicated in spatial (90, 
91, 124–126), declarative (127–129), and working (101, 130, 131) 
memory processes. Within the theta band, Kramis et  al. (132) 
identified two types of theta that are pharmacologically and 
behaviorally different, cholinergic (3–7 Hz) and non-cholinergic 
(8–12 Hz) theta. Cholinergic theta is present during alert immo-
bility and is eliminated by the muscarinic ACh receptor antago-
nist, atropine. Non-cholinergic theta appears during voluntary 
movements and is unaffected by atropine. Both types of theta 
have been shown in the rabbit depending on the task (132, 133), 
with cholinergic theta being the dominant frequency during EBC.

In 1978, Berry and Thompson (134) identified a cognitive 
benefit of hippocampal theta that would serve as the foundation 
of the future development of our brain–computer interface (BCI). 
They found a strong positive correlation between pre-training 
hippocampal theta and learning rate, a finding that was recently 
replicated in rabbits (135) and extended into human spatial learn-
ing (136, 137). Several studies have shown that lesions to the MS 
reduce hippocampal theta power and significantly slow learning 
of an EBC task (25, 26, 64, 138). Additionally, eliciting theta 
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FiGURe 1 | Surface plots of power spectral density (PSD) of the pre-CS period triggering a trial for 1 day of training for an animal in the T+ (A) and 
T− condition (B). Trials in the T+ condition were consistently triggered under conditions of high theta and low delta and alpha. The T− condition was triggered by 
periods of low theta and high delta or alpha. Note that the T− condition is more heterogeneous than T+, with trials being triggered under both high delta and high 
alpha conditions. Figures created from data published in Cicchese et al. (146).

February 2016 | Volume 7 | Article 15

Cicchese and Berry Non-Theta-Contingent Conditioning Model of Neurobiological Dysfunction

Frontiers in Psychiatry | www.frontiersin.org

through MS stimulation or water deprivation has led to increases 
in learning rate (139, 140). It is important to note, however, that all 
of these studies utilized non-physiological alterations to the LFP, 
disrupting the natural ebb and flow that some believe to underlie 
the role of theta in cognitive processes (88, 141, 142). Also, it 
has been shown that artificial stimulation of the MS distorts the 
normal physiological response patterns of theta-related cells in 
the hippocampus (143). Thus, allowing the normal fluctuations 
of theta and non-theta states, as our interface does, may be a key 
to understanding the natural role of oscillations in behavioral 
learning and cellular response profiles.

Signal Processing Foundation of the BCi
To address that important issue, Seager et al. (144) developed a BCI 
capable of making training trials contingent on fluctuations in the 
naturally occurring oscillations. For a comprehensive overview 
of the BCI design and methodology, see Hoffmann et al. (145). 
Briefly, the BCI uses real-time spectral analysis to restrict EBCC 
trials to the explicit presence (T+) or absence (T−) of hippocampal 
theta (Figure 1). To accomplish this, either chronic monopolar 
electrodes or independently moveable tetrodes are implanted in 
area CA1 of the hippocampus. During training, a custom LabView 
program calculates a ratio of power at bandwidths specified by the 
experimenter. For our work that involves calculating the ratio of 
theta (3.5–8.5 Hz) to non-theta (0.5–3.5 Hz and 8.5–22 Hz) in real 
time. The ratio is calculated for 640-ms running time intervals, 
offset by 160 ms to allow for partially overlapping samples. In the 
T+ condition, a trial is triggered if the ratio of theta to non-theta 
exceeds 1.0 for three consecutive intervals. A trial is triggered in 
the T− condition if the ratio falls below 0.3 for three consecu-
tive intervals. This methodology allows for the different training 
groups to receive trials under opposite theta conditions while still 
allowing for the natural fluctuation between trials.

Behavioral effects of Theta-Contingent 
Training
The initial BCI study examined the effects of theta-contingent 
training during a delay EBC paradigm (144). Subjects were divided 

into four groups: (1) trials triggered in the explicit presence of 
theta (T+); (2) trials in the explicit absence of theta (T−); (3) T+ 
yoked controls, inter-trial intervals matched to the T+ subjects 
regardless of theta state; and (4) T− yoked controls. Animals 
trained under T− conditions learned significantly slower than 
those in the T+ condition (Figure 2A), requiring more trials to 
reach asymptotic performance (eight CRs out of nine consecutive 
trials; 8/9 CRs) and showing a lower percentage of CRs across 
training. Additionally, T− subjects required significantly more 
trials to the 8/9 criterion than their yoked controls (Figure 2B), 
highlighting the detrimental effects of T− training. This is impor-
tant to note when considering non-theta-contingent training as 
a natural model of a dysfunctional hippocampus, as these results 
coincide with the previous findings that pharmacologically 
disrupting hippocampal functioning is more detrimental to 
delay EBC than having no hippocampus (64). These findings 
have been extended to trace EBC in several studies. Utilizing the 
same four groups (T+, T−, T+ yoked, and T− yoked), Griffin 
et al. (28) showed that T− animals required significantly more 
trials to reach early (fifth CR) and late (8/9 CRs) learning criteria, 
demonstrated a lower percentage of CRs on the first 4  days of 
training, and required more trials to reach fifth CR than their 
yoked control counterparts. These results have been replicated 
by our lab with T− animals reaching the fifth CR criterion later 
than T+ animals (146, 147) and T− animals showing a lower 
percentage of CRs across the first 4 days of training (148). Taken 
together, the deficits seen in both delay and trace EBC mirror the 
patterns seen in patients and animal models of several psychiatric 
disorders. This is particularly relevant for disorders in which the 
cholinergic system is affected, such as AD, as the T− condition 
reflects a period where the cholinergic system is not engaged.

Furthermore, our BCI findings point to a potential treat-
ment for cognitive deficits seen in aging and AD. Asaka et  al. 
(149) examined the effects of theta-contingent training on aged 
animals, those that typically show learning deficits (150, 151). 
Four groups of animals were trained, young T+, young yoked 
controls, aged T+, and aged yoked controls. As expected, aged 
yoked controls performed significantly worse than young yoked 

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org


FiGURe 3 | Average number of trials to reach the late learning criteria 
(8/9 CRs and 80% CRs) for young yoked controls, aged T+ triggered, 
and aged yoked control animals. Aged yoked controls required more trials 
to reach both criteria than young yoked controls, indicating disrupted 
performance in aged animals. Aged animals trained under T+ conditions 
performed better than their yoked control counterparts and showed no 
difference from the young yoked controls. Thus, theta-contingent training 
alleviated the cognitive deficits seen in aged controls. *p < 0.05. Figure 
adapted from data published in Asaka et al. (149).

FiGURe 2 | (A) Average number of trials required to reach behavioral criteria in delay (8/9 CRs) and trace (fifth CR and 8/9 CRs) forms of EBC. Animals trained 
under T− conditions required significantly more trials than T+ animals to reach asymptotic performance (8/9 CRs) in delay conditioning, as well as more trials to 
reach early (fifth CR) and asymptotic (8/9 CRs) behavioral markers. (B) Average difference in the number of trials to reach behavioral criteria from yoked controls. 
T− animals needed more trials than controls to reach asymptotic performance of delay conditioning and more trials to reach the early learning criteria of trace 
conditioning. The differences from yoked controls provide evidence of detrimental performance in the T− condition, showing that T−/T+ differences are not simply 
an effect of improved performance in the T+ condition. *p < 0.05. Delay figures adjusted from Seager et al. (144), trace figures adjusted from Griffin et al. (28).
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controls, taking longer to reach several late learning behavioral 
criteria (including 8/9 CRs and 80% CRs in a session). However, 
aged T+ animals learned significantly faster than aged yoked 
controls, and showed no difference in learning rate from young 
yoked controls (Figure 3). Importantly, the benefit of T+ training 
persisted past behavioral indicators of asymptotic performance in 
aged animals, suggesting that sustained accurate performance, a 
cerebellar-dependent function, is also affected by oscillatory state. 
While aging is accompanied by a decrease in cholinergic activity, 
the presence of 3–7 theta in the hippocampus demonstrates that 
periods of relatively normal cholinergic activity persist that can 
be engaged as a non-pharmacological intervention for cognitive 
deficits.

These behavioral results are consistent with recent studies 
in human subjects. Using magnetoencephalographic (MEG) 
recordings, Guderian et  al. (152) found a positive correlation 
between pretrial theta amplitude in the MTL and recall rate in 
an episodic learning task. Following this demonstration, Fell 
et  al. (153) recorded bilaterally along the longitudinal axis of 
the MTL with intracranial EEG. Enhancement of hippocampal 
theta predicted successful encoding of a word recognition task. 
Similarly, Lega et al. (154) recording from the hippocampus of 
neurosurgical patients showed higher theta power during encod-
ing. Interestingly, the researchers identified a slow and fast center 
in the theta rhythm, and only the slow theta (~3 Hz) showed this 
pattern.

electrophysiological effects within the 
Hippocampus
In addition to deleterious behavioral effects, training in the explicit 
absence of theta has been shown to have negative effects on hip-
pocampal electrophysiology at the LFP, multiple-unit, and single-
unit levels. Previous work in rats has demonstrated a phase reset 
of the local theta rhythm following stimulus presentation (155, 
156). Using the trace EBC paradigm, our lab has replicated this 
phase reset and shown coherent rhythmicity at theta frequencies 

in T+ animals following both CS and US presentation (147, 148); 
however, animals trained under T− conditions display a delayed 
onset of phase reset, as well as decreased rhythmicity in theta 
frequency compared to T+ animals. These results in the T− con-
dition are important to consider as McCartney et al. (156) have 
shown that the phase reset produced by relevant stimuli provides 
ideal conditions for LTP to occur, suggesting a decrease in neural 
plasticity when trained in the absence of theta. Additionally, this 
delayed phase reset is comparable to that seen in schizophrenic 
patients in response to both auditory (98) and visual (99) stimuli.

Coinciding with the effects on LFPs, T− training impairs both 
the magnitude and rhythmicity of hippocampal multiple-units. 
During trace EBC, multiple-units in T− animals inhibited below 
baseline firing during presentation of the tone and through 
the 500-ms trace interval, while those in T+ animals showed 
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FiGURe 4 | Surface plots showing the standard scores (10-ms bins) of all rate decreasing (A) and rate increasing (B) cells averaged across the entire 
training session (truncated to 4 for illustration purposes). Note that rate decreases and increases during tone presentation and are sustained past airpuff 
presentation. (C) A greater percentage of cells in the T− condition were rate decreasing during the tone than in the T+ condition. (D) Cells in the T+ condition were 
more likely to increase their firing during the tone and trace periods than those in T−. *p < 0.025. Figure adapted from data published in Cicchese et al. (146).
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excitation (28). Note that this indicates an active suppression or 
inhibition of unit firing under T− conditions rather than simply 
the absence of an excitatory response. While this effect was seen 
on the second and third days of training, Darling et  al. (147) 
linked this decrease in activity of T− units to behavioral criterion, 
showing significant inhibition at the early (fifth CR) and late (8/9 
CRs) learning markers. Furthermore, similar to what has been 
seen in LFPs, T− multiple-units lack rhythmicity in firing during 
the trace interval, whereas T+ units fired coherently at 6.25 Hz 
(147).

Early work in rabbit EBC showed that conditioning-
dependent changes in multiple-unit activity were the result of 
changes in pyramidal cell activity (16, 157). To replicate this, our 
theta-triggered work was continued with single-unit recordings 
of hippocampal pyramidal cells. To determine whether changes 
in multiple-unit activity were caused by large firing rate changes 
in a few critical cells or by a change in the overall number of 
cells responding in a particular way (firing rate increasing or 
decreasing), Cicchese et  al. (146) analyzed pyramidal cell 
responses by their qualitative (rate increasing or decreasing) and 
quantitative (response magnitude) properties. Early in learning, 
putative pyramidal cells were more likely to decrease their fir-
ing rate during the tone period in T− than in T+ animals and 
more likely to increase their firing rate during both the tone and 
trace periods in T+ compared to T− (Figure 4). Importantly, 
there were no theta-contingent differences in the magnitude of 
either firing rate increases or decreases. These findings suggest 
that the role of theta in cellular firing is related to the recruit-
ment of additional units firing a particular pattern, rather than 

a drastic change in rate of relatively few cells. This implies that 
an optimal hippocampal ensemble response for EBC consists 
of more widespread excitation of pyramidal cells rather than a 
sparse code of heightened responses by a few cells. Thus, theta 
may serve to optimize the ratio of cells showing excitation or 
inhibition, leading to a dysfunctional balance in the absence of 
theta. This conclusion would agree with findings from models 
of schizophrenia (96) and AD (122), implicating a shift in the 
excitatory/inhibitory equilibrium as a potential cellular mecha-
nism. Additionally, Rutishauser et  al. (158) found a positive 
correlation between performance of a memory task and coor-
dination of hippocampal spike timing to the local theta rhythm. 
This is consistent with our results showing a learning deficit in 
T− subjects accompanied with less coherence of pyramidal cell 
response direction.

electrophysiological effects Across Brain 
Regions
Due to the distributed memory system involved in trace EBC, 
it is important to consider how non-theta-contingent training 
may negatively affect processing in other necessary regions. LFP 
recordings taken from hippocampal CA1, and cerebellar IPN and 
HVI, have revealed striking theta-contingent differences in both 
rhythmicity and synchronization between areas that may underlie 
dysfunctional processing during training (148). Coinciding with 
improved behavioral performance, T+ animals showed theta 
rhythmicity time-locked to conditioning stimuli in the cerebel-
lum and precise theta antiphase (180o) synchronization between 
CA1 and IPN/HVI LFPs. By contrast, T− performance deficits 
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were accompanied by an absence of theta oscillations in IPN and 
HVI, as well as a lack of synchronization with CA1. These results 
are consistent with human studies showing an increase in theta 
synchrony across distributed regions following induction of MTL 
theta oscillations (159), as well as with fear conditioning studies 
in rats showing a synchronized theta activity between the lateral 
amygdala and hippocampus following training (160). The lack 
of synchronization across areas is of particular interest in light 
of psychiatric research. Animal models of MDD have implicated 
the absence of ventral hippocampus–mPFC theta phase coupling 
with decreased synaptic plasticity (111), while a loss of cortical 
EEG synchrony is a fundamental feature in AD (113–116). These 
oscillatory disruptions likely cause a decline in functional con-
nectivity, failing to coordinate activity across regions necessary 
for cognitive processes.

The hippocampus does not directly project to the cerebel-
lum, but may have an indirect influence through its effects on 
the mPFC. The mPFC is necessary for trace EBC (161, 162) and 
projects to the lateral pontine nucleus, which conveys important 
CS-related mossy fiber input to the cerebellum (163). Previous 
work has identified a mPFC cellular response profile character-
ized by inhibition followed by a period of persistent excitation 
in response to tone presentation (164). This pattern is thought 
to increase the salience of the tone by increasing the signal-to-
noise ratio. Darling et al. (147) capitalized on our theta-triggered 
paradigm by recording simultaneously from area CA1 and the 
mPFC (caudal anterior cingulate region) under T+ and T− con-
ditions. Interestingly, though the inhibitory/excitatory pattern 
was replicated in T+ animals, it was absent in those trained under 
T− conditions. This finding implies that mPFC processing is 
highly related to hippocampal theta state and that our T− animals 
may fail to apply proper motivational salience to the condition-
ing stimuli. Importantly, the increased theta synchrony between 
hippocampus and amygdala during Pavlovian conditioning (160) 
raises the possibility that motivational and emotional input from 
the basolateral amygdala normally converges on the mPFC in 
synchrony with hippocampal input to modulate salience; thus, 
in the absence of hippocampal theta, a lack of converging input 
disrupts processing of the stimuli. A similar effect is seen in 
schizophrenia where patients show maladaptive motivational 
salience when rating reinforcements (165) and when learning to 
discriminate between a predictive CS+ and neutral CS− (166, 
167). Additionally, compared to controls, schizophrenia patients 
show increased neural activity to the CS− in regions associated 
with learning (166, 167). Thus, our T− condition appears to 
replicate some important findings from the human literature and 
relate them to neuronal response patterns in important structures.

CONCLUSiON

Summary and Limitations
As the study of cognitive processes has moved away from discrete 
functional regions to distributed neural networks (168), it is essen-
tial to understand the oscillatory activity capable of synchronizing 
these anatomically disparate regions (88, 141, 142). Similarly, a 
focus on electrophysiological disruption in psychiatric disorders 
is proving invaluable as loss of synchronization across regions is a 

common feature underlying their pathology (8, 112–114). Using 
our BCI, we have shown that training in the explicit absence of 
hippocampal theta produces deficits in EBC expected of a number 
of psychiatric conditions. Furthermore, these behavioral deficits 
are accompanied by electrophysiological disruptions at the LFP 
(147, 148), multiple- (28, 147), and single-unit (146) levels that 
are characteristic of conditions as disparate as schizophrenia, 
MDD, and AD. Of particular interest are the patterns seen across 
the regions necessary for EBC, with a lack of synchrony between 
hippocampus and cerebellum (148) and the absence of relevant 
response patterns in mPFC units (147). Though our non-theta-
triggering has proven effective at modeling the electrophysiologi-
cal correlates of a disrupted system, it is important to note that it 
still has room to grow. The BCI allows for trials to be delivered in 
the presence of a specific brain state, but does not give control of 
that activity. Thus, fluctuations in pretrial activity that may typi-
cally be abnormal in disorders cannot be controlled for. However, 
the ability of our non-theta-triggering to model interruption of 
distributed neural networks without lesions or pharmacological 
intervention provides a tool for studying psychiatric disorders 
in a more natural way, allowing for decreased levels of the given 
frequency, as is typical in illness, rather than complete abolition.

An important challenge to our findings has recently been 
published in the form of a failure to replicate the benefits of 
theta-contingent EBC (169). The authors found that animals 
trained under T− conditions were more likely to acquire the 
paradigm than yoked controls or those trained in the presence 
of theta; however, it should be noted that T− animals required 
more sessions to reach behavioral criterion than their yoked 
controls, consistent with our findings. These findings seem to 
contradict numerous studies in animals (28, 135, 144, 146–148) 
and humans (152–154), showing beneficial learning effects of 
increased hippocampal/MTL pretrial theta. Due to a funda-
mental methodological difference, it is possible that the study by 
Nokia and Wikgren (169) does not directly apply to our work. 
Specifically, in their study, all subjects were presented with a full 
session of unpaired conditioning before training began. This 
introduces latent inhibition as a major confound to later learning 
effects. While T+ and T− animals each received the unpaired 
session, work has not been completed to investigate how effects 
of latent inhibition may interact with theta-contingent learning 
conducted after unpaired presentations. For example, unpaired 
presentations of CS and US have been shown to cause a baseline 
EEG shift from pre- to post-exposure (170), and latent inhibition 
produces significantly reduced hippocampal unit responsiveness 
to a tone CS (171). An effect of the unpaired session is suggested 
by the unusually low percentage of animals that successfully 
acquired the CS–US association. Additionally, T+ animals that 
reached criterion took an average of ~5 fewer sessions than their 
yoked control counterparts; however, that difference was not 
significant, likely due to insufficient power (T+: n  =  4, yoked 
control: n =  2; 0.05 <  p <  0.10). While these results highlight 
the complex relationship between oscillatory potentials and dif-
ferent learning paradigms, potential differences in hippocampal 
functioning caused by latent inhibition, as well as low statistical 
power, prevent a direct comparison to our theta and non-theta-
contingent findings.
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Future Directions
Knowing the established effect of theta on cognitive processes, 
it will be critical to further study its role. In particular, further 
exploration of mPFC theta activity could serve to bridge the gap 
between animal and human recording studies. Much of the theta 
work in human subjects has centered on frontal midline theta, 
but it is still unclear what the neural correlates underlying these 
oscillations are (101). By understanding the relationship between 
oscillations in subcortical structures and those recorded by scalp 
EEG, it would be possible to utilize neurofeedback training as a 
possible treatment for psychiatric conditions, similar to what has 
been done in patients with ADHD (172, 173).

Though our BCI does not allow for direct manipulations of 
theta, new research methods, such as optogenetics, may make 
this possible. Using optogenetic stimulation of the medial septum 
could provide precise temporal control of theta rhythm induction. 
During this stimulation, simultaneous recordings from relevant 
areas (hippocampus, mPFC, and cerebellum) could provide 
further insight into the electrophysiological relationship of the 
distributed network. Specifically, this methodology would allow 
for precise control over theta phase during stimulation presenta-
tion. Considering the prominent model of separate encoding and 
retrieval phases of theta (128), our T+ group could be further 
studied by looking at trials triggered consistently on either the 
peak or through of theta. It is possible that triggering during the 
retrieval phase of the theta rhythm could be equally detrimental to 
training in the absence of theta, an idea recently supported using 
theta-contingent training in conjunction with threshold values to 
target specific phases (174). Furthermore, optogenetic manipula-
tion of theta state could be used in conjunction with conditional 
genetic knockout animal models to identify potential benefits of 
inducing synchronous neural activity in animals that are typically 
lacking. Initial studies into this possibility could utilize classical 
conditioning to allow for discrete learning points. By doing so, 
optogentic stimulation of the medial septum at theta frequency 
could be initiated prior to CS delivery, ensuring synchronous and 
homogeneous neural activity when learning is expected to occur. 
Dependent on the results, additional work should be completed 
to examine the amount of time asynchronous activity must be 
disrupted for alleviation of behavioral deficits. While research has 
shown physiological difference in cellular responding to naturally 
occurring and artificially stimulated theta (143), it is likely that 
optogentically induced theta would still provide benefits in 
animals with genetically disrupted theta oscillations. Several 
studies using the Morris water maze support this notion. Deficits 
in performance caused by disruption of hippocampal theta via 
pharmacological inactivation of the medial septum (175–177) 
or fimbria-fornix lesions (178) were overcome by artificial 

stimulation at theta frequency. Conversely, recent contextual 
fear conditioning work found a decrease in performance as a 
result of artificial theta stimulation (179). The authors propose, 
however, that the continuous stimulation provided at a fixed 
frequency may have interrupted the normal oscillatory processes 
of the rat; specifically, the constant theta likely interfered with 
the natural theta entrainment experienced during walking and 
sniffing as the rat explores its environment. Furthermore, they 
suggest that stimulation coinciding with an external cue, such as 
a tone CS, may show enhancement in performance similar to the 
aforementioned studies.

Although our work has focused on the theta to non-theta 
[3.5–8 Hz/(0.5–3.5 Hz + 8.5–22 Hz)] ratio, the LabView program 
can be set with any frequency range in the numerator and denomi-
nator. With this flexibility, future studies could utilize the BCI for 
training contingent on different frequency bands and explora-
tion of different definitions of non-theta. Our non-theta state is 
heterogeneous, with major contributions of delta (0.5–2 Hz) and 
alpha (8–12 Hz) compared to the homogeneous theta band. This 
heterogeneity may underlie the detrimental effects seen in our 
non-theta conditioning. It will be important for future studies to 
alter the frequencies defined as non-theta, including using indi-
vidual frequency bands in the denominator, to determine whether 
the decrease in theta or the heterogeneity of oscillatory bands is 
responsible for adverse learning. In work by others, triggering tri-
als based on sharp-wave ripple oscillations (150–250 Hz) has been 
shown to increase EBC learning rate and increase the phase lock-
ing of theta oscillations to conditioning stimuli (180), suggesting 
that the heterogeneity of our non-theta state plays an important 
role. Therefore, it will be important to continue research into the 
effects of ripple-contingent training and their relation to theta. 
As discussed previously, several frequency bands are disrupted in 
psychiatric disorders. In light of the differences in behavioral and 
neurochemical characteristics of these various oscillations, it is 
critical to understand the contributions of each to cognitive pro-
cesses and psychiatric pathology. Multidisciplinary approaches as 
discussed above will be an important contributor to this effort.
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