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Visual feature descriptors are essential elements in most computer and robot vision
systems. They typically lead to an abstraction of the input data, images, or video, for
further processing, such as clustering and machine learning. In clustering applications,
the cluster center represents the prototypical descriptor of the cluster and estimates
the corresponding signal value, such as color value or dominating flow orientation,
by decoding the prototypical descriptor. Machine learning applications determine the
relevance of respective descriptors and a visualization of the corresponding decoded
information is very useful for the analysis of the learning algorithm. Thus decoding of
feature descriptors is a relevant problem, frequently addressed in recent work. Also, the
human brain represents sensorimotor information at a suitable abstraction level through
varying activation of neuron populations. In previous work, computational models have
been derived that agree with findings of neurophysiological experiments on the represen-
tation of visual information by decoding the underlying signals. However, the represented
variables have a bias toward centers or boundaries of the tuning curves. Despite the fact
that feature descriptors in computer vision are motivated from neuroscience, the respec-
tive decoding methods have been derived largely independent. From first principles, we
derive unbiased decoding schemes for biologically motivated feature descriptors with a
minimum amount of redundancy and suitable invariance properties. These descriptors
establish a non-parametric density estimation of the underlying stochastic process with
a particular algebraic structure. Based on the resulting algebraic constraints, we show
formally how the decoding problem is formulated as an unbiased maximum likelihood
estimator and we derive a recurrent inverse diffusion scheme to infer the dominating mode
of the distribution. These methods are evaluated in experiments, where stationary points
and bias from noisy image data are compared to existing methods.

Keywords: feature descriptors, population codes, channel representations, decoding, estimation, visualiza-
tion, bias

1. Introduction

We address the problem of decoding visual feature descriptors. Visual feature descriptors, such as
SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005), COSFIRE (Azzopardi and Petkov, 2013), or
deep features (LeCun and Bengio, 1995), are essential elements in most computer and robot vision
systems. They usually lead to an abstraction of the input data, images, or video, for further processing
within a hierarchical system, e.g., for object recognition (Azzopardi and Petkov, 2014). In many
cases, decoding the feature descriptor, i.e., recovering the essential visual information encoded in the
descriptor, is a relevant problem.
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For instance, in clustering applications, the cluster center rep-
resents the prototypical descriptor of the cluster and the corre-
sponding signal value, such as color value or dominating flow
orientation, needs to be estimated. For the analysis of machine
learning systems, it is useful to determine the relevance of respec-
tive descriptors and to visualize the corresponding decoded infor-
mation. Thus, the problem of decoding feature descriptors has
been addressed frequently in recent work, e.g., for SIFT (Weinza-
epfel et al., 2011), HOG (Vondrick et al., 2013), and deep features
(Zeiler and Fergus, 2014;Mahendran andVedaldi, 2015) as well as
for quantized descriptors, such as LBP (d’Angelo et al., 2012) and
BoW (Kato and Harada, 2014).

In the present work, we address the problem of unbiased
decoding from channel representations of visual data. The chan-
nel representation (Granlund, 2000) can be used as a visual
feature descriptor similar to SIFT and HOG and is closely
related to models of population codes used in computational
neuroscience.

According to these models, the human brain represents senso-
rimotor information at a suitable abstraction level through vary-
ing activation of neuron populations by means of tuning curves.
These tuning curves are typically bell-shaped and allow to predict
how neurons are activated on an average by a certain stimulus.
The brain’s task is to invert this relation and to infer an estimate of
the stimulus from a population of such neurons. Since the neuron
activations are noisy, forming a “noisy hill” (Denève et al., 1999)
of activations, a robust, stable, and unbiased estimation has to be
performed: a good estimator is required. An unbiased estimator is
supposed to be right on average, i.e., the estimate is not subject
to systematic errors caused by factors other than the entity to
be estimated. Thus the goal of the present work is to derive an
unbiased decoding of visual feature descriptors.

One suchmethod is claimed to be the “read out [of] these noisy
hills” (Denève et al., 1999), represented by a population vector, i.e.,
orientation is represented by a population coding (Zemel et al.,
1998; Pouget et al., 2000). This process is illustrated in Figure 1,

distribution overlap 3 overlap 6

tu
n

in
g

cu
rv

es
si

n
g

le
st

im
u

lu
s

m
u

lt
ip

le
st

im
u

li

FIGURE 1 | Illustration of population codes/channel representations with
minimum overlap (3/middle column) and with overlap 6 (right column).
The first row shows the basis functions, the second row shows the encoding (by

means of weighted basis functions) of a single stimulus (impulse, cf. left
column), and the third row shows the encoding of multiple stimuli (Gaussian
distribution, cf. left column).
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where 8 orientation tuning curves with overlap 3 and 16 tuning
curves with overlap 6 are shown. The activation of the tuning
curves is illustrated for a single stimulus at 0 and noisy samples
about the preferred orientation at 0 (simulation).

Population codes have earlier also been referred to as channel
codes (Snippe and Koenderink, 1992; Howard and Rogers, 1995)
and therefore (and in parallel to recent developments in computa-
tional neuroscience), the image processing community has devel-
oped the concept of channel representations (Granlund, 2000).
Both coding schemes share many similarities, most importantly
approximating kernel density estimators in expectation sense
(Scott, 1985; Zemel et al., 1998; Felsberg et al., 2006). The tuning
curves are referred to as channel basis functions or kernels and
the coefficient vectors as channel vectors. Several analytic models,
such as Gaussian kernels, cos2 kernels, or quadratic B-splines,
have been investigated (Forssén, 2004). An overview of channel-
based image processing is given in a recent survey (Felsberg, 2012).
Other names for population/channel codes are averaged-shifted
histograms (Scott, 1985) and distribution fields (Sevilla-Lara and
Learned-Miller, 2012; Felsberg, 2013).

The focus in this paper is on decoding channel representations
of image information. The purpose of image representations is
to turn implicitly existing properties of the underlying image
signal into a data structure, a feature descriptor, which makes
the properties explicit. For instance, local orientation information
is computed from the image signal and combined with color
information in a joint feature descriptor used for classification and
regression (Felsberg and Hedborg, 2007).

From a statistical point of view, an image representation con-
sists of estimates of the feature components from a set of measure-
ments in the image. These measurements can differ in number,
i.e., in the total evidence. The feature component is in most cases
assigned the value of the maximum likelihood estimate. In many
cases, also the variance of the estimate is considered in terms of
coherence (Jähne, 2005).

A good example for the three-folded representation by
value/coherence/evidence is the structure tensor (Bigün and
Granlund, 1987; Förstner and Gülch, 1987), where the sum
of eigenvalues is a measure for the evidence, the difference of
eigenvalues (divided by their sum) represents the coherence, and
the orientation of the eigenvectors determines the value. It has
been pointed out in that the structure tensor results in a 3D cone
(Felsberg et al., 2009).1

One of the major differences between channel representations
and population codings is the decoding: the reconstruction from
channel codes or the readout from population codes. Channel
representations make use of signal processing techniques for local
reconstruction (Forssén, 2004), the maximum entropy principle
to reconstruct a smoothed density function (Jonsson, 2008), or
spline-based mode extraction to find the location with maximum
likelihood with a minimum of bias (Felsberg et al., 2006). In

1Other examples for the three-folded representation are based on local phase
estimates, where the coherence (phase-congruency) may be used for simultaneous
detection of lines and edges (Reisfeld, 1996; Kovesi, 1999; Felsberg et al., 2005),
and color (Lenz and Carmona, 2010). In the latter case, the evidence determines
intensity, the coherence is a saturation measure, and the value represents the hue.

contrast, population vector readout uses a recurrent procedure to
approximate a maximum-likelihood estimation.

Despite the fact that the readout by means of the population
vector estimator is unbiased (Denève et al., 1999), the combi-
nation of the recurrent procedure and the estimator becomes
biased if the recurrent equation is iterated until convergence.
This effect is reduced if the tuning functions overlap extensively
and if the recurrent equation is only iterated a few (2–3) times.
Both approaches are used in previous work (Denève et al., 1999).
However, as pointed out recently (Pellionisz et al., 2013), the
recursion of covariant (“proprioception”) vectors always leads
to the eigenvectors of the underlying coefficient matrix and is
thus a fundamental obstacle for unbiased estimators if iterated to
convergence.

In contrast to mentioned previous works, a truly unbiased
recurrent network model is derived in the present paper. This is
achieved by a theoretical approach and from biologically moti-
vated first principles. The contributions are as follows.

• The analytic form of tuning curves is derived from constancy
constraints (Section 2.1).

• The algebraic structure of the resulting minimum-overlap sets
is identified. Within this structure, the requirements for unbi-
ased estimates imply Lorentz group constraints on the coeffi-
cients (Section 2.2).

• For the decoding of channel vectors withmore than three chan-
nels, a novel window selection has been derived, establishing a
maximum-likelihood estimate (Section 2.3).

• Existing schemes are analyzed with respect to these constraints
and a new, unbiased scheme is derived. This scheme is imple-
mented for simulation experiments, where stationary points
and bias from noisy image data are compared to existing
schemes (Section 2.5).

The presented approaches are based on results from earlier
work on channel representations (Sections 2.1 and 2.2) and make
use of group theoretic results. The technical details of the work are
summarized in the Supplementary Material.

2. Materials and Methods

The current approach to recurrent population codes shows a
systematic bias, as we will show further below in this section.
This bias can be avoided if the recurrent relations are modified
according to certain constraints that we will derive from first
principles. These first principles are common practice in many
successful image representation techniques.

2.1. Encoding of Population Codes and
Minimal Channel Representations
Population codes and channel representations are largely equiv-
alent approaches concerning their encoding properties. In both
casesmeasurements x from ameasurements spaceM are encoded
using channel basis functions b(x) (the tuning curves). These func-
tions are defined on a compact interval, in the case of orientation
data, a periodic domain. They are continuous, non-negative, and
decay with increasing |x|. The channel support of b is given by the
domain where b is non-zero.
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The basis function used here is the cos2 function, defined as
(where h denotes the bandwidth parameter)

b (x) =
2
hcos2 (πx/h) for |x| < h/2 and 0 otherwise. (1)

Note that we have introduced an additional scaling compared
to previous work (Forssén, 2004) to make the basis functionmass
preserving, see below. The channel basis function is shifted n
times (w.l.o.g. by integer displacements) to form the channel basis
b(x) with components bj(x)= b(x – j). The number of non-zero
components for any x determines the channel overlap. Computing
the components for K measurements x(k) with weights ak results
in the channel vector c with channel coefficients

cj =
K−1∑
k=0

akb(x(k) − j) =
K−1∑
k=0

akbj(x(k)) j = 0 . . . n− 1. (2)

Representing elements of M using channel vectors is called
the channel representation. If the sum of channel coefficients (l1-
norm) is constant 1 for any x, i.e., the channel vector lies in the
(n – 1)-simplex, the channel representation is mass preserving.
We will only consider such channel representations in the sequel
and therefore omit “mass-preserving”. The simplexes for n= 3 and
n= 4 are illustrated in Figure 2.

The channel basis b(x) determines a 1D curve in nD space,
parametrized by x. As illustrated in Figure 2, cos2 functions result
in a circle whereas other basis functions produce less regular
shapes (A). Also for n> 3, the cos2-generated curve has con-
stant curvature, but is no longer a circle (B). The circle (n= 3)
respectively constant curvatures are direct consequences from the
constant l1- and l2-norms of b for cos2 functions, restricting the
curve to be part of the intersection of a plane and a sphere.
Averaging channel representations over a set of measurements x(k)
results in a convex combination of points on the curve.

Thus, the cos2 channel basisb induces two constancy properties
onto the resulting channel vector c: The l1-norm of c and the
l2-norm of c are independent of displacements of x, as long as
x is within the range of the tuning functions. The first property

corresponds to the idea of constant probability mass, i.e., each
observation provides the same amount of evidence, independently
of the specific value. The second property corresponds to the
idea of isometry, i.e., scalar products depend only on the relative
angle, not on the absolute angle within the reference coordinate
system. This property is essential for learning-based approaches
that should not be biased toward centers or edges of tuning func-
tions. Thus, both constancy properties are essential for unbiased
representations.

A further property of cos2 kernels as defined above, with the
choice h= 3, is that they have an overlap of three, i.e., for a single
observation x, b has three non-zero coefficients:

b(x) = (. . . , 0, b(x− [x] + 1)︸ ︷︷ ︸
coefficient[x]−1

, b(x− [x])︸ ︷︷ ︸
coefficient[x]

, b(x− [x]− 1)︸ ︷︷ ︸
coefficient[x]+1

, 0, . . .)t,

(3)
where [x] is the closest integer to x. Together with other standard
requirements of kernel functions, we obtain that no kernels exist
with overlap smaller than three:

Theorem 2.1. (Minimum-overlap channel basis) The minimum
overlap of a channel basis with constant l2-norm ||b(x)||2 = µ for
all x is 3. µ = 1

2 .

Finally, from the two norm constraints, it follows that the cos2
kernel, which is the simplest non-constant even function, is the
only solution (see Supplementary Material for both proofs):

Theorem 2.2. (Uniqueness of cos2 kernel) The unique channel
basis function with minimal overlap and integer spacing is given
by with equation (1) h= 3.

2.2. Decoding Channel Representations
Three-channel systems have some structural similarities with cer-
tain computational color models. Due to the existence of three
color receptors on the human retina or color sensors inmost cam-
eras, one can describe the raw output of a color imaging system by
a three-dimensional vector (usually in some form of RGB space),
which is structurally similar to the channel vectors introduced
above. In this spirit, the color opponent transform (Lenz and Car-
mona, 2010; van de Sande et al., 2010) and its variant in cylindrical
coordinates, i.e., hue–saturation–intensity (van de Weijer et al.,
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FIGURE 2 | (A) 2-simplex. Blue: edges of a simplex. Red curve: trajectory from cos2-encoded single measurements. Green: B-spline-encoded single measurements.
(B) 3-simplex. Blue: edges of simplex. Red: cos2-encoded single measurements.
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FIGURE 3 | Illustration of the color opponent transform (Åström, 2015). Figure courtesy Freddie Åström.

2005), are three-folded representations, see Section 1. In Figure 3,
the color opponent transform, an orthogonal transformation of
RGB, is illustrated.

The concept of three-folded representations by
value/coherence/evidence has been related to channel
representations, and thus population codes, in context of
decoding cos2 channels (Forssén, 2004), from which we
have adopted the notation in Figure 4: value x̂, coherence
r̂1/r̂2, and evidence r̂2. Previous work refers to r̂1 and r̂2
as confidence measures and suggests to form the 3-vector
p = (p0, p1, p2)t := (̂r1 cos 2πx̂/3, r̂1 sin 2πx̂/3, r̂2)t using a
matrix of orthogonal column vectors Wt = (w0, w1, w2). After
normalization2, we obtain:

c = Wtp

:=
1√
3

 √
2 0 1√

2 cos(2π/3)
√
2 sin(2π/3) 1√

2 cos(4π/3)
√
2 sin(4π/3) 1

r1 cos(2πx/3)
r1 sin(2πx/3)

r2


(4)

Inverting this expression gives p=Wc, and the estimate for x is
obtained by extracting the phase-angle

x̂ =
3
2π arg(p0 + ip1) =

3
2π arg(ct(w0 + iw1)). (5)

Thus, all involved operations (matrix-vector products and
extraction of phase) are the same as for the readout of population
codes (Denève et al., 1999) and are biologically plausible (Mechler
et al., 2002).

Note that the normalization of the matrix columns implies that
r2 =

√
2r1 in the case of a single encoded value. Thus, the cone

becomes acute (70.5° instead of 90°). If a set of measurements
is represented using channels, the resulting channel vector c is
a convex combination of points on the surface of this cone, i.e.,
a point in the interior of the cone, and r2 >

√
2r1 in general.

Decoding this channel vector is then related to finding the closest
point on the cone surface. The exact definition of closest in this

2For the sake of convenience, we use the normalized coefficient matrix as common
in literature (Fässler and Stiefel, 1992; Lenz and Carmona, 2010)

FIGURE 4 | The 3D cone formed by evidence r̂222, coherence r̂111/̂r222, and
value x̂.

context is dependent on the transformation group considered.
Using just p0 and p1 as suggested previously (Forssén, 2004)means
to neglect distances along p2.

The three-fold representations above live in a cone, i.e., if
representations are modified or compared, the transformations
that leave the cone invariant need to be analyzed and represented.
Obviously, we may not use Euclidean transformations for this
purpose, because they would produce results outside the cone.
Instead, we consider Lorentz transformations similar to those we
know from relativity theory.3

In our case, the Lorentz transformations consist of rotations
about the cone axis and Lorentz boosts (contractions). The
rotation about the cone axis corresponds to changes of our mea-
surements x (see also Figure 4), thus an unbiased scheme must

3The cone geometry is easiest defined in (2+ 1)D Minkowski space R2,1. The
associated quadratic form has the signature {+,+,− 1}, i.e., p20 + p21 − p22. The
transformation group that we consider is the special orthogonal group, SO(2,1),
more accurately the connected component SO+(2,1).
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be rotation invariant. Using the change of coordinates from the
previous section, we derive a constraint on the update of c that
must be fulfilled in each step of a recurrent scheme (the proof is
given in Supplementary Material):

Theorem 2.3. (Constraint on channel coefficients) The decoding
of a 3-channel vector c is invariant under a change of channel
coefficients∇c = (∂c0 , ∂c1 , ∂c2)

t iff

(c0 − c1)∂c2 + (c2 − c0)∂c1 + (c1 − c2)∂c0 = 0. (6)

2.3. Windowed Decoding by
Maximum-Likelihood Estimation
The decoding based on equation (5) is defined for channel rep-
resentations with three channels. For the general case of more
than three channels, recurrent schemes will be discussed below.
However, non-iterative methods for more than three channels
have been suggested (Forssén, 2004), based on first selecting a
window of three channels and then applying equation (4).

The 3-window is selected by various criteria, e.g.,maximizing r2
or having a local maximum at the center channel cj−1≤ cj≥ cj+1.
From a statistical point of view, however, a maximum-likelihood
selection would be preferable and under the assumption of inde-
pendent Gaussian noise, we arrive at a least squares problem and
the corresponding theorem (the proof is given in Supplementary
Material):

Theorem 2.4. (Maximum-likelihood decoding) Assuming inde-
pendent Gaussian noise on the channel coefficients, the decoding
3-window with maximum likelihood is given at the index j

ĵ = arg max
j

r̃1(j) +
√
2r2(j), (7)

where ri(j) is computed as ri of the vector cj := (cj−1, cj, cj+1)t ,

r̃1(j) =

{
r1(j) if |α(cj)| ≤ π/3
r1(j) cos(|α(cj)| − π/3) else,

(8)

and α(cj) = arg(ctj(w0 + iw1)) − 2π
3 . The MLE is given as x̂ =

max(min( 3
2π α(ĉj),

1
2 ),−

1
2 ) + ĵ.

2.4. Analysis of the Existing Recurrent Scheme
for Population Codes
The recurrent procedure suggested for the readout of population
codes (Denève et al., 1999) contains the same building blocks as
channel decoding and is biologically equally plausible, because
such procedures coincide with cortical circuitry. It is suggested to
establish two coupled, non-linear equations, the first one being a
linearmapping of the population vector o to a slack vector u=Ao,
and the second one writing back the squared and normalized u
into o:

oj = u2j /(S + µ|u|2). (9)

The computational flow of this method is illustrated in
Figure 5.

The problem is, however, that the scheme given in equation
(9) only fulfills the invariance requirement (6) in one trivial case
for A. In all other cases, iterating through the scheme leads to
successively larger bias toward specific values, e.g., at the channel
centers (the proof is given in Supplementary Material):

Theorem 2.5. (Bias of Denève’s scheme)The scheme (9) is biased
unless we choose

A =

√
S

3(1− µ)

1 1 1
1 1 1
1 1 1

 , where µ < 1. (10)

2.5. The New Recurrent Scheme
In this section, we will derive a recurrent scheme that, in contrast
to equation (9), fulfills the invariance constraint for the value (6).
Moreover, a recurrent scheme should not modify the evidence
either, i.e., we require

∂r2 = wt
2∇c = 0. (11)

The two constraints (6) and (11) imply the existence of a
solution in terms of their common null-space. In the case of three
channels, this space is spanned by permutations of the vector (−1,
2, −1)t, the (negative) discrete Laplacian kernel. Since the update
of c in the corresponding scheme has to be in a (3-2)-D subspace,
only one degree of freedom exists and is uniquely determined by
the requirement

√
2r1 = r2.

FIGURE 5 | Diagram of the recurrent network for the readout of population codes (Denève et al., 1999).
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Thus, the fixpoint solution can be achieved by a single compu-
tation and suitable δ as

c0 = c + δ

 2 −1 −1
−1 2 −1
−1 −1 2

 c. (12)

In the case of more than three channels, the algebraic struc-
ture becomes more complicated, because points are no longer
projected onto a circle in the plane, but onto a 1-D curve in
high-dimensional space. This can no longer be achieved by a
linear equation as in equation (12). The proper generalization is
obtained by splitting the Laplacian operator according to ∆ = ∂2

j
(j being the index of c, thus ∂j being the finite difference operator)
and defining d= ∂jc as the flow between the channels in each
incremental step ct

ct ∝ ∂jd, (13)

establishing the continuity equation of channel coefficients. The
flow coefficient dj determines how much of the coefficient cj is
moved to cj+1.

In contrast to equation (12), where the flow is computed by the
difference cj+1−cj, the case of more than three channels requires a
non-linear mapping f:R2→R; (cj, cj+1) 7→ dj to compute the flow.
The complete computational scheme is illustrated in Figure 6.

Assuming that the function f is known and δ being the update
step length, we obtain the following iterative algorithm:

while
√
2r1 < r2 do

for all j do
dj← f (cj, cj+1)

end for
for all j do
cj← cj + δ(dj–1 – dj)

end for
end while

The implementation of such a scheme and the comparison to
the state-of-the-art scheme (Denève et al., 1999) with respect to
stationary points using simulation data and with respect to bias
using noisy image data is shown in the subsequent section.

3. Results

In this section, we analyze stationary points of the discussed recur-
rent schemes and we perform experiments on orientation analysis
from noisy images. Before looking into the iterative schemes,
we first compare the non-iterative decoding according to maxi-
mum r2 (Forssén, 2004) and Theorem 2.4, see Figure 7. In the
experiment, we compare the respective decoding result for 1000
random measurements encoded into 7 channels and combined
with random weights. Obviously, the modification of the window
selection leads to exact reproduction of MLE results.

3.1. Stationary Points Analysis
A fully unbiased recurrent scheme must keep the entire measure-
ment domain invariant, i.e., each point in the measurement space
is a stationary point under the recurrent scheme. For this sub-
section, we restrict the discussion to the case of three orientation
channels.

FIGURE 6 | Diagram of the proposed recurrent network. f is the function
to compute the flow.

In the case of Denève’s scheme, we already know fromTheorem
2.5 that only one trivial solution exists. However, we can calculate
which discrete points are stationary points by requiring

o(t + 1) = o(t). (14)

If o is a stationary point, u=Ao is constant, and thus, also the
normalization factorQ := S+ µ|u|2 is constant. As in the proof of
Theorem 2.5, we exploit thatA is circulant, but it is also symmetric
(we may reflect all vectors) and thus

A =

α β β

β α β

β β α

 (15)

for suitable α and β. For a stationary solution, we obtain oj =
1
Q (Ao)2j and therefore

o0 = 1
Q (αo0 + βo1 + βo2)2

o1 = 1
Q (βo0 + αo1 + βo2)2

o2 = 1
Q (βo0 + βo1 + αo2)2

. (16)

Q only affects absolute scale of stationary points, as does simul-
taneously scaling of α and β. Thus, only one degree of freedom
remains for changing the stationary points: the quotient of β/α.

Without loss of generality, we now set S= 0.1, µ = 0.9, and
α = 1. For different choices of β, we can now plot the trajectories
under iterations of equation (9), see Figure 8. For comparison, we
also include the result from our proposed method (12).

Obviously, Denève’s method has a discrete set of stationary
points, which means that iterating until convergence will lead
to one out of a set of discrete solutions and thus, the result is
strongly biased. Our solution for three channels, however, maps
to all points on the unit circle and is thus unbiased.

3.2. Orientation Estimation from Image Data
In this section, we perform a number of experiments using two
sets of visual stimuli with different complexity: one contains a
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FIGURE 7 | Comparison between decoding maximizing r2 (Forssén, 2004), left, and the proposed MLE according to Theorem 2.4, right. 1000 random
measurements have been generated with random weights and encoded with 7 channels.

A B

C D

FIGURE 8 | Three-channel iterative processing. The original samples are indicated by crosses, the convergence points by circles. The results of Denève’s
iterative method are shown in (A) (βββ=== 0.26ααα), (B) (βββ=== 0.25ααα), and (C) (βββ=== 0.24ααα). The result of our method (12) is shown in (D).
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FIGURE 9 | Orientation experiment with a simple stimulus (Hubel and
Wiesel, 1959). (A) Example pattern with noise. (B) Raw orientation
estimates computed with the Scharr filter (Scharr et al., 1997). (C) Channel

smoothed orientation estimates (Felsberg et al., 2006). (D) Weighted
coherence (̂r1) of the estimate. The subsequent evaluation is made in the
center point (128,128).

single orientation without texture (Hubel and Wiesel, 1959), see
Figure 9A, and the other one multiple orientations with varying
textures (Felsberg et al., 2006), see Figure 10A. From rotated
and noisy instances of these images, local orientation informa-
tion is extracted with a regularized gradient filter (Scharr et al.,
1997). The color coded orientation data is illustrated in Figures 9
and 10B.

The extracted orientation estimates are pixel-wise channel
coded and the resulting channel images are spatially averaged
(Felsberg et al., 2006). The resulting channel representations are
then decoded; the result is shown in Figures 11 and 12A. If we
apply 5, 10, and 100 iterations according to equation (9) before
decoding, the results as shown in Figures 11 and 12B–D, respec-
tively, are obtained. It is obvious for all cases that the iterative
scheme (9) leads to an increasing bias. For three channels, the case
of decoding without iterating (9) corresponds to our solution (12)
and shows no significant bias.

In Figure 13, the corresponding results are shown for 7 chan-
nels. The used basis functions are displayed in Figure 13A. The

look-up table for the flow function f (cj, cj+1) between the channels
is displayed in Figure 13B. The look-up table is generated by
successively low-pass filtering random samples from a Gaussian
distribution, computing the flow, and inverting the sign. The
result from the proposed iterative scheme shows no bias effect
if iterated to convergence (see Figures 13D,F) whereas Denève’s
method shows clearly visible bias effects (cf. Figures 13C,E).

So far, the advantage of applying the proposed scheme com-
pared to direct decoding has not been very explicit. This changes
if the noise distribution becomes broader. In Figure 14, we show
results for simulations with orientation samples (200, respec-
tively, 1800) drawn from a distribution with standard deviation
of 0.5 respectively 1.5 times the decoding window width. 10 iter-
ations of Denève’s method result already in a clearly visible bias
(Figures 14C,D), whereas the proposed scheme shows no bias in
either case (Figures 14E,F). The direct decoding shows no visible
bias for the narrower distribution (a) and a clearly visible bias for
the wider distribution (b). Note that the bias may not be evaluated
if the mean of the distribution is placed at a channel center or
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FIGURE 10 | Orientation experiment with a complex pattern (Felsberg et al., 2006). (A) Example pattern with noise. (B) Raw orientation estimates computed
with the Scharr filter (Scharr et al., 1997). The subsequent evaluation is made along the magenta circle.
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FIGURE 11 | Evaluation results using stimuli from Figure 9 for three channels. (A–D) decoding with respectively 0, 5, 10, and 100 iterations according to (9).

Frontiers in Robotics and AI | www.frontiersin.org August 2015 | Volume 2 | Article 2010

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Felsberg et al. Unbiased decoding of feature descriptors

A B

C D

FIGURE 12 | Evaluation results using stimuli from Figure 10 for three channels. (A–D) decoding with respectively 0, 5, 10, and 100 iterations according to (9).

at a boundary. For such setups, all methods show an unbiased
behavior.

4. Discussion

We have shown that the recurrent scheme by Denève produces
biased output if the mean of the stimuli is not located on a
channel center or a channel boundary and if the recurrent scheme
is iterated until convergence. The bias of Denève’s method has
not been visible in the original paper (Denève et al., 1999),
because all evaluations have been done either on data centered
at a stationary point or as averaged error over all distribution
centers.

The suggested extensive overlap of tuning functions and fixed
number of iterations (Denève et al., 1999) lead only to a gradual
reduction of the bias and have threemajor practical drawbacks for
the design of computational systems:

1. The extensive overlap of tuning functions (oversampling in
signal processing terms) increases the redundancy, and thus
the computational effort.

2. The number of iterations depends on the noise level of
the input: noisier data requires longer processing time as

observed in biological systems. Reducing the number of iter-
ations to a fixed number (in order to limit the bias) will
result in useless output if the noise level is above a certain
threshold.

3. Dynamic processes with continuous input, i.e., using popula-
tion codes as an implementation of a Kalman filter (Denève
et al., 2007), will make use of the iterative procedure in each
time step, and thus the recurrent equation is potentially applied
an arbitrary number of times, eventually leading to biased
estimates.

All three drawbacks are avoided by using the proposed channel-
based approach, established by means of theorems 2.1–2.4 and
a simple look-up table. Besides the fact of establishing a new
theoretical and computational model for recurrent networks, this
possibly leads to two new applications:

• Application 1: denoising for learning – many channel-based
learning algorithms (Felsberg et al., 2013) require clean inputs
in order to avoid responses to insignificant inputs. If the recur-
rent scheme is applied before the training, cleaner responses
might be the consequence.
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A B

C D

E F

FIGURE 13 | Evaluation results: Stimuli from Figures 9 and 10, seven
channels, repeated until convergence. (A) Basis functions used in all
experiments with seven channels. (B) Plot of look-up table for the function

f (cj, cj+1) to compute the flow according to Figure 6. (C,E) Iterations using (9).
(D,F) Iterations using (13) and look-up table. (C,D) Input pattern from Figure 9.
(E,F) Input pattern from Figure 10.

• Application 2: adaptive channel resolutions – in certain
cases, it would be useful to increase resolution of the
channel representation during processing (Felsberg, 2010).
This requires a sharpening of the underlying measured
distribution, which can be achieved by the proposed
scheme.

In conclusion, we believe that recurrent networks are very
useful tools, but have to be applied in the appropriate way in order
to avoid introducing unwanted bias effects.
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FIGURE 14 | Simulation of orientation information with varying standard deviations. (A,C,E): results for σ = half the decoding window, 200 samples;
(B,D,F) for σ = 1.5 times the decoding window, 1800 samples. (A,B): decoding without iterations; (C,D) results using 10 iterations of (9); (E,F) results using the
proposed scheme.
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