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The production of behavioral diversity – producing a diversity of effects – is an essen-
tial strategy for robots exploring the world when facing situations where interaction
possibilities are unknown or non-obvious. It allows to discover new aspects of the
environment that cannot be inferred or deduced from available knowledge. However,
creating behavioral diversity in situations where it is most crucial – new and unknown
ones – is far from trivial. In particular in large and redundant sensorimotor spaces, only
small areas are interesting to explore for any practical purpose. When the environment
does not provide clues or gradient toward those areas, trying to discover those areas relies
on chance. To address this problem, we introduce a method to create behavioral diversity
in a new sensorimotor task by re-enacting actions that allowed to produce behavioral
diversity in a previous task, along with a measure that quantifies this diversity. We show
that our method can learn how to interact with an object by reusing experience from
another, that it adapts to instances of morphological changes and of dissimilarity between
tasks, and how scaffolding behaviors can emerge by simply switching the attention of the
robot to different parts of the environment. Finally, we show that the method can robustly
use simulated experiences and crude cognitive models to generate behavioral diversity
in real robots.

Keywords: exploration, transfer learning, sensorimotor, robot, behavioral diversity

1. MOTIVATION

The engagement of robots and animals with the world generates a complex sensorimotor flow, which
features a large motor space and multiple sensory modalities. While the body, as an active interface
to the environment, simplifies in important ways the raw experience of the world (Hoffmann and
Pfeifer, 2012), the learning and decision-making challenges the individual faces are still formidable.

In recent years, the child-as-a-scientist paradigm (Gopnik, 1997, 2012; Schulz and Bonawitz, 2007;
Gweon and Schulz, 2008; Cook et al., 2011) has emerged as a major paradigm of child cognitive
development. It considers the hypothesis that children can act as would rational thinkers, creating
experiments and testing hypotheses through their interaction with the world in a manner struc-
turally similar to scientific inquiry. Several works have indeed shown that preschoolers understand
causality, distinguish it from spurious associations, and construct interventions to do so (Gopnik
et al., 2001; Schulz et al., 2007).

Constructing and carrying out informative interventions, i.e., interactions that afford information
gain, decrease the number of interactions necessary to understand a phenomenon, therefore
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ensuring an economy of time and energy. Yet, it also requires
cognitive resources that may either be lacking (the individual
cannot grasp the situation with his current cognitive abilities) or
may represent too high an effort to justify the information gain
they afford.

Robots – the focus of this paper – face a similar situation. In
autonomous developmental contexts, robots do not have access to
descriptions of their environments crafted by experts. Rather, they
have to learn from experience.When social peers are not available,
this experience has to be acquired autonomously from their own
exploration of the environment. They have to act in unfamiliar
situations that – due to a fundamental scarcity of knowledge –
escape, at first, their abilities to fully grasp them, either through
representation, prediction, control, or planning.

Designing informative interventions in those situations then
faces a chicken-and-egg problem: knowing which interventions
are going to be informative requires information that is not
yet available, and that must be acquired through informative
interventions.

Of course, that does not mean that informative interventions
cannot be conducted, as any interaction can turn out to be infor-
mative a posteriori. But the fundamental problem of choosing
which interventions to conduct while being unable to predict
which ones are going to be informative remains.

A possible strategy, then, is to create behavioral diversity. Behav-
ioral diversity characterizes the number and variety of behaviors
an agent exhibits in its environment. Determining how different
two behaviors are largely depends on the observer and its motives.
For instance, a humanoid robot placed on a surface and executing
random motor activations will engage in complex and unique
patterns of movements and will end up convulsing on the floor
most of the time. Arguably, each pattern of movement can be
considered as a different behavior. But for a task such as standing
up, the elevation of the head during movement might be the
only relevant signal. In that perspective, all patterns of movement
resulting in convulsions on the floor represent the same behavior
while the robot sitting up or standing up represent different ones.

In this paper, and in the context of an autonomous robotic
perspective, we characterize behaviors through the environmental
feedback they elicit, as perceived by the robot itself, rather than
the actions they necessitate. Exhibiting behavioral diversity then
equates producing a diversity of effects in the environment. The
dimensions of those define what we will call here, with three
interchangeable terms: behavioral space, effect space, or sensory
space.

Producing behavioral diversity can be a good strategy in
unknown situations because it is not directed toward – and as such
not constrained to produce information about – a specific goal.
Instead, it creates a set of observations about diverse features of
the environment, offering the robot a set of options that can be
explored and exploited toward specific objectives afterward. The
usefulness of such strategies for robots has been recently explored
through models of curiosity-driven learning and intrinsically
motivated reinforcement learning (Oudeyer and Kaplan, 2007;
Baldassarre and Mirolli, 2013; Benureau and Oudeyer, 2015),
and in a related line of work, on novelty and diversity search in
evolutionary robotics (Mouret and Doncieux, 2009; Lehman and
Stanley, 2011).

In many practical contexts, the situation facing the robot is
not completely unknown, and rational deductions and inferences
can be made about what type of interactions are going to be
informative. Still, they may not narrow the number of candidate
interventions to a reasonable number. In that context, producing
behavioral diversity can be seen as an essential strategy to deal
with the limits of pure logical reasoning. It provides a heuris-
tic mechanism for discovering knowledge by the learner-as-a-
scientist (be it a human or a robot) when rational mechanisms
used to uncover the laws of the world cannot be applied.

In other words, such a heuristic picks up when rational deduc-
tions end: logical reasoning identifies a set of interactions worth
trying, and the behavioral diversity heuristic provides a sampling
method to choose what to try among this remaining set. For
instance, a child playing with a teddy bear and a rattle may under-
stand that to figure out what a rattle does, interactions with the
teddy bear are uninformative. This halves the space of candidate
interactions but provides no clue about which interactions are
interesting to try on the rattle. Trying to interact with the rattle
in different ways is then an effective strategy.

This selective exploration principle is elegantly formulated by
Cook et al. (2011) in the children’s case: “selective exploration
of confounded evidence is advantageous even if children explore
randomly (with no understanding of how to isolate variables):
the more different actions children perform, the better their
odds of generating informative data.” (p. 352). Gweon and
Schulz (2008) provide a study where children presented with
confounding evidence increase the variability of their exploration,
even if that represents a physical effort. Schulz and Bonawitz
(2007) and Bonawitz et al. (2012) report similar results: children
preferentially engage with a confounding toy, rather than to play
with a new one.

But producing behavioral diversity is not necessarily a trivial
task. While producing random motor behavior is algorithmically
straightforward – it boils down to picking a random motor
action among the ones available – it does not typically generate
a diversity of interactions and effects in the environment: motor
diversity does not translate into effect diversity. This is caused by
the typical heterogeneous distribution of the redundancy of the
sensorimotor space: to some effects correspond a large number
of motor commands, while some effects can only be produced by
a small, specific set of them. In an interaction task with an object,
for instance, few motor commands may actually produce contact
with the object. The rest of them produce the same effect on the
object: nothing. As such, a uniform, random sampling of a large
motor space will only produce effects in highly redundant parts
of the sensory space for any reasonable (i.e., at the timescale of
a lifetime) number of samples. Therefore, an efficient sampling
strategy must be devised.

However, as producing behavioral diversity is most useful in
tasks where little or no knowledge of the underlying environ-
mental mechanisms exists, and this knowledge is precisely what
would be needed to choose which interactions to carry in order to
produce effects as diverse as possible, the production of behav-
ioral diversity suffers a similar chicken-and-egg problem as the
one raised by the design of informative interventions: it needs
knowledge to create interactions that will generate data that will
serve to derive the knowledge it needs.
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One possibility to break the circularity is to procure knowledge
from somewhere else. In this paper, we introduce a method to
create behavioral diversity in an unknown task by leveraging past
experience from another task. We consider a scenario where one
task has been explored, and a new, unknown task is presented
to the robot. The relationship between the two tasks is not given
to the robot, and can be arbitrary. The only constraint is that at
least some motor commands executed in the previous task can be
reexecuted in the new one. Besides this, the method transparently
adapts to arbitrary changes in sensory modalities and learning
algorithms between tasks.

In the next section, we first formalize the problem (Section 2)
and introduce a measure to quantify behavioral diversity in con-
tinuous sensorimotor spaces. We then introduce our method
(Section 3). In Section 4, we present a simple application of the
method. Then, in Section 5, we detail a more complex situation
where a robotic arm interacts with different objects.

2. PROBLEM

An environment is here formally defined as amapping f fromM to
S, which can be stochastic.M is the motor space, and it represents
a parameterization of the movements the robot can execute. It is a
bounded hyperrectangle ofRdM ; dM is the dimension of the motor
space. S is the effect space, of dimension dS; it is a bounded subset
of RdS . Effects and goals (i.e., desired effects) are elements of S. In
this paper, bothM and S are multidimensional continuous spaces,
with dS ≪ dM.

Here, the elements of the motor space do not directly encode
the raw commands that the motors of the robot receive. Instead,
we usemotor primitives that transform vectors of parameters from
the motor space M into streams of real-time, hardware-specific
motor commands. Amotor primitive can be a simple goal position
for a given motor, or be a Dynamic Movement Primitive (DMP)
(Ijspeert et al., 2013) that translates parameters into smoothmotor
trajectories; both will be used in this paper. Likewise, the sensory
space does not contain the raw readings of the sensors but rather
behavioral descriptors: parameterized behavioral representations
of raw sensors data after it has been processed by sensory prim-
itives. Concretely, a sensory primitive can encode the position
of an end-effector in Cartesian space or the displacement of an
object after a robot interacted with it. This allows to flexibly
encode sensory feedback into high-level representations. Such
sensory primitives do not only abstract low-level feedback data:
they represent the robot’s attention, by encoding specific features
of the environment and not others, and we use them deliberately
this way in this paper.

Environments are black boxes, and only the parameterizations
M and S are known to the robot. Let us remark that, while valuable
information can be encoded in the boundaries of S, nothing
prevents S to be arbitrarily large compared to the reachable space
f (M), i.e., the set of effects that can actually be produced. In
order to avoid unnecessary complexity in this paper, we will
only consider experiments where S is not significantly larger
than the axis-aligned bounding box of f (M). A method to deal
with arbitrarily large S can be found in Benureau and Oudeyer
(2015).

An exploration task, subsequently referred simply as a task, is
defined as a pair ( f, n) with f: M 7→ S the environment and n the
maximum number of samples of f allowed, i.e., the number of
actions the robot can execute in the environment.

We will consider scenarios made of two tasks, a task
A= ( fA,nA), the source task, and a taskB= ( fB,nB), the target task.
We assume that motor commands from MA can be reexecuted
in the target task. In this paper, we will consider MA =MB, but
other scenarios are possible, such as the existence of a knownmap-
ping between the two motor spaces (for instance, reusing motor
commands used on the left arm of a humanoid on its right one).
The reexecutability constraint is a strong one, but as robots body
typically changemuch less quickly than their environments, many
tasks share the same motor space. This may be less true for high-
level motor, or action, spaces, but if no known mapping exists for
the action spaces of two different tasks, the method does not just
faces a problem of applicability: it is also probably of little use.

The source task is considered to have been interacted with
using an arbitrary method, generating a sequence of observations
{xi,yi}0≤i<nA in (MA × SA)nA , composed of the executed motor
commands and observed effects. On the other hand, the robot has
not yet interacted with the target task B.

The problem we are tackling in this paper is the question of
transfer: how can the previous interaction with task A can be
exploited to improve the exploration of task B?

We compare the case where information from A is exploited
versus the situation where it is not, using as a baseline mecha-
nism a random goal babbling architecture (SAGG-Random). Goal
babbling has previously been shown to be an efficient strategy for
the acquisition of inverse models (Baranes and Oudeyer, 2013;
Moulin-Frier andOudeyer, 2013) and in the production of behav-
ioral diversity. We compare both cases using a behavioral diver-
sity measure: threshold coverage (Benureau and Oudeyer, 2015).
Improving the exploration of task B therefore means increasing
the threshold coverage.

2.1. Threshold Coverage
Threshold coverage or τ -coverage is a behavioral diversity mea-
sure: it considers only the consequences of the motor commands,
i.e., in our autonomous context, the behavioral effects as encoded
in S, not the motor activations themselves. Motor motions can
of course be part of behavior and contribute to diversity, when
adequate sensors and sensory primitives are used to encode them
in S. This is, for instance, the case in the behavioral descriptors
used by the MAP-Elites algorithms (Cully et al., 2015).

Threshold coverage considers the volume of the union of the
set of hyperballs of radius τ – the threshold – that have for centers
the observed effects (Figure 1).

Formally, considering a set of points C belonging to Rn, and
τ ∈R+, we define the τ -coverage of C as:

coverageτ (C) = volume

 ∪
yi∈C

B(yi, τ)


with B(yi, τ ) the hyperball of center yi and radius τ .

The threshold coverage measure allows to quantify how much
of the effect space is not more distant than τ of an observed effect.
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balls of radius union of the 

neighbourhoods

volume of the union = diversity

observed effects

high overlap

low diversity

low overlap

high diversity
no overlap 

max diversity

FIGURE 1 | In this 2D example, the threshold diversity is represented
by the green area (top). The threshold diversity measure quantifies how
spread are the observed effects, up to a threshold τ . The measure is not
sensitive to differences between distributions where all centers are pairwise
more distant than τ (bottom).

As a consequence, the threshold coverage measure is insensitive
to differences between sets where the observed effects are pairwise
more distant than τ (Figure 1).

Computing the threshold coverage requires to compute the
volume of an arbitrary set of balls of the same radius. Exact
methods exist usingVoronoi PowerDiagrams (Cazals et al., 2011),
that partition the space into asmany areas as there are balls; in each
area, the center of only one ball is present, and the contribution
of this ball to the overall volume can be computed independently
of the others. There are also approximate methods based on
Monte-Carlo sampling (Till and Ullmann, 2009).

We use the threshold coverage to characterize and contrast the
robots’ behavior under different algorithms. Let us remark that the
robot, as an autonomous agent, never has access to the threshold
coverage measure; it is purely an experimenter’s tool.

3. METHOD

The idea behind our algorithm is to select a subset of motor
commands executed during the exploration of the source task, and
reexecute each of them on the target task. This subset is assembled
with motor commands that generated diverse effects, i.e., that
generated behavioral diversity, in the source task.

The assumption is that the production of behavioral diversity
is due to the motor commands generating forces that engage the
environment in different ways. Reexecuted in a different task,
these motor commands are a priori more likely to generate a
diverse set of effects – and thus information – than a set of motor
commands that produced the same effect in the source task.

We can interpret the method in the context of the learner-
as-a-scientist paradigm; it can be viewed as creating a repertoire
of experiments to conduct in unknown situations to discover
how the environment behaves and what interactions it responds
to. This type of behavior is seen in nature: “A young corvide
bird, confronted with an object it has never seen, runs through
practically all of its behavioral patterns, except social and sexual
ones” (Lorenz, 1996).

Likewise, a robot interacting with a ball needs to use different
movements to make it roll left, right or forward. Having learned

motor 

space

body 

redundancy

environment 

redundancy

effect

space

forces applied  

by the body

FIGURE 2 | In this schematic representation, four clusters of effects
are produced through different types of redundancies. From top to
bottom, the first two effects are similar because their motor commands are
similar. The second cluster exhibits body redundancy: two different motor
commands end up generating the same forces on the environment. The third
exhibits environmental redundancy: different forces produce the same effect.
The fourth exhibits all of the three previous cases. Assuming the environment
is neither stochastic nor chaotic, when selecting a diverse set of effects in the
sensory space (for instance, the set highlighted in orange), the set of motor
commands that generated them tends to display low body redundancy.

those movements, if the robot is provided with a cube, the pre-
diction or control model of the ball is difficult to exploit directly:
the two objects have significantly different dynamics. However,
by reusing the behavioral patterns – the movements – on the
cube that pushed the ball in different directions, the robot can
immediately produce a diversity of effects on the cube, and start
learning which ones still apply and are most effective.

Selecting motor commands through diversity can be under-
stood as trying to filter body redundancy. In a given task, the
redundancy of the body and the environment will make different
motor commands produce the same effect, as Figure 2 illustrates.
If the body redundancy is at play, two different motor commands
will end up applying similar forces on the environment: this is the
case of a redundantmulti-joint robotic arm, wheremultiplemotor
motions exist that generate the same end-effector trajectory. If
the environmental redundancy is at play, different forces will
produce the same salient effect: this is the case when pushing or
pulling on a closed door. A set of motor commands that produce
a diversity of effects tends to display neither body nor environ-
mental redundancy. When the environment changes, the absence
of body redundancy is conserved among this set. And if the new
environment is similar to the old one, some of the environmental
redundancy may be avoided as well.

Of course, a stochastic or chaotic environment can counterbal-
ance its redundancy: the samemotor command executedmultiple
times can generate diverse effects. In that case, however, reexe-
cuting this motor command multiple times in the new task is a
justified strategy to generate diversity.

In the following, we detail first how the source task is explored,
and the learning algorithms we use. Then, we explain how the
exploration is modified for the target task.

3.1. Exploration of the Source Task
In this paper, the source task will be explored using a goal-
directed exploration algorithm. Goal-directed exploration
(Oudeyer and Kaplan, 2007) implementations have been

Frontiers in Robotics and AI | www.frontiersin.org March 2016 | Volume 3 | Article 84

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

proposed in Baranes and Oudeyer (2010), Jamone et al. (2011),
and Rolf et al. (2011), and as part of the SAGG-RIAC architecture
(Baranes and Oudeyer, 2013) and have been shown to be effective
in exploring sensorimotor spaces with large motor spaces. These
methods for goal babbling as well as related methods such as
MAP-Elite (Cully et al., 2015) have also been shown to efficiently
generate forms of behavioral diversity.

In what follows, we introduce and use the E algorithm,
a variant of the SAGG-Random goal babbling algorithmic archi-
tecture (Baranes and Oudeyer, 2013; Moulin-Frier and Oudeyer,
2013). We adapt SAGG-Random by adding a bootstrapping phase
of random motor babbling lasting Kboot steps before the random
goal babbling phase (Algorithm 1); the bootstrapping phase is
necessary because the inverse models we use need some existing
data to work. During the bootstrapping phase, random motor
commands are executed, while during the random goal babbling
phase, random goals are chosen uniformly in S, and an inverse
model (introduced in Section 3.2) is used to transform goals
into motor commands. In the experiments, we set Kboot to a
low value in order to reduce the duration of the random motor
babbling phase, without significantly compromising performance.
In a more general context, Kboot could be computed dynamically,
for instance, by using the method introduced in Benureau and
Oudeyer (2015).

We use here two implementations of this architecture, corre-
sponding to two different learning algorithms, IP
and ILBFGSB-LWLR, to implement the I step, as
described in the next section.

3.2. Inverse Model
An inverse model is used whenever goal babbling is chosen as an
exploration strategy in the E algorithm. Let us remark that
our objective here is not to acquire a forward or inverse model of
the environment. The learning algorithms are functional entities
of the exploration process, and the models they produce are not
evaluated. In particular, theymaymake assumptions that preclude
them from creating accurate models of the environment – we will
discuss such a case in Section 4. In this article, we will be using
two different inverse models: a simple, perturbation-based one
and another based on an optimized regression method.

3.2.1. Perturbation-Based Inverse Model
The perturbation-based model finds the best motor command to
reach the goal among those already executed in the past and cre-
ates a slightly perturbed variation of it to be executed, in a fashion
similar to the mutation operators of evolutionary algorithms.

Given a motor command x = {x0, x1,…, xdM−1} in M, a
perturbation of x is defined by:

PERTURBd(x) = {RANDOM(max(ai, xi − d(bi − ai)),
min(xi + d(bi − ai), bi))}0≤i<dM

with M =
∏

0≤i<dM [ai, bi] as a hyperrectangle of RdM and with
the function R(a,b) drawing a random value in the interval
[a,b] according to a uniform distribution. d is the perturbation
parameter, and belongs to [0, 1]; it is the only parameter of the
inverse model, that we can now express in Algorithm 2.

ALGORITHM 1 | EXPOLORE ( (f, n), Kboot).

Input: (f, n) ◃ Exploration task.
Input: Kboot ◃ Duration of random motor babbling.
Output: H= {xj, yj}0≤j<n ∈ (S×M)n ◃ Exploration history.

H←∅
for t: 0→ n – 1 do
if t<Kboot then ◃ Run motor babbling for the first Kboot

steps.xt←MOTORBABBLING(M)
else ◃ Then switch to goal babbling.

xt←GOALBABBLING(S, H)
yt← f (xt) ◃ Execute the motor command.
add (xt, yt) to H ◃ Update the history.

procedure MOTORBABBLING(M) ◃ Motor babbling does not depend on
history.choose xt randomly in M

return xt

procedure GOALBABBLING(S, H) ◃ Corresponds to the SAGG-Random
architecture.choose a goal gt randomly in S

xt← INVERSE(gt, H) ◃ Use the inverse model on the goal to
produce a motor command.return xt

ALGORITHM 2 | INVERSEPERTURBd(gt, H).

Input: gt ∈S ◃ A goal.
Input: H= {(xj,yj)}0≤j<t−1 ∈ (M×S)t−1 ◃ Current history: past t−1

observations.
Input: d ∈ [0, 1] ◃ Perturbation ratio.
Output: xt ∈ M ◃ Candidate motor command.

xnn, ynn ← argminxj,yj∈H (||yj−g||) ◃ ynn is the nearest neighbor of g.

xt ← Perturbd(xnn) ◃ Perturbing the motor command of the
nearest effect.

ALGORITHM 3 | INVERSELBFGSB-LWLR(gt, H).

Input: gt ∈ S ◃ A goal.
Input: H= {(xj,yj)}0≤ j< t−1 ∈ (M×S)t−1 ◃ Current history: past

t–1 observations.
Output: xt ∈ M ◃ Candidate motor

command.

xnn, ynn ← argminxj,yj∈H (||gt−yj ||) ◃ ynn is the nearest
neighbor of gt.Initialize L-BFGS-B optimization with xnn

xt ← MinimizeLBFGSBx∈M(||gt – PredictLWLR(x, H)||)

This perturbation-based inverse algorithm is simple and effec-
tive. Its complexity is linear in both dM (perturbation) and nds
(nearest neighbor search). Its main assumption is that a small
perturbation of the motor space produces a comparatively small
change in the sensory feedback. The model has difficulties escap-
ing local minima. In practice, in the experimental contexts con-
sidered in this paper, the performance and robustness of this
model is competitive withmore complex approaches. This inverse
model is not completely unreasonable in biological organisms
(Loeb, 2012), and that related algorithms implemented as part of
the SAGG-Random architecture such as in Baranes and Oudeyer
(2013) and Moulin-Frier et al. (2014), as well as other variations
such as the MAP-Elite algorithm (Cully et al., 2015), have yielded
good results in diverse robotics contexts.

3.2.2. Optimized Regression Inverse Model
We also use an optimized regression inverse model in some
experiments, based on an optimization routine, L-BFGS-B
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(Byrd et al., 1995; Zhu et al., 1997), and a predictor, Locally
Weighted Linear Regression (LWLR) (Cleveland and Devlin,
1988; Atkeson et al., 1997a,b).

3.2.2.1. Forward Model
To approximate the function f from a set of observations, we
employ Locally Weighted Linear Regression (LWLR) (Cleve-
land and Devlin, 1988; Atkeson et al., 1997a,b), an incremental
machine learning algorithm. Although LWLR is more sophisti-
cated than the perturbation-based inverse model, it is still a sim-
ple method compared to the state-of-the-art. Here, the absolute
learning performance is of little concern as we are interested in
comparing different exploration strategies. Still, LWLR is reason-
ably robust (Munzer et al., 2014) for the learning tasks we are
considering. Compared to the perturbation-based inverse model,
LWLR is able to extrapolate, i.e., the distance between the goal
and the existing observations is taken into account, but it also
needs several closely clustered observations to do so efficiently;
the perturbation-based inverse model only ever needs one.

Given a set of observationsH= {(xj,yj)}0≤j<t–1 where for each
j, f (xj)= yj, and given a query vector xq, for which we wish to
predict the effect, we compute the Euclidean distance to xq from
each point xj, and derive the following Gaussian weights wj:

wj = e
−∥xj−xq∥2

2σ2

We consider the matrices X with Xi,j = (xi)j, Y with Yi,j = (yi)j,
and W= diag(w0,w1,. . .wt–2), and compute:

β = ((WX)TWX)+((WX)TWY)

where (WX)TWX is a symmetric matrix, and ((WX)TWX)+ is its
Moore–Penrose inverse (Penrose and Todd, 1955). Then,

yq = xqβ

yq is the LWLR estimate of xq, given the observed data H. We
call PLWLR(xq, H) the function that computes yq for any
xq ∈M given H.

In our implementation, σ, which controls the locality of the
regression, is dynamically computed.We computeσ as the average
distance of the k= 2dM + 1 closest points of the query vector xq.
All other points of H besides the k closest neighbors are given a
weight of zero.

3.2.2.2. Inverse Model
Given a goal gt ∈ S, we want to produce a motor command xt ∈M
so that || f (xt) – gt|| is small.

With M being a hyperrectangle of RdM , we use L-BFGS-
B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno Bound
constrained (Byrd et al., 1995; Zhu et al., 1997), version 3.0
(Morales and Nocedal, 2011)), a quasi-Newton method for
bound-constrained optimization, to minimize the error. L-BFGS-
B use an approximation of the Hessian matrix to direct the opti-
mization (because the Hessian cannot be directly computed, it is
approximated using finite differences). We approximate ||f (x) –
g|| with ||PLWLR(x, H) – g|| and use it with L-BFGS-B to
further approximate argminx∈M(||f (x) – g||).

The optimization process is initialized with the motor com-
mand corresponding to the closest neighbor of g in the set of
observations (see Algorithm 3).

The I method is replaced by either IP
or ILBFGSB-LWLR in the source task exploration algo-
rithm, E, and the one of the target task, R, that we
introduce now.

3.3. Exploration of the Target Task
The exploration of the target task is organized around two algo-
rithms. The first, T, is applied at the end of the interaction
with the source task and produce a set of motor commands bins
that are used by the second, R, to affect the exploration of the
target task.

The T selects motor commands that produced a diver-
sity of effects. It works by partitioning the sensory space of the
source task, SA. We use a simple grid here. To each cell of the grid
corresponds a bin of motor commands that contains all the motor
commands whose effects belong to the cell. This way, similar
effects in the source task have their motor command gathered in
the same bin (see Algorithm 4).

The R method is a variation of the E algorithm,
where a part of the random motor babbling steps are replaced by
reuse steps. During a reuse step, a random bin among the ones
generated by the T algorithm is selected, and a random
motor command is drawn from the bin without replacement
and executed in the environment. Such a selection generates a
sequence ofmotor commands that correspond to effects represen-
tative, on average, of the diversity of effects produced in the source
task. Goal babbling behavior is unaffected.

To produce the R method, the call to MB
in the E algorithm is replaced by a probabilistic call to
RB and MB, according to a probabil-
ity preuse (see Algorithm 5).

This procedure has a low computational cost, and only transfers
structured sets of motor commands between tasks. No sensory
data are shared across tasks, which mean that no forward or
inverse model is shared. It makes the method compatible with
arbitrary changes in sensory modalities, and insensitive to the
quality forward or inverse models of the source task, should
they exist. Furthermore, by separating the T and R
method, we can precompute the transferred data before the
second task is known, and then use it even if the sensory data of
the first task has been forgotten.

Here, we have proposed a T method that partitions
the sensory space of the source task. This partitioning encodes

ALGORITHM 4 | TRANSFER(HA).

Input: HA = {(xj ,yj )}0≤j<nA ◃ Exploration history of the source task.
Input: A partitioning method. ◃ We use grid partitioning in this paper.
Output: B ◃ Set of motor commands bins.

Partition SA according to the partitioning method, and to each region,
assign a bin.

The set of all bins is B
for (xj, yj) ∈ HA do

add xj to binB (yj) ◃ binB (yj) is the bin of the region of SA
where yj belongs
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ALGORITHM 5 | REUSE(( fB, nB), B, Kboot, preuse).

Input: ( fB, nB ) ◃ Target task.
Input: B ◃ Set of bins of motor

commands.
Input: Kboot ◃ Duration of bootstrapping.
Input: preuse ◃ Ratio of transfer motor

babbling.
Output: HB = {(xj,yj)}0≤j<nB ∈ (SB ×MB)

nB ◃ Observation history.

HB ← ∅
for t: 0→ nB − 1 do

if t≤Kboot then
if RANDOM(0, 1)≤preuse then ◃ Probabilistic call to reuse.

xt ← REUSEBABBLING(MB, B)
else

xt ← MOTORBABBLING(MB)
else
xt ← GOALBABBLING(SB, HB)

yt ← fB(xt ) ◃ Execute the command.
add (xt, yt) to HB ◃ Update the history.

Procedure REUSEBABBLING(MB, B)
if at least one bin of B is not empty then

choose a non-empty bin bR of B randomly.
draw xt from bR without replacement
return xt

else ◃ Revert to motor babbling
if no reusable command is
available.

return MOTORBABBLING(MB)

diversity, andmay be non-trivial in complex sensory spaces. There
is flexibility in how the T method could be implemented
however. It could, through an arbitrary method – optimization
of a diversity measure for instance – build a small set of motor
commands whose effects have high diversity, and return a single
bin containing them to the Rmethod, discarding other obser-
vations from the source task. The R method would select
randomly from this single bin as a result.

In the following sections, we conduct experiments to show
that R is effective in situations that involve changes in the
morphology of the robot (arms with different link lengths in
Section 4), that involve switching an object for another between
the source and the target task (ball/cube experiment in Section
5.2), exploiting pure random motor babbling (Section 5.2.2),
dealing with dissimilar situations (Section 5.2.3), and scaffolding
ones (pool experiment in Section 5.3). We also investigate how
R can be used to exploit simulation results on real robots
(Section 5.5).

4. EXPERIMENT ON PLANAR ARMS

To illustrate the R method, let us consider a pair of planar
robotic arms, each with 20 joints. The first arm has same-length
links totaling one meter, and the environment returns the Carte-
sian position of the end-effector. The second arm has links such
that, going from the base to the end-effector, each link is 0.9
times smaller than the previous one, while the total length of the
arm remains one meter; this arm also returns the position of the
end-effector, but using polar coordinates (Figure 3).1

1The source code and data for producing all graphs is published (Benureau and
Oudeyer, 2016) and is made available at https://dx.doi.org/10.6084/m9.figshare.
2816284

FIGURE 3 | When executing the same command on both arms, the
position of the end-effector is significantly different most of the time.
Here depicted are 50 pairs of executions of the same motor command on the
two 20-joint arms, five of which that are highlighted.

The two arms have a different morphology – a situation
akin to morphological development. They share, however, the
same number of joints with the same available ranges (±150°):
they have the same motor space and motor parameterization.
However, because the lengths of the links are different, most
motor commands will result in a different position for the
end-effector, as shown in Figure 3. And because the positions
are expressed in two different coordinate systems, the inverse
model of one arm is difficult to exploit on the other arm,
without having, or learning, a mapping between the coordinate
systems.

The exploration on the first arm is conducted over 5000
steps, using the E algorithm with Kboot = 50, with the
perturbation-based inverse model with d= 0.05, i.e., perturbing
each joint by at most± 15°.

The exploration of the target arm is the same as the source
arm, except that all the 50 motor babbling steps of the source
exploration strategy are replaced by reuse steps, as per the R
algorithm with preuse = 1. Figure 4A illustrates how motor com-
mands to be reused are selected, as per the T algorithm.
Figures 4B,C show the difference between the bootstrapping
phase of the R and E algorithm. The impact of R
on the exploration is important at the beginning and remains
beneficial throughout, even after 5000 steps.

Figure 5 displays the τ -coverage (with τ = 0.05) of both
the R and the E algorithm on the target arm over
100 repetitions of the experiment. In both cases, the cover-
age was computed in the Euclidean space. The R strat-
egy provides a performance increase that last even after 5000
steps: in 75% of the cases, the R strategy performs strictly
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C TARGET TASK, EXPLORE ALGORITHM

A SOURCE TASK

B TARGET TASK, REUSE ALGORITHM

selected effects selected motor commands

reused motor commands

random motor commands no reuse exploration (400 steps) no reuse exploration (5000 steps)

reuse exploration (400 steps) reuse exploration (5000 steps)

FIGURE 4 | Illustration of the REUSE algorithm. After the end of the exploration of the source arm (A), a 20×20 grid partitions the effect space, and as many
times as necessary (50 times here), a random cell is chosen, as well as a random effect inside it (dots highlighted in red). The motor commands that produced the
chosen effects are then reexecuted on the target arm (B). This replaces the initial 50 motor babbling steps of the EXPLORE algorithm (C). In both cases, the effects
produced by random motor babbling or a reused motor command have been highlighted in red. While random motor babbling produces convoluted arm postures
whose effects are clustered around the center, the reused motor commands produce effects spread out over the reachable space, and feature straighter postures.
This difference in bootstrapping has a huge impact on the coverage at t= 400, and a lesser, but still present one after 5000 steps.

better than the best-case scenario of the E strategy. The
usage of R accelerates the exploration of the reachable
space.

However, an interesting phenomenon is present. Theworst case
of the R strategy, as shown by the dotted lines, performs
worse than the worst case of the E strategy.
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coverage area (in m2)

timesteps

with reuse

without reuse

maximum coverage

FIGURE 5 | The exploration with Reuse on the second arm covers
significantly more of the reachable space early on than the one
without. The graph shows the τ -coverage (with τ = 0.05) of the second arm
explored with the REUSE and EXPLORE algorithm respectively, over 100
repetitions of each experiment. The median case is displayed, surrounded by
a margin going from the 25th to the 75th percentiles. In dashed lines, the
worst and the best coverages are also pictured.

To understand why, it is interesting to look at goal babbling
as an evolutionary algorithm. From an evolutionary robotics per-
spective, the motor commands are the genetic encoding, the arm
posture the phenotype and the effect – the position of the end
effector – is the behavior of the arm. At each timestep of goal bab-
bling, a random goal is chosen. The distance to this goal defines
a fitness function, and the highest-performing past observation,
whose effect is the nearest neighbor of the goal, is chosen to
reproduce through mutation: this is how our perturbation-based
inverse model works.

Therefore, after the bootstrapping phase, arm postures are cho-
sen for reproduction in proportion of how close their effects are to
the chosen goals. When using random motor babbling, most pos-
tures produce effects near the center. Because goals are randomly
chosen in the [−1,1]× [−1,1] square, most goals are farther from
the center than most observed effects. It means that postures
producing effects on the edge of the initial cluster are chosen
and mutated with disproportionate frequency. Through repeated
selection and mutations those postures and their descendants,
straighter and straighter postures are discovered.

Sometimes, however, those initial arm postures contain loops.
Those loops represent local minima that are difficult to escape.
The mutation and selection process – our perturbation-based
inverse model – tends to straighten arm postures to reach distant
target. In the process, loops are tightened, not removed. Therefore,
the maximum span of the arm is reduced, and the exploration
covers only a fraction of the reachable space, as shown in the
graphs of Figure 6.

On the source arm, because the links are all of the same length,
loops have the same cost in span regardless of where they appear.
But on the target arm, they are most costly near the base of the
arm, where links are longer. Therefore, arm postures featuring
loops near the base of the arm tend to be shorter on average than
postures with loops near the tip, even in a randommotor babbling
sampling. It means that, when using the E algorithm,
most of the time, those postures do not get selected for far goals
after the bootstrapping phase, as better solutions exist. Therefore,
the postures that explore the edge of the reachable space have a

tendency to have either loops near the tip of the arm or no loops
at all.

The only way for postures with costly loops near the base of
the arm to be selected on the target arm is for them to have the
rest of the arm rather straight, and in a fashion disproportionate
with the other arm postures they compete with. This is exactly
the scenario that happens in the worst case of R: all the
reused arm postures where the tip is far from the center have
loops near the base of the arm, as Figure 6 illustrates. This is not
a problem for the source arm, but for the target arm it limits the
achievable span much more than if the loops were near the tip of
the arm.

This explains the difference in coverage between the worst case
of the R and E algorithm on the target arm, and
serves to illustrate a danger of the R algorithm: providing
good solutions trapped in local minima early in exploration can
prevent the discovery of better solutions, more adapted to the
target task. Let us remark here that all the 50 motor babbling
steps of the E algorithmwere replaced by reuse steps in the
R algorithm. But allowing a portion of the 50 steps to remain
random motor babbling, for instance with preuse = 0.5, would not
solve the problem (we tested), as the arm postures with the best
span in the bootstrapping phase would remain the reused ones,
and get selected and mutated more than the others.

Of course, the occurrence of such a problem is highly contin-
gent on the specifics of the two tasks, on how goals are chosen
and what inverse model is used. But the risk, when transferring
knowledge or skill from one task to another, to negatively impact
the performance in the target task is always a possibility, and is
difficult to protect from inside the framework of the problem we
are considering.

Still, this does not mean that R should be avoided. While
it has the potential to induce performance-hindering local min-
ima, it also has the potential to propose good solutions early in
exploration. During the first 150 steps, the worst case scenario of
the R algorithm is actually better than the best-case scenario
of the E one. In a robotic and operational context, having
good-enough solutions quickly might matter more than finding
perfect ones eventually. Robots do not live at the asymptote. If
a robot needs to learn how to whisk for a recipe, it may matter
more than the eggs and milk are mixed under 15 minutes than the
fact that the quickly discovered whisking motion consumes more
energy, is less efficient andmakesmore noise than necessary. Even
in a learning context, having good early performance can help
decide quickly if the skill is possible to learn, worth learning, and
can help form an estimation ofwhat is achievable in the target task,
which may in turn quickly bootstrap planning capabilities.

Before moving on to a more complex experimental setup, it
is interesting to analyze why the R method is effective. As
pointed out before, the two arms have different inverse mod-
els, and the relationship between them is non-trivial. By reusing
motor commands that produce a diversity of effects, we make
the assumption that the diversity mapping is simpler between
the two tasks: a set of motor commands generating a certain
amount of diversity on the source arm will generate a similar
amount on the target arm. This is something we can verify
experimentally.
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D WORST CASE, EXPLORE ALGORITHM:
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FIGURE 6 | Using REUSE can be worse than not using it. This graphs depicts the worst case – coverage-wise – of the REUSE and EXPLORE algorithms among the
100 cases used to compute Figure 5, for t= 5000. In (A,C,D), the arm postures with the longest span in the cardinal and intercardinal directions are displayed. In
the worst case of REUSE, the source exploration features postures that have loops near the base of the arm (A). We can even distinguish between two species of
postures. Ones that have a loop starting on the first joint (L1), and ones on the second joint (L2). Those postures are selected by the REUSE algorithm (B), and
reexecuted in the target task (C), resulting in posture with loops that severely limits the span of the arm, as they are composed of long segments. The species
distribution L1/L2 is remarkably similar between the source and the target task. When EXPLORE is run directly on the target arm, those loops are eliminated by the
competition with posture without loops or with loops near the tip of the arm, of far less consequence.

In Figure 7, the coverage of sets of random motor commands
of diverse sizes is highly correlated between the two arms. This
correlation in the production of diversity is therefore an assump-
tion it seems possible to rely on and exploit, even, in some cases,
when the sensory modalities or the morphology of the robots are
different between tasks.

5. OBJECT INTERACTION TASKS

5.1. Experimental Setup
We consider an experiment where a robotic arm interacts with an
object and observes its displacement at the end of the interaction.
In a developmental context, an interaction task is relevant, as it
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Pearson correlation = 0.993

coverage (m2)

increasing-length links arm

coverage (m2)

same-length links arm

FIGURE 7 | The diversity production of the same-length-links arm and
the increasing-length-links arm is highly correlated. The graph displays
the coverage of 1000 different sets of random motor commands of size 1,
2, . . ., 1000, respectively, for the 20-joint source and target arm, with
τ =0.05.

pertains to the early exploration of the world, where the function
of most objects is still unknown.

We used both a simulated and a hardware setup, but com-
paratively few experiments were conducted on the hardware. For
this reason, in this section, we mainly focus on describing the
simulated setup, but discuss aspects related to the morphology of
the real robot as well. The hardware setup is thoroughly described
in Section 5.4.

The robot is a serial chain of six servomotors. The three proxi-
malmotors areDynamixel RX-64 and the three distal ones areRX-
28. Those servomotors are capable of delivering respectively 6.0
and 2.5 N ·m of stall torque, with an angular resolution of 0.29°,
measured with a mechanical potentiometer, whose precision is
variable (across the angle range and between different motors).
During the experiments, the real servomotors were operated in
position control mode using the embedded PIDs, with a control
loop for the position running at 100Hz. In simulation, the physical
characteristics of the motors are reproduced as much as possible,
and their control in position is done in lockstep with the physics
engine simulation steps, at 50Hz.

5.1.1. Dynamic Movement Primitives
The movements of the robot are generated using dynamic move-
ment primitives (DMP). DMPs are parametrized dynamical sys-
tems introduced by Ijspeert et al. (2002). They are computed
from sets of differential equations that produce smooth move-
ments robust to perturbations. We chose DMPs, and the specific

parameterization we explain below, because it allowed to express
many different arm trajectories with a compact description (i.e.,
few motor dimensions). We use the implementation of Stulp
(2014), based on Ijspeert et al. (2013) with the sigmoid variation
of Kulvicius et al. (2012).

DMPs are based on damped spring dynamics, perturbed by a
forcing term [equation (1)]. The forcing term is a linear combina-
tion of basis functions [equation (4)]. Here, Gaussian activation
functions ψi(st) are used, with center ci and width σi, weighted by
wi [equation (3)]. vt is the phase of the forcing term, described by
an sigmoid decay term [equation (2)]. In the following equations,
T is the duration of the movement,∆t is the time resolution, α, β,
and γ are constants and g is the target state.

ẍt = α(β(g− xt)− ẋt) + ft (1)

v̇t = − γe
γ
∆t

(T−t)

(1 − e
γ
∆t

(T−t)
)
2 (2)

ψi(t) = e−(
t
T−ci)

2
/2σ2

i (3)

ft =
∑N

i=0 ψi(t)wi∑N
i=0 ψi(t)

vt (4)

In this experimental setup, the start- and end-points are made
identical (g= x0) and correspond to the motor being in the zero
position (Figure 8). We use two basis functions per motor, with c0
and c1 fixed, respectively, at 1/3T and 2/3T, with T= 2.5 s (∆t is
20ms and the simulation is stopped at 5 s). σ0 and σ1 are shared
by all motors.

We do not directly use the weights for parametrizing the motor
space. Instead, we use the LWLR function approximator provided
with the DMP library (Stulp, 2014), and define two linear func-
tions per motor, with slopes a0,a1 and offsets b0,b1, respectively.
The function approximator then computes the forcing term to
approximate as much as possible these functions at time c0 and
c1. Although directly manipulating the weights would be more
natural, this method provides a rich diversity of trajectories,
and, because DMPs were not a focus of our work, we did not
inquire further aboutmaking the systemperformbetter ormaking
the representation more compact. Each motor has independent
a0,a1,b0,b1 parameters, and the motors share σ0, σ1, while c0,c1
are fixed. With six motors, the motion trajectory of the robot is
therefore parametrized by a vector of dimension 26. After solving
and integrating the dynamical system, we obtain each motor
angular position as a function of time.

To avoid the real robot removing (rather brutally) their own
wires, the range of the first and fourth motor from the base are
restricted to ±110° and ±120° (Figure 8). All other motors are
physically restricted by their horns to ±99°. In simulation, the
robot has the same angle constraints.

The ranges of the DMP parameters are set, so that 95% of the
trajectories of a motor would fall in between the angles themotors
were able to produce (using an empirical evaluation), and the rest
are clipped to legal motor values.

Before executing the motion on the robot, we check for self-
collisions, and collisions with the armature of the experiment.
If present, the trajectory is truncated and stops just before the
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FIGURE 8 | The robot is provided an object to interact with. Pictured here, the position zero of the robot, which corresponds to the start and target position for
each movement.

collision to avoid damage on the real robot. The same collision
prevention methods are used in simulation, with the exception
that the robot can collide freely with the ground.

5.1.2. Environment and Objects
The simulation is conducted using the robot simulator V-REP
(Virtual Robot Experiment Platform), with the Open Dynamic
Engine (ODE) as a physics engine backend. The environment
features an object placed in a cubic arena. The robot arm can
interact with the object and the ground.

We consider two sizes for the arena: 600mm width and
2000mm width. The larger arena approximates an unbounded
environment, while interactions between the object and the walls
are frequent in the smaller one. Unless indicated otherwise, we
assume the 600-mm arena is used. Two different objects are used:
a ball and a cube, of diameter and width both equal to 45mm.

As a physics engine, ODE has many undesirable and chaotic
behaviors that could be overexploited to produce diversity. For
instance, movements where the robot pushes from the top of an
object toward the ground yield large and significantly different
object displacements over repeated executions.

As a preventive measure, we monitor the forces that are applied
between the end effector of the robot and the rest of the environ-
ment. If at any point a reactive force exceeds 100N, the simulation
is discarded, and the sensory feedback that would be produced by
an immobile robot is returned.

5.1.3. Sensory Primitive
At the end of the simulation, the trajectory of the object is pro-
cessed by sensory primitives that compute the sensory feedback.
We consider a simple sensory primitive that returns the displace-
ment of the object projected on the ground at the end of the
simulation. The displacement is returned as a vector of length 3:
the displacement in x, in y, and a discrete dimension of saliency,
which has value 0 if no collision happened, and 1 otherwise.

The saliency dimension helps separate observations that cre-
ate collisions from one that do not. This is not crucial for the

perturbation-based inverse model, but it makes the LWLR-based
inverse model more robust.

5.1.4. Behavior of the Setup
The simulation environment does not yield repeatable results.
Repeated executions of the same movement can generate signifi-
cantly different effects, as shown inFigure 9A. Indeed, the random
seed of the physics engine is not reset when the scene is reset.2
As ODE uses the current state of the random generator to decide
the order with which to resolve the constraints at each step, small
variations are introduced that are amplified by the chaotic nature
of the interaction with the objects.

In Figure 9B, the same motor command is executed on the
cube and ball task. The same motions do not generate necessarily
similar effects on the objects. Moreover, the interaction with the
object can significantly impact the trajectory of the end effector.

We ran experiments on the ball task (because the cube occupies
more volume, the ball gives a lower estimate of the collision
probability) to decide which number of motor babbling timesteps
to use during the experiments. By tallying the number of collisions
(not counting those that generate too much force) on a large
number of randommotor babbling steps (25,000), we estimate the
probability to interact with the object during amovement at 2.87%
for the cube and 1.81% for the ball. To ensure a high probability
that every motor babbling phase had at least one collision, we
set the bootstrapping phase to 200 steps (resulting in 99.17 and
97.40% probability of at least one collision for the cube and the
ball, respectively).

5.2. Cube and Ball Experiments
In this section, we conduct several experiments with the ball and
the cube task. All experiments are conducted in simulation. In all
experiments, the coverage measure is computed with the radius,

2This is an implementation detail of V-REP, and there was no way to change it the
version we used.

Frontiers in Robotics and AI | www.frontiersin.org March 2016 | Volume 3 | Article 812

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

FIGURE 9 | (A) The physics engine is chaotic. When the same motor command is reexecuted multiple times, the variations in object displacement are significant.
(B) When reusing a motor command moving with the ball on the cube, the produced displacements can be quite different. Let us remark that the interaction with the
object can largely impact the robot’s motion.

τ , set to 22.5mm, which is the radius of the ball and the half-width
of the cube.

5.2.1. Cubes and Balls
The first experiments look at how R is effective when reusing
the exploration of one object for another.

The source task is explored using the E algorithm with
the perturbation-based inverse model (d= 0.05). The random
motor babbling phase lasts 200 steps (Kboot = 200). The target
task is explored with the R algorithm, with the same inverse
model, and 200 steps of bootstrapping as well. During the boot-
strapping phase, each motor babbling step has a 50% probability
to be replaced by a reuse steps (preuse = 0.5). In both cases, the
exploration lasts 1000 steps in total.

Figure 10 depicts an execution of the R algorithm. The
cube is the source task, and the ball is the target task, compared
with the ball task using the E algorithm. The impact of
R is visible during the bootstrapping phase: reusing motor
commands from the cube exploration allows to move the ball in
many directions in the first 200 steps. In the E case, only
three interactions are made during that time.

In Figure 11, the τ -coverage the four combinations of the cube
and ball tasks is shown, for 25 repetitions of the experiment.
The R algorithm outperforms the E algorithm in all
four cases, but the improvements are most important early in
exploration. Moreover, when a task uses itself as a source, the
impact of the R algorithm is predictably better than when
coming from the other object. This is mostly pronounced on the
cube task: reusing the ball task is much less effective than when
the cube task reuses itself.

A likely explanation of this asymmetry lies in how differently
the two objects respond to interaction: the ball will discriminate
betweenmost interactions, moving in slightly different directions,
while many interactions with the cube will make it just tip over on
one side. Therefore, the cube needs more pronounced motions of

the robot to be displaced across the arena, whereas the ball only
has to explore small variations of the same movements, which are
less effective at generating diversity when reused on the cube.

5.2.2. Different Exploration Algorithms
So far, the source task and the target task have only differed in
their exploration algorithm by a few randommotor babbling steps
replaced by R steps. But the exploration of the source task in
not constrained in any suchway by the use of the R algorithm.

We consider the case where the source task is explored by a
pure random motor babbling strategy. At each of the 1000 steps
of the exploration, a random motor command is chosen in the
hyperrectangle M and executed. The parameters of the R
algorithm remain the same as before. Figure 12 shows the impact
of such a change on the R coverage.

The coverage is improved by reusing motor commands from
a random motor babbling source, but less so than when using
the E algorithm in the source task. The coverage hits a
ceiling at around 50 steps into the bootstrapping phase, because
the source task did not generate enough diversity to sustain the
R algorithm for 200 steps. This leads to the idea of shortening
the bootstrapping phase: many times more interactions with the
object have been discovered through R after 50 steps than the
E case will discover through random motor babbling in
200 steps. The goal babbling algorithm has enough observations
to be effective.

Figure 13 demonstrates that this is a viable strategy. In the case
of the ball task as source task, the coverage improvement in early
exploration is actually much greater when the ball task is explored
with random motor babbling than with the E algorithm
(Figure 11).

The effectiveness of the R algorithm at exploiting a ran-
dom motor babbling source also validates the selection process
of the motor commands through the diversity of the effects they
produced. Indeed, if R was merely selecting random motor
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FIGURE 10 | The coverage of the REUSE exploration benefits from a high diversity of effects during the bootstrapping phase. The graphs show the
distribution of effects during the 200-step bootstrapping phase (in red), and during the subsequent goal-babbling phase (in blue), and the corresponding τ -coverage
(in green, τ = 22.5mm), across three explorations. The source task (A) is the cube task. It is used by the REUSE algorithm for the target task, the ball task (B). To
compare the REUSE and the EXPLORE algorithm, the exploration of the ball task under the EXPLORE algorithm is presented in (C). Interestingly, we can see that during
the exploration of the source task, the robot only learned to push the cube away. This has a notable influence on the exploration of the target task: the reused motor
commands produce effects that also largely push the ball away. Even after the end of the goal babbling phase on the source task, the area surrounding the robot
features fewer effects than the rest of the effect space. This illustrates the same sort of issue as the one discussed in Section 4. Still, in this case, the EXPLORE

algorithm does worse: with only three interactions after 200 steps, the exploration is biased toward the lower-right corner.
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FIGURE 11 | Whether reusing the cube on the ball task or the ball on the cube task, REUSE brings an important coverage boost early in exploration.
The figure presents the median of the coverage for the REUSE and EXPLORE cases in the four possible combinations of the cube and ball tasks. The shaded area is
delimited by the 25th and 75th percentiles of 25 repetitions of each experiment, and the best and worst case is shown by dashed lines. The effect of REUSE is
increased when reusing from the same task, and the ball task is able to exploit the cube task better than the reverse.
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FIGURE 12 | The REUSE method is able to exploit observations generated by random motor babbling. The source task in these graphs was explored using a
pure random motor babbling strategy. Repeated 25 times.

commands from the source task, the R method would be
equivalent to the random motor babbling strategy when reusing a
random motor babbling source: randomly selecting samples from
a random source is equivalent to directly sampling the random
source. The improvement in coverage here can only be attributed,
then, to the selection of motor commands through diversity.

5.2.3. Robustness to Dissimilarity
In the previous experiments, the cube and the ball share the same
location relative to the robot. This is of course an important reason
for the effectiveness of the R algorithm. While there may be
ways for the robot to adapt to such change and still be able to take
advantage of R – for instance, by having high-level motor

primitives expressed in an object-centered reference frame – they
are not the focus of this article.

However, an important consideration is to examine if the R
algorithm can decrease the performance of the exploration. The
response is of course positive. One can construct a source and
a target task so that wasting half of the random motor babbling
phase on reusing motor commands guaranteed not to produce
any interesting effects could negatively impact the exploration
performance. Here, we show that the R algorithm is reason-
ably robust to a change in the position of the object in the ball
environment: some, but not much, of the performance is lost.

In the ball task, the ball is located just under the robot. The
displaced task is in every way identical to the ball task, except
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FIGURE 13 | REUSE allows to shorten the bootstrapping phase. The Kboot parameter is equal to 50 steps in for the REUSE algorithm here. The source task is
explored with random motor babbling. Repeated 25 times.
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FIGURE 14 | Reusing from a dissimilar ball task has no significant impact on performance. In the displaced task, the ball has been moved to the side of the
robot, rendering most motor commands useful for interacting with the ball on one task useless in the other. Repeated 100 times.

that the ball has been moved on the right side of the robot.
Most movements generating an interaction with a ball will not
generate onewith the other ball.Moreover, this ball is harder to hit
with randommovements, with an interaction probability of 0.99%
(versus 1.81% before). This is important, because it means that if
100 movements are wasted on reexecuting motor commands that
will not hit the ball, the probability of interactingwith the ball goes
from 86 to 63%.

This is reflected in the results, Figure 14. While the loss in
coverage at the median is small, the difference is apparent at the
25th percentile in both cases. And the when the displaced task is
the target task, the performance below the 25th percentile is much
worse for R than for E.

While they are not explored here, there are several ways to
prevent negative transfer. One is to decrease preuse, as it decreases
the how the R algorithmmodifies the original E algo-
rithm.When preuse is equal to zero, both algorithms are equivalent.
Another possibility is to dynamically adjust preuse based on the
relative performance of the two bootstrapping strategies: random
motor babbling or reused motor commands. We have proposed
an algorithmic framework to do precisely that in Benureau and
Oudeyer (2015). Ultimately, the decision to use R or not
sometimes cannot bemade inside the problemwe defined: it must
come from an external mechanism, which needs only to point out
the existence of a relationship between tasks, without specifying

it. We investigate an example where a caregiver could fill that role
in the next section.

5.3. Scaffolding Diversity:
The Pool Experiment
So far, the R algorithm has brought quantitative improve-
ments in coverage,most of the time in the early phase of the explo-
ration.We now introduce an experiment that show that R can
radically affect how exploration happens: namely, that can allow
to explore an environment that is difficult to explore directly.

We consider the pool task, where two balls are present in the
arena, with one out of reach. The robot must strike the first
ball and make it collide with the second ball to interact with
it (Figure 15A). The second, out-of-reach ball is the only one
that is perceived through the sensory primitive. Therefore, in
response to the execution of a motor command, the exploration
algorithm receives the displacement of the second ball only. The
exploration algorithm is therefore unaware of any interaction with
the first ball.

Exploring such a task with the E algorithm is ineffi-
cient. The probability of interacting with the first ball during the
random motor babbling phase is low (1.81%). The probability of
interacting with the first ball in such a way that it collides with
the second ball is very low (0.04%). Even by setting Kboot to 300
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FIGURE 15 | The REUSE algorithm helps discover difficult-to-find areas of the sensorimotor space. In the pool experiment, a ball (in orange) is placed out of
reach and the only option to interact with it is to interact with another ball (in blue), which is not tracked by the sensory primitive (A). Exploring such an environment
directly is difficult, because the odds of stumbling on an arm motion that leads to an interaction with the second ball are very low as demonstrated by an execution of
the EXPLORE algorithm (B). Using the ball task as a source (C), some of those interactions are easily discovered, and the goal babbling of the pool task can start
creating diversity from them (D).

steps as we do for this experiment, most of the time, no interaction
is witnessed after the end of random motor babbling, and goal
babbling cannot function without at least one observation of a
collision (Figure 15B).

Discovering the possibilities offered by such an environment
hinges on chance. Without guidance, no informative intervention
can be carried out because the environment gives neither clues
about the existence of such informative interventions nor any
gradient to follow toward their location: this is the bootstrapping
problem, similar to the one encountered in evolutionary robotics
(Mouret and Doncieux, 2009). In a context where an agent must
allocate its time efficiently between different learning situations,
the pooltask will most probably be quickly abandoned with the
conclusion that it does not offer anything to learn.

In such a context, the R algorithm can provide a way
to discover those interesting parts of the sensorimotor space in
a reasonable amount of time. We use the ball task used in the
previous sections as a source task for the pool task (Figure 15C).
During the exploration of the ball task, the robot discovers how

to move the ball in different directions. Through R, the robot
replays those movements on the pool task, moving the blue ball
in different directions. Some of those movements make the blue
ball strike the orange ball, and thus generate novel environmental
feedback. The goal babbling algorithm is then able to explore
different ways the second ball can be moved (Figure 15D).

By looking at the coverage of the R versus E strat-
egy over 100 repetitions of the experiment (Figure 16), we see that
the 10th percentile of R is better than the 90th percentile of
the E strategy.

This experiment showcases an important possibility offered by
the R algorithm: environment-driven exploration. By sim-
ply placing an agent inherently driven to explore to produce
behavioral diversity, a caregiver can scaffold complex and directed
behavior by manipulating the environment – here, by adding a
ball – without giving any explicit goal or reward, and without the
need to reprogram the robot.

The R algorithmwould work equally well if the source task
already contained both balls, with the blue ball tracked instead
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FIGURE 16 | Most of the explorations with EXPLORE never make the ball move in the pool environment. Using REUSE, however, the exploration of the second
ball is consistently diverse, and 90% of the REUSE exploration generate strictly more coverage than the 90% of the explorations with the EXPLORE algorithm.

of the orange one. In that scenario, the sensory primitive would
encode the attention of the robot, and moving from the source to
the target task only necessitates switching the attention from the
blue ball to the orange one. This is another role that a caregiver
could fulfill.

5.4. Hardware Setup
In this section, we present a hybrid simulation/hardware setup
that was used to validate some results of the simulation. The setup
features real robots, but the interaction with the object is done in
a physics engine.

5.4.1. Hybrid Interactions
The robot (Figure 17) has a reflective marker at the tip, which
allows to accurately capture its position at 120Hz during itsmove-
ment using an OptiTrack Trio camera system. A virtual marker
then replays the trajectory in a simulation where a virtual object
has been put. As themarker is the only part of the robot tracked by
the camera, it is the only part of the robotic arm that is transposed
in the simulation and therefore that can collide with the object.

Contrary to the fully simulated experiment, the simulated
marker does not interact with the groundwhere the object rest and
can therefore pass through it. Moreover, the immediate reaction
force on the marker can exceed 100N without the interaction
being discarded.

We chose to use a real robot and a simulated environment for
the simplicity and flexibility it affords. Tracking and resetting an
object a few thousands of times requires some formofmechanism,
or a bigger robot, which makes the experimental setup more
complicated. Additionally, the robot never experiences physical
collisions, which reduces the risk of damage when babbling, given
the type of robot we had. And prototyping new environments,
with new objects or layouts, is cheap and unconstrained.

At the same time, using a virtual environment for an interaction
task removes some of the main source of interest of the setup: a
realistic, difficult to simulate interaction with a real object with
kinesthetic feedback. Still, the real robot and the cameras bring
real sources of motor and sensory noise that are important to
check against when studying the production of diversity.

5.4.2. Cube and Ball
We reproduce the cube and ball experiments on the real setup.
This time, the inverse model used is the ILBFGSB-LWLR
one, and the arena is 2000mm by 2000mm. This approximates an
unbounded environment.

The results in Figure 18 show that R is effective on the
hardware setup. Because the arena is more than 10 times bigger
than the 600mm by 600mm arena, the production of coverage
does not level-off as fast. In particular, the pooling around the
walls seen in Figure 10 is much less present. This explains why
there is still a difference of coverage after 1000 steps between
the R and E algorithm. In situations where the time
allowed to explore a task is finite and much lower than would be
needed to discover all the possibilities of the environment, R
can therefore significantly increase the amount of knowledge
discovered by a robot.

5.5. Reality Gap Experiments
So far, we have shown that R is effective in situations that
involve switching the object (ball/cube experiment in Section 5.2),
changes in the morphology of the robot (different link lengths in
Section 4), or increased complexity (scaffolding experiments in
Section 5.3). The purpose of using R in these situations is to
leverage past experiences to provide the locations of possible good
mapping in the sensorimotor space.

In this section, we show that the R method can be used to
leverage experiences acquired in simulation on real robots, even
when the simulation is not accurate.

5.5.1. The Reality Gap
Many experiments learning controllers for legged robots have
reported remarkable performances for simulated robots. But
far fewer have been able to transfer controllers learned in
simulation onto real robots and preserve performance (Lipson
et al., 2006; Palmer et al., 2009). In other words, the transfer
from simulation to reality is not efficient: this is the reality gap
problem (Jakobi et al., 1995; Jakobi, 1998). In robotics, the reality
gap is overwhelmingly studied in the context of the optimization
of controllers in simulation to be transferred on a real robot, in
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FIGURE 17 | The hardware setup consists of four robots, separated so that they cannot interact with each other. The tracking system is positioned in
front of the setup and has three cameras that capture the position of the four markers. The monitor on the right shows the detection mask of each camera. Most
movements of the stems will keep the marker visible, but some will not. However, those movements will overwhelmingly be far away from the virtual objects as it
involves the robots arching backward to block the view of the marker from the camera with their own body. Once the movement of the arm is finished, the trajectory
of the marker is transposed and replayed into the simulation, where the interaction with the object happens.

particular in the context of evolutionary robotics (Nolfi et al.,
1994; Koos et al., 2013).

The most straightforward way to deal with the reality gap is to
create the most accurate simulation possible. But this is fraught
with problems, and leads to fragile and expensive simulations.

Some approaches improve the simulator during learning based
on empirical observations (Bongard and Lipson, 2005; Bongard
et al., 2006; Zagal et al., 2008; Koos et al., 2009). Other methods
consider the simulator as fixed, and evaluate themapping between
the simulator and the reality. This allows to estimate the discrep-
ancy between the two and to only perform simulated optimization
in areas where the discrepancy is low (Koos et al., 2013).

5.5.2. Crude Simulations
With R, we take a different approach. Instead of spending
ever-increasing efforts to create or search for a realistic simulation,
we go in the opposite direction; we search for a much simpler,
much cruder simulation that still affords us an exploratory advan-
tage through R. Jakobi (1997) proposes a similar method
where he identifies a minimal set of features responsible for the
behavior of the robot, and simulates only those. But our approach
is different still: our aim is not to transfer behaviors, but it is to
transfer behavioral diversity.

To test this, we create a simplified kinematic simulation of the
object interaction setup of Section 5.1. Instead of using a physics
engine, we compute the trajectory of the end-effector by feeding
the kinematic model with the joint trajectories produced by the
motor primitives. Moreover, the object is approximated to its axis-
aligned bounding box. If the trajectory of the end-effector enters
the bounding box, the velocity of the end-effector is averaged
from its last 10 positions, and the displacement of the object is
computed as a vector of the same direction as the velocity of the
end-effector, and with a norm proportional to the end-effector
velocity. There is no floor to interact with, the displacement of the
object is computed in three dimensions, and then projected on the
x and y dimensions.

Under thismodel, there is no difference anymore between a ball
and a cube. No contact is simulated except the one between the
object and the end-effector, and the collisions are computed as if
they were always directed toward the center of mass of the object.

The kinematic simulation is run for 1000 timesteps using the
E exploration strategy (Kboot = 300, d= 0.05). The explo-
ration is then transferred to the V-REP simulation of the ball task
of Section 5.1. The exploration on the full simulation uses the
R algorithm and is parametrized with Kboot = 300, d= 0.05,
and preuse = 50%. The results are available Figure 19.
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FIGURE 18 | REUSE provides a head start to the exploration on the hardware setup. The coverage performance is shown for each repetition of the experiment.
The arena is the 2000mm width 1, and the inverse model used is INVERSELBFGSB-LWLR.
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FIGURE 19 | Even with a crude model, the REUSE transfer is effective. The simulation results show 25 repetitions with the median, the 25th and 75th percentile
margins and the best and worst case in dashed lines. The experiment is repeated on the hardware four times. Each of the coverage curves for those repetitions is
represented.

Even with a crude simulation devoid of most physical features,
the R strategy is able to take significant advantage of the
generated data.

5.5.3. A Cruder Simulation
We simplify the previous simulation. Instead of computing the
displacement of the object, the sensory response is only con-
ditioned by the end-effector entering the bounding box. If that
happens, a random value between 0 and 1 is returned. Else, a
random value between −1 and 0 is returned. The sensory signal
has only one dimension. This experiment also affords us with
another example of R being compatible with a change in
sensory modalities.

Learning with such a poor sensory feedback is more difficult.
The simulation has essentially become an indicator for a possible
collision. Yet, R still provides an improvement (Figure 20).
As should be expected, the improvement is less than when the
simulation is more informative.

A weakness of our reality gap experiments is that even a simple
forward kinematic model usually displays good performance on
a rigid body robotic arm. Although we removed many aspects
of the physical simulation, we retained the essential part. The
discrepancy then between a collision detected in simulation and
one produced in reality is low. This easily explains the results
obtained. And while we claimed not to assume that the simulation
needs to be physically accurate, it actually is, but qualitatively.

Frontiers in Robotics and AI | www.frontiersin.org March 2016 | Volume 3 | Article 820

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Benureau and Oudeyer Behavioral Diversity Generation through Reuse

crude kin         ball  [simulation]

maximum coverage

 

0.36 

0.20 

0.10 

0 
0 200 400 600 800 1000 

timesteps

coverage (in m )2

with reuse

without reuse

FIGURE 20 | Even with a cruder model, the REUSE transfer is still
effective. 25 repetitions.

The way the object displacement is computed in the first crude
simulation can also be criticized. Although it seems that, by not
taking into account any geometry of the object, or not considering
the floor we have lost much information, the direction of the
displacement is directly correlated to the direction of the end-
effector when a collision happens. This sensory feedback is prob-
ably richer in information that the final position of the object in
the physical simulation. It is also a signal that is easier to learn.
The first crude simulation could be considered as a scaffolding
that offers knowledge of a pivotal aspect of the interaction – the
direction and velocity of the colliding tip of the arm just before
the collision – that was hidden so far.

Of course, these criticisms can also be considered positively:
yes, the crude models are qualitatively accurate with regards to
the presence of a collision, and R is able to take advantage of
a merely qualitative, rather than numerical, accuracy.

In a self-sufficient perspective, the crude simulations could
be considered as cognitive models. Their simplicity and relaxed
qualitative naturemakes their acquisition by a self-sufficient robot
more reasonable than realistic simulations. Instead of reproducing
reality, these cognitive simulations can do away with much of the
realismwhile retaining power to direct and inform behavior. They
pose as artifices of cognition that would allow robots, in some
situations, to reason about the world without having to predict or
simulate it accurately.

6. RELATED WORKS

Goal-directed exploration (Oudeyer and Kaplan, 2007; Baranes
and Oudeyer, 2010; Jamone et al., 2011; Rolf et al., 2011; Baranes
and Oudeyer, 2013), as well as related methods such as MAP-
Elite (Cully et al., 2015), has been shown to be effective at creating
behavioral diversity in large sensorimotor spaces. However, these
methods only consider a single task. The R algorithm pro-
poses to transfer the behavioral diversity from one task to another.
It, therefore, works particularly well when combined with these
strategies as we have demonstrated in this paper.

The R method is an instance of a transfer algorithm.
Machine learning algorithms improve their prediction or control
capabilities from data. Transfer learning algorithms (Thrun and
Pratt, 1998; Taylor and Stone, 2009; Pan and Yang, 2010) aim at
improving their prediction or control capabilities on a problem

either from another problem’s existing data or more directly from
the other problem’s learned prediction or control capabilities. In
other words, transfer learning expands the scope of the data that
can be used on a specific problem.

Therefore, transfer learning is typically used when not enough
data is available to obtain the desired performance. Creating a
zebra classifier can be difficult if only a few labeled pictures are
available. While a horse classifier does not address the exact same
problem, enough commonalities exist between the two for useful
information to be extracted from the horse classifier and used in
the zebra one.

Transfer learning algorithms have been historically developed
for tasks where unlabeled data is plentiful, but labeling is expen-
sive; robots face a similar labeling problem. Every motor action
a robot undertakes is costly in time and energy. Therefore, while
the motor action possibilities are numerous, only a small fraction
of them can be executed to observe the environmental response
they produce – i.e., labeled – during the time allotted to learn a
problem. Transfer learning in robots allows to make use of the
observations acquired outside of the current problem.

Many different methods have been developed on how, what,
and when to transfer data from one task to another, and the
interested reader can consult Thrun and Pratt (1998), Taylor and
Stone (2009), Pan andYang (2010), and Lazaric (2012) for reviews.

In evolutionary robotics, Velez and Clune (2014) shows that
controllers evolved in a first maze through Novelty Search
(Lehman and Stanley, 2011), i.e., with the incentive to behave
differently from the rest of the population, provide a head start
on the exploration of a second maze. In comparison with R,
the transferred controllers are valued not because they solve dif-
ferent tasks, or explore the maze differently: they are issued from
independent runs, and all solve the same task, going to the same
predefined goal. Rather, they are valued because they can adapt
faster to the new task than random controllers, having acquired
exploration abilities in the first maze. In the Intelligent Trial and
Error algorithm (IT&E) (Cully et al., 2015), a performance map
is generated by MAP-Elite on a task and then reused to find
a fast adaptation to a different task. However, the performance
mapping is used to guide the search, which is focused on a specific
objective.

In reinforcement learning, an interesting method comes from
Sherstov and Stone (2005) that creates a set of tasks from a source
task, and prune the action space from any action that is not
optimal in at least one task of the set. The diversity of the set of
tasks creates a filter that is used to reduce diversity in the set of
actions.

In the context of Markov-Decision Processes (MDP), policy
reuse (Fernández andVeloso, 2006) builds a library of policy. Each
policy corresponds to a specific reward function over the MDP.
Each time a new reward function needs to be learned, the most
similar policy in the policy library is reused probabilistically with a
ε-greedy strategy. The policy reuse algorithm focuses on learning
how to solve a single reward function at a time, over discrete or
discretized domains. Like IT&E, it uses the reward function to
decide which policy to reuse.

We first exposed the R method in Benureau and
Oudeyer (2013). The T was driven by intrinsic moti-
vation then. It was changed to a diversity-driven method in
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Benureau et al. (2014) but the empirical results presented then
were limited to the content of Sections 5.2.3 and 5.4.2. This paper
provides a comprehensive empirical study and investigates many
different situations: changes in morphology, sensory modalities,
and the exploitation of a random motor babbling source. The
effectiveness of R is explained by showing how the diversity
of two different tasks can be highly correlated, and we investigates
the details of a situation where R, at his worst, is less efficient
than the worst-case without it. The paper also makes two major
new contributions: the application of R to scaffolding behav-
ior (Section 5.3) and exploiting simulation results on real robots
(Section 5.5).

7. DISCUSSION

7.1. Synthesis
Sensorimotor spaces present difficulties that preclude an isolated
approach. They typically feature a large motor space that cannot
be explored exhaustively. Rather, often, only a few small regions
of it are actually interesting to explore for any practical purpose.
The difficulty, of course, lies in discovering those regions. However
smart an exploration algorithm is, when the environment does not
provide clues or gradient toward those regions, finding them relies
on chance.

The R method proposes a way to discover these small
regions of interesting behavior by relying on past experience. In an
autonomous context where neither experts nor peers are present,
and in a developmental context where robots are supposed to
accumulate experience about the world over large periods of
time, relying on past experience seems trivially self-evident. It can
prove, however, challenging. A strength of the R method is
that it makes easy to use past experiences that would otherwise
be considered incompatible with the current situation. We have
provided examples of the R method adapting to changes in
objects (cube and ball, Section 5.2), in morphology (length of
arm links in Section 4), in task dissimilarity (change in the ball
position, Section 5.2.3), in sensorymodalities (coordinate systems
in Section 4 and crude simulation in Section 5.5.3), in complexity
(pool experiment in Section 5.3), and in execution context (from
simulation to reality in Section 5.5).

Yet, the R method remains, at its heart, remarkably sim-
ple: create a collection of actions having generated a diversity of
effects in a previous task, and optimistically reexecute them in the
new one. As a consequence, the method is algorithmically cheap.
The only constraint is that actions from the source task must be
reexecutable in the target task.

While the R method makes many past experiences sud-
denly compatible with the current situation, it does not mean
that they are relevant or beneficial. The planar arms experiments
(Section 4) provided us with evidence that complex interactions
between the tasks, the inverse model and the R method
may worsen the exploration in some cases rather than help it.
And much of the success of the R method lies in the sim-
ilarity between the tasks. When the two tasks are too dissim-
ilar, the R method needs to degrade gracefully, and this
is what the experiment with the displaced task demonstrated
(Section 5.2.3).

The R method does not merely improve or accelerate
the exploration of sensorimotor spaces. As the pool experiment
illustrates (Section 5.3), it can scaffold the exploration of difficult
environments. It allows a caregiver to guide the exploration of an
autonomous agent, leading it to acquire specific and sophisticated
behaviors, without specifying an explicit goal or reward, by either
directing the attention or manipulating the environment.

The R method also seems naturally suited to propose
solutions to a difficult problem: exploiting simulation results on
real robots. The R method does this by side-stepping the
difficulty of preserving performance. Instead, it focuses on pre-
serving behavioral diversity, providing good starting points in the
sensorimotor space of the real robot (Section 5.5). Moreover, our
experiment with crude simulations suggests that cheap cognitive
models can efficiently serve an efficient source of behavioral
diversity, informing the exploration in the real world and in
full-featured simulations.

7.2. Limitations and Perspectives
The works presented here suffers many limitations. The R
algorithm is only analyzed with regards to the behavioral diversity
it creates through the τ -coverage metrics and not on the quality of
either the predictive or control models that can be derived from
the observations it generates. This should be investigated in future
works, especially in context where robots must apply their skills
and knowledge to reach specific goals.

This leads us to the issue of chaotic environments, evoked in
Section 3. In the full simulation of the interaction task (Section
5.1), we monitored the reactive forces to mitigate the chaotic
behavior of the physics engine.More generally, chaotic areas of the
sensorimotor spaces generate behavioral diversity that is difficult
to exploit for practical purposes. To make R more robust
to these aspects, the chaotic and stochastic characteristics of the
reused motor command should be explicitly evaluated.

Another blind spot of the R algorithm is motor command
diversity. When the effect diversity of the source task is low,
motor commands producing similar effects are reused. In such
a case, choosing motor commands according to how different
they are from one another would increase the diversity of the
set of transferred commands. This would make R robust to
scenarios where, for instance, all motor commands produce the
same effect in the source task.

Another venue of improvementwould be tomakeR active,
i.e., aware of its own effect of the exploration. By having a feedback
on its performance, the algorithm could dynamically decide to
modify the value of preuse or of the length of the bootstrapping
phase (Section 5.2.2). This could also lead to R identifying
which parts of the source task observations produce the most
diversity on the target tasks, and to preferentially to R motor
commands from those areas: this could have been exploited in the
pool experiment in particular (Section 5.3).

In this paper, we have only considered one source task. But
R should be expanded to multiple tasks scenarios, since
autonomous developmental robots are not expected to have only
one explored task in their past experience.

The experimental setups presented in this paper do not yet
allow to generalize to many robotic contexts. The algorithm
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should be tested in more diverse environments, with different
sensory primitives, and in particular fully autonomous, real-
world ones.
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