
April 2016 | Volume 3 | Article 201

Technology RepoRT
published: 25 April 2016

doi: 10.3389/frobt.2016.00020

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
Lorenzo Natale,  

Istituto Italiano di Tecnologia, Italy

Reviewed by: 
Neil Thomas Dantam,  

Rice University, USA  
Torbjorn Semb Dahl,  

Plymouth University, UK

*Correspondence:
Trent Houliston  

trent.houliston@newcastle.edu.au

Specialty section: 
This article was submitted to 

Humanoid Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 01 November 2015
Accepted: 29 March 2016

Published: 25 April 2016

Citation: 
Houliston T, Fountain J, Lin Y, 

Mendes A, Metcalfe M, Walker J and 
Chalup SK (2016) NUClear: A 

Loosely Coupled Software 
Architecture for Humanoid  

Robot Systems.  
Front. Robot. AI 3:20.  

doi: 10.3389/frobt.2016.00020

nUclear: A loosely coupled 
Software Architecture for humanoid
Robot Systems

 

Trent Houliston* , Jake Fountain , Yuqing Lin , Alexandre Mendes , Mitchell Metcalfe , 
Josiah Walker and Stephan K. Chalup

Newcastle Robotics Laboratory, School of Electrical Engineering and Computer Science, The University of Newcastle, 
Callaghan, NSW, Australia

This paper discusses the design and interface of NUClear, a new hybrid message- 
passing architecture for embodied humanoid robotics. NUClear is modular, has low 
latency, and promotes functional and expandable software design. It greatly reduces the 
latency for messages passed between modules as the message routes are established 
at compile time. It also reduces the number of functions that must be written using 
a system called co-messages, which aids in dealing with multiple simultaneous data. 
NUClear has primarily been evaluated on a humanoid robotic soccer platform and on 
a robotic boat platform. Evaluations show that NUClear requires fewer callbacks and 
cache variables over existing message-passing architectures. NUClear does have lim-
itations when applying these techniques on multi-processed systems. It performs best 
in lower power systems where computational resources are limited. This article aims 
at readers with interest in modern software engineering concepts and development of 
systems in areas such as robotics, smart devices and virtual reality.

Keywords: humanoid robot, robot vision, robot learning, software architecture, message passing, blackboard, 
co-messages, compile time message routing

1. InTRoDUcTIon

A system’s software architecture is the arrangement of its high level structures based on the layout 
of its functional code elements. As the software components of modern humanoid robotic systems 
become more capable, their code becomes larger and more complex. This can increase the cost of 
maintaining and enhancing the system. Software architecture design improves high level structures 
encouraging better maintainability and re-usability of components, and supports the reduction in 
effort in understanding and modifying software systems. However, this is difficult in embodied 
humanoid robots where computational hardware is limited in power, as architectural decisions to 
improve the maintainability of the system impact the performance of the robot. Therefore, architec-
tures for this domain should aim to improve the efficiency for systems with limited performance.

Latency is also a key concern in robotic systems. Information must flow quickly between compo-
nents for real-time control. Latency between sensing and acting reduces the robot’s ability to correct 
issues in time. Architectural decisions that increase modularity also increase the latency between 
components, as their interfaces become more general. This impacts on the robot’s ability to process 
and function as required.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00020&domain=pdf&date_stamp=2016-04-25
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00020
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:trent.houliston@newcastle.edu.au
http://dx.doi.org/10.3389/frobt.2016.00020
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00020/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00020/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00020/abstract
http://loop.frontiersin.org/people/289135/overview
http://loop.frontiersin.org/people/340356/overview
http://loop.frontiersin.org/people/340556/overview
http://loop.frontiersin.org/people/296233/overview
http://loop.frontiersin.org/people/301045/overview
http://loop.frontiersin.org/people/340349/overview
http://loop.frontiersin.org/people/166701/overview


2

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

The NUClear framework has been designed to address these 
concerns using novel techniques to improve the communication 
between modules. It utilizes C++ template meta-programing and 
smarter interfaces to reduce or eliminate costs while maintaining 
an expressive and easy to use interface.

2. RoBoTIc SoFTWARe 
ARchITecTUReS

When designing or improving software architecture for autono-
mous robots, it is important to analyze the techniques of exist-
ing systems. The software architectures used in the majority of 
autonomous humanoid robots are within a spectrum between 
two primary architectural paradigms. These systems can be 
defined by the way in which data is communicated between mod-
ules in the system. On one end of the spectrum are global data 
store systems, in which all data are stored centrally and accessed 
by expert system modules. At the other end of the spectrum are 
message-passing systems, where systems receive messages and 
perform actions on the data received. Systems also exist within 
this spectrum that have a degree of hybridization (Figure  1). 
These hybrids utilize message passing and also include features 
from the global store. This section of the paper explores various 
properties that contribute to the architecture quality of existing 
systems. Also discussed are techniques available to improve the 
performance of the system.

2.1. Blackboard
A blackboard architecture is a form of global store architecture 
(Figure 2). Modules within a blackboard system communicate 
with each other through the manipulation of data elements stored 
on a central data store called the blackboard. This manipulation 
is achieved through expert systems (Hayes-Roth, 1985) that are 
responsible for performing particular tasks. For example, an 
expert system responsible for vision may read images from the 
blackboard. When it has analyzed them, it writes the observed 
visual features to the blackboard. This design ensures that the 
other components are able to gather the information required by 
accessing it from the global data store without having to com-
municate directly with each other.

Blackboard architectures were originally developed from the 
blackboard concept that was used as a theoretical tool in the field 
of AI research. They were developed into a software architecture 
and effectively utilized in the HEARSAY-II system (Erman et al., 

1980) to implement a speech processing artificial intelligence. 
Blackboard systems were then enhanced by Hayes-Roth (1985) 
to provide not just a communal data store but to also provide 
the control elements required for developing a robotic system. 
This enhancement formed the foundation of the blackboard 
architecture used in autonomous robotics.

Blackboard architectures are also frequently used in develop-
ment projects where limited computation resources are a concern. 
The RoboCup contest, an annual contest involving teams from 
research institutions around the world, provides an excellent case 
study to compare robotic systems that are required to run using 
limited on-board computational resources (Kitano et al., 1997). 
Each team competing in RoboCup is required to construct and 
program robots to perform in a modified soccer contest with the 
goal of defeating the FIFA world champions by the year 2050. As 
all of the robots are performing the same task, the differences 
in programing and construction provide an excellent test bed to 
compare design choices.

Within RoboCup, there are numerous teams who have inde-
pendently implemented software architectures. These robotic 
systems are all designed to achieve the same task. Therefore, 
the primary differences in the systems are either algorithmic 
or architectural. Three of the more successful teams using 
blackboard architectures have released their codebase, allowing 
a comparison of their implementations. Teams from B-Human 
(Röfer et  al., 2011), UT-Austin (Barrett et  al., 2013), and the 
University of Newcastle’s NUbots (Kulk and Welsh, 2012) all 
have achieved success in the contest and have released code and 
technical reports on their architectures. Each of these teams use a 
slightly different implementation of the blackboard system.

Barrett et al. (2013) base their system around a pure blackboard 
architecture. This system uses a single storage location labeled as 
“memory” where all information generated by the expert systems 
is stored. This flat implementation is the original design of a 
blackboard system with a single, large data store.

Kulk and Welsh (2012) also use a single, centralized blackboard 
for communication of data between modules. However, several 
of the sub components have their own private blackboards that 

Global Store Messaging

B
lackboard

W
hiteboard

N
U

C
lear

M
essaging

FIgURe 1 | The spectrum of robot software architectures. Most of the 
architectures used in robotics are some combination of global store and 
messaging.

Blackboard
Data
Data
Data
Data

Module Module

ModuleModule

Module ModuleModule

FIgURe 2 | In a blackboard architecture, all modules communicate 
by reading from and writing to a single global data store. Due to the 
central data store, all components are coupled through common coupling.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


3

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

are used for internal communication and memory. This results 
in a hierarchy of blackboards where each successive blackboard 
becomes more specialized to an individual task.

The architecture of Röfer et  al. (2011) involves numerous 
individual blackboard elements that are held within separate 
processes for a particular task. Each of the individual components 
may have overlapping access to a blackboard. However, each 
component will only access the blackboards that are relevant to 
their data requirements. This results in a system where individual 
blackboards are able to be modified without significantly impact-
ing modules that do not use them.

The B-Human, UT-Austin, and NUbots teams have used 
blackboard architectures for many years due to the ease of 
implementation and low computational overhead. A blackboard 
system has a single location for all data and is easily understood. 
New states are easily added to a blackboard, and the addition of 
new data does not require modification to the other systems. This 
is valuable when performing tests for research purposes as well 
as being able to add debugging data to the system temporarily.

The system developed by Team KAIST for the 2015 DARPA 
Robotics challenge (Lim et al., 2015) utilizes a global store system 
as its primary method of communication. The code executes on 
multiple processes spread across seven machines in different 
physical locations. It uses a shared memory system called MPC 
to communicate data among its processes. The system also 
uses a message-passing architecture for its vision system based 
on ZeroMQ. Its control system uses message passing based on 
POSIX IPC and shared memory. This heterogeneous system has 
the potential to cause confusion in future development, as it is 
unclear which architectural style must be used to communicate 
with a specific component.

In relation to the level of coupling in a system, blackboard 
architectures perform poorly. In the best case, they exhibit com-
mon coupling. All the elements depend on a single data store 
[Page-Jones (1988), p. 73]. At worst, there can be pathological 
coupling. This is where modules interact and operate by modify-
ing each others’ internal state [Page-Jones (1988), p. 77]. These 
forms of coupling make it difficult to perform modifications to 
the codebase due to the flow on effects of modifying the black-
board [Page-Jones (1988), p. 80]. Additionally, despite providing 
a successful platform for playing soccer, these systems are unable 
to easily adapt to other roles due to the necessary specialization 
of the blackboard itself.

Blackboards also present challenges in multithreading situ-
ations as individual components are not aware when new and 
relevant data becomes available. This is of concern in modern 
multi-core embedded platforms, as modules may miss data 
updates, read the same data twice, or even read a partially written 
data element. This makes it difficult to use time-series data effec-
tively, as it requires modifications to both the provider of the data 
and the blackboard to ensure elements are not missed. Finally, 
as use cases change and data formats are updated, it becomes 
necessary to make modifications to all the modules accessing 
the updated items in the blackboard. This leads to a situation 
where it is easier to add new data types to the blackboard, rather 
than refactor the existing data types to improve flexibility in the 
system.

2.2. Messaging
Message-passing systems are a generalization of a pipeline system 
where the output from one system is used as the input into the 
next system (Figure  3). Each module creates information and 
then publishes this information to the rest of the system. Other 
modules subscribe to these information updates and on receipt of 
the information, perform their own operations using it.

There have been several successful message-passing architec-
tures developed for robotic systems. Most of these are designed 
for robots with significant computational resources. However, 
there are more recent frameworks designed that have considered 
performance and latency.

OROCOS (Bruyninckx, 2001) is an early open source robotics 
framework based on a CORBA object broker system. This system 
allows it to work across multiple languages and processes. It 
provides a consistent interface for robotics use and is designed 
to keep code modular for code reuse among systems. However, 
compared to modern methods, OROCOS is slow (Hammer and 
Bäuml, 2014) and does not support systems that are not based on 
object-oriented design patterns.

Dynamic Data eXchange (DDX) (Corke et  al., 2004) is a 
message-passing robotic software architecture developed at the 
Commonwealth Scientific and Industrial Research Organization 
(CSIRO). DDX was designed to improve on the slow speed of 
previous message-based robotic software architectures. These 
previous systems required messages to pass through a signifi-
cant amount of the network stack, limiting performance. DDX 
uses interprocess communication (IPC) to provide a publish/
subscribe architecture. As a message-passing system, it suffers 
from the requirements of serialization of data. Serialization 
reduces performance significantly as large amounts of data 

Module

Module

Module

Module

ModuleMessage Router

Message

M
essage

M
essage

Message

M
es

sa
ge

FIgURe 3 | Message-passing systems treat each module as a 
producer/consumer. Data are sent through a message routing system to 
subscribers to that type. This message router may be a single entity, or the 
task may be distributed among individual modules.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


4

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

must be processed and copied. To resolve this, DDX provides 
direct shared memory access between modules. However, if 
used incorrectly, this functionality transforms DDX into a 
blackboard system and takes on its associated architectural 
issues. Problems within DDX are also compounded due to the 
lack of type safety in a system that communicates interprocess. 
This makes it difficult to ensure that the data received are the 
anticipated format.

YARP (Metta et al., 2006) is a recent message-passing system 
for robotics based on the observer pattern. It provides observable 
entities called ports that can be provided over network and local 
protocols. YARP utilizes C++ templates to enable customizable 
serialization of types for transfer. It is able to use shared memory 
models to reduce the number of data transfers that occur and uses 
networked methods to distribute information to other systems. 
YARP modules listen to the observable data either by waiting 
on a port or by scheduling a callback function to execute when 
data come in. YARP is an excellent example of a flexible message-
passing system.

A common research-oriented robotic software architecture is 
the Robot Operating System (ROS) (Quigley et al., 2009). It has 
a centralized node named the ROS Master that is responsible for 
establishing message routes within the system. Messages do not 
pass through the ROS Master. Instead, the ROS Master enables 
nodes to form direct connections. These routes are established 
using IP networking protocols (TCP or UDP).

Each individual component of the robotic system runs in its 
own environment without direct knowledge of other components. 
These components are expert systems responsible for individual 
tasks, such as localization or visual processing. Communication 
is handled through predefined messages that are able to be serial-
ized into a transferrable byte representation. Messages that only 
travel within a single node or systems built to run as a single 
node, such as ROS nodelets, are able to transfer without copying 
or serialization.

ROS was designed to provide a platform capable of running 
code in multiple programing languages on a number of distinct 
computers to control a robotic system. The flexibility of its pro-
graming language and the large number of researchers using this 
system has made it standard for modern robotics research. This 
has seen it implemented on numerous robotic platforms ranging 
from robotic vacuum cleaners to large humanoid robots. The use 
of ROS has also gained interest in industrial robotics through the 
ROS-Industrial project (Edwards and Lewis, 2012).

Ach (Dantam et al., 2015) is a messaging system inspired by 
POSIX message queues. POSIX message queues are suboptimal 
for robotic systems, as queues create a preference for older data. 
It caters to multi-processed systems that run on a POSIX operat-
ing system and is implemented using a circular array of shared 
memory that can be accessed by any process that is a part of the 
system. The shared memory for a particular message is described 
as a channel. Messages are distributed by adding them to the 
circular buffer for a channel. Subscribers request new data from 
the channels they need and then wait for it to become available. 
Each subscriber has an individual pointer that tracks which mes-
sages in the queue have been read. The circular buffer will wrap 
around and overwrite the old data, potentially causing issues for 

a subscriber if every data element must be processed. Ach has the 
advantage as it operates at a low latency due to its use of shared 
memory. A limitation of Ach is that its use of shared memory 
restricts its use to a single machine. Additionally, the pull style 
interface adds complexity for the developer when managing 
multiple simultaneous requests.

Message-passing systems solve many of the issues encountered 
with a blackboard system. In relation to the tight coupling of a 
blackboard, there is no longer any single object that is required 
to know the entire state of the system. This makes it easier to 
adapt existing modules for use in a new system. Listening to 
changes in data allows the system to catch every event as it is 
modified, removing the need for polling a data store. The ability 
to distribute the program across multiple threads of execution 
or even multiple systems makes message-passing excellent for 
systems with ample computational power. Time-series operations 
are also possible as every event is accessible without requiring 
modification to other modules.

Message-passing modules are also able to act as a service. A 
common pattern is to send a request message and another mod-
ule will reply with a response message.

Message-passing interfaces will either have a pull interface, 
where a function must be called to wait for new messages, or a 
push interface, where a function is provided and executed when 
data becomes available. In a pull interface, multiple message reads 
must be multiplexed or have multiple threads listening to receive 
data. This adds extra complexity to the interface, as there is often 
increased work required to wait on multiple messages. Push inter-
faces are simpler to develop, as there is no additional complexity 
to wait on multiple messages simultaneously. Additionally, push 
interfaces make multithreading easier as each callback function 
can be executed on separate thread.

However, there are several disadvantages that exist in these 
systems that are not present in a blackboard system. A message-
passing system must either provide a copy of the data for each 
subscriber of a message or make all access read only. This results 
in a performance penalty in the system. Messaging also means 
that there is no longer a central data store that can be used. 
Therefore, if a module requires information from more than one 
message, it must handle the storage of this data itself to access it. 
This adds significant extra load on the modules, which makes 
development harder and reduces its performance.

2.3. Whiteboard
Thórisson et al. (2005b) have developed an enhanced version of 
blackboards in order to utilize some advantages of a message-
passing system. Whiteboard architectures have publish/subscribe 
extensions added to the blackboard in addition to the statically 
stored data (Figure 4). This hybrid system of global storage and 
message-passing solves several concerns associated with a tradi-
tional blackboard system. It is able to use the publish/subscribe 
features to remove the need for polling in the system, allowing the 
system to react when data has changed. It also allows the system 
to perform computations only on new data, rather than repeat-
edly calling the old data.

The whiteboard design has been used in robotics develop-
ment. Reykjavik University (Thórisson et  al., 2005a) integrates 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


5

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

whiteboard architecture in robotic software, and the Mi-Pal team 
from Griffith University utilizes a whiteboard architecture to solve 
issues associated with blackboard architectures (Coleman et al., 
2013). Mi-Pal is able to use the publish/subscribe architectural 
feature to ensure that a module will receive every data update 
posted. They have recently improved this architecture to provide 
compile time checking of data types, easing the debugging of the 
system. Systems that hybridize message passing and global store 
architectures are a midpoint between the fields of AI that use 
blackboards extensively and modern software architecture that 
focus on decoupled design.

Despite these advantages, whiteboard architecture experi-
ences several drawbacks. In a whiteboard system, the weakness 
of requiring a single blackboard at the center results in common 
coupling. Even when a stream is used, the stream is stored on the 
blackboard. This means that modifications to a stream alter the 
components that use them. The other major issue that arises from 
using a whiteboard architecture is the use of an implementation 
that is not a true hybrid of global storage and message passing, 
but instead two architectures deployed in parallel. In this case, 
the user either takes on the benefits and weaknesses of a message-
passing system or those of a blackboard system.

The performance of the robotic platforms these architectures 
are deployed on provides insight into why they are utilized. 
Robots that execute on hardware with tighter performance 
constraints, such as those with on-board computation, are 
designed using the blackboard model and occasionally using 
the whiteboard model. In robotic systems where performance 
is not restricted, message-passing systems are used to allow 
greater collaboration between developers. Although message-
passing systems provide excellent maintainability, testability, 
and modifiability, the performance of these systems in relation 
to latency and overhead is a significant concern when there is 
limited processing power.

2.4. 2012 nUbots’ Architecture
The 2012 NUbots’ software architecture was designed as an easy to 
understand and extend object-oriented system (Kulk and Welsh, 
2012). However, over time, design-limited module communica-
tion and workarounds limited the overall value of the system. This 
resulted in the system fragmenting and impacted on its quality as 
the use cases for the system diversified. It resulted in a system that 
used different assumptions and design patterns. The architecture 
also caused duplication of effort and the use of similar, redundant 
classes in various modules due to the lack of a clear architecture. 
A simplified diagram of the architecture modules and flow of the 
existing system can be seen in Figure 5.

Common with many embodied robot architectures, the 2012 
NUbots’ architecture revolved around a central blackboard data 
store. Several modules utilized a global queue known as the 
jobs system, with most communicating through direct function 
calls, implicit or global state such as singletons. This diversity in 
communication resulted in a technical debt and reduced pro-
ductivity as the system grew. As in order to make modifications 
to a component, an understanding of the interface, including 
anything it interacted with or any of the interface’s new com-
ponents, was required. This was problematic as the NUbots’ 
architecture had components that needed to communicate to 
three or more other components. This required an understand-
ing of a minimum of four different systems before a developer 
could make any change.

The vision system provides a good example of this unneces-
sary complexity. The vision system communicated utilizing a two 
step process. It accessed the sensor system directly and asked 
it to process a new frame. It then waited on the sensor system 
to place the frame information on blackboard. Once the frame 
information was placed on blackboard, the vision system read 
the information from blackboard and continued its processing. 
Although the vision system waited for a new frame, the entire 
robot was blocked and could not make any decisions. It was also 
important to ensure that no other systems intended to request 
the latest frame, as doing so would break the robots functionality.

Another unresolved architectural challenge was experienced 
in the Movement module. The 2012 NUbots’ system defined 

Whiteboard
Data
Data

M
es

sa
ge

R
ou

te
r

Module Module

ModuleModule

Module Module
Module

FIgURe 4 | A whiteboard is a blackboard that is able to have 
messages passed through it to other modules. It gains some of the 
advantages of message passing but maintains the tight coupling of a 
blackboard.

Vision

Localisation

Behaviour

Team Network

Blackboard

Jobs

Sensors

Kinematics

Movement

Game Network

SeeThink Loop SenseMove Loop

FIgURe 5 | The information flow from the nUbots’ software 
architecture of 2012.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


6

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

a number of movement handlers, each responsible for a set 
of movements. This could include kicking a ball or walking.  
The movement system periodically retrieved all of the jobs in the 
queue and sent them to the appropriate movement handler. The 
movement handlers then communicated to the action system 
to execute the selected motions. This base case did not have any 
issues. However, it was not possible for any other component 
to talk to the movement handlers directly via the blackboard 
system. Therefore, at any point in time, any class in the system 
was a potential candidate for triggering a movement. This made 
it very easy to create hard to maintain access paths and added to 
the complexity of the system.

Additionally, each movement handler is indirectly dependent 
on each other. Movement handlers can lock specific motors and if 
they attempt to use a motor in use by another system, the action 
failed. Forgetting to check the ownership of a motor broke the 
currently executing motion, causing the robot to fall down and 
possibly injure itself. In order to add a new movement, the code 
was written for the movement, and the developer was required 
to understand how all the existing motion modules worked and 
interacted. This included cases where any of the managers might 
be triggered, in order to avoid interrupting a critical movement 
when the motors were locked. Additionally, the developer needed 
to understand the locking model to prevent accidentally trying 
to move a motor that should not be moved. These are only 
two examples of a number of pitfalls within the 2012 NUbots’ 
architecture.

2.5. comparisons
Previous studies have compared the techniques used in tradi-
tional blackboard systems and messaging systems (Orebäck and 
Christensen, 2003; Magyar et al., 2015; Matamoros et al., 2015). 
This research concludes that blackboard architectures are easier 
to maintain and provide greater performance than peer-to-peer 
systems. However, a significant body of research (Page-Jones, 
1988; Pressman, 2005; Beck and Diehl, 2011) has found that 
loosely coupled messaging systems should provide much greater 
maintainability and extensibility than globally coupled black-
board systems.

A possible explanation for this discrepancy is that a blackboard 
system is much easier to comprehend than a message-passing 
system. This makes it easier for a small blackboard system to be 
worked on by a developer. However, as the system grows and 
contains more components, increased complexity should reveal 
message-passing systems as having the advantage.

3. The nUclear FRAMeWoRK

The NUClear framework was designed to utilize the advantages 
and address the problems that exist with the architectural styles 
of message passing and blackboards. The primary advantages of 
the two competing architectures are the high data availability 
in a blackboard system and the excellent decoupling properties 
of a message-passing system. A message-passing system must 
be used as the primary architectural paradigm to achieve loose 
coupling. The challenge is to incorporate the advantages that 
a global store provides into the message-passing system. An 

ideal system should maintain the loose coupling that message-
passing affords, without suffering from data management issues. 
In order to address these issues and provide a more effective 
software architecture, a solution called co-messages has been 
implemented. It more effectively hybridizes the two paradigms 
in NUClear.

NUClear introduces a modification to how messages are 
dispatched to the subscribers of the data. In robotic systems, 
modules will typically have a primary information type that they 
will perform their operations on. However, they often require 
additional supplementary data provided from other sources. 
These additional data must be available when the operations are 
performed, and they may be created at a different rate to that 
of the primary data source. Accessing these data at any time is 
impossible in a pure message-passing system, as the data are only 
available transiently. If a system requires information created by 
another module, it must subscribe and then store this information 
itself to ensure it is available. In NUClear, one of the subscribed 
types will be designated the primary message type and messages 
will only be delivered when this message is created by a publisher. 
The most recent messages of the remaining types are then bound 
to the subscription, allowing access to the messages without 
requiring that the modules store the information (Figure  6). 
These additional messages are co-messages. By controlling when 
messages are received based on the arrival of other messages, the 
modules in the system are no longer required to manage their 
own cache of variables.

This method of accessing data is distinct when compared 
to multiplexing multiple message channels into a single input. 
In comparison to using select or poll on multiple channels, 
co-messages do not introduce a cost for messages that are not 
used. This is often the case when the rate of the messages do not 
match. When one message occurs more frequently than another, 
a system using select or poll system must inspect and discard each 
of these updates when they are not relevant. Instead, in NUClear, 
those messages are fetched on demand when the primary data 

NUClear

Module

Module

Module

Co-message

Prim
ary

Data

Secondary Data

FIgURe 6 | The nUclear co-messaging system. The latest version of 
each message is stored in NUClear. A module requests a primary data type, 
along with the most recent version of a secondary data type. When these 
primary data are generated, the stored most recent copy of this co-message 
is bound into the callback. This affords the module a more expressive 
interface for gathering messages.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


7

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

type is received, reducing the overhead both computationally and 
for the developer.

Additionally, as the latest version of each message must be 
stored in order to be bound when needed, a virtual global store is 
created from these messages. These globally stored data are not an 
explicit component, but a byproduct of the architecture. It does not 
increase the coupling between modules. Therefore, the developer 
is not required to write code for data elements in this global store. 
This resulting architecture has the advantages of loose coupling 
from the message-based system, while gaining the advantages of 
high data availability provided by a centralized store.

The virtual data store is also able to be explicitly accessed, 
providing direct access that is similar to a blackboard. As the mes-
sages are persistent, they are able to be accessed without setting 
up a listener for the message. This form of access is discouraged, 
as it increases the coupling in the system. However, this provides 
an advantage to NUClear in its compatibility with code written 
for other architectures. NUClear is able to accommodate the 
access patterns of any of the three other architectures with only 
minimal modification to the components themselves.

A key requirement of a multi-platform robotic system is the 
replacement of components with functional equivalents. For 
example, it should be possible to replace the system that reads 
camera frames from the hardware with one that reads frames 
from a file without changing the rest of the system. However, 
another important aspect of robotics is the requirement for 
real-time interaction with the world. This requires optimized 
code paths. As identified in the background research, the archi-
tectures excel in one of these categories, but often trade speed 
for decoupling.

The majority of mature robotic systems are developed with 
a message-driven architecture. ROS has a serialization penalty 
associated with message passing, as communication between 
modules is achieved using sockets. This is unacceptable for 
low-power embedded platforms, such as the Darwin-OP. Other 
robot systems, such as Dynamic Data eXchange and Pack Service 
Robotic Architecture, also experience similar issues. These con-
temporary robotic systems have traded performance for message 
passing and cross-language compatibility, anticipating that future 
hardware performance will accommodate them.

3.1. Simple ApI
NUClear is designed to have a simple and intuitive interface that 
requires minimal training to use. It is designed for use by second 
year software engineering students who have a basic understand-
ing of C++. There must be a well-defined function for the two 
key features of the architecture: sending and receiving messages. 
Sending is accomplished using the emit function, whereas receiv-
ing is accomplished using the on function. NUClear provides a 
small domain specific language (DSL) for easy access to common 
message pattern use cases. This DSL is designed to match an 
English description of the task if possible. Having a small API 
improves understandability and reduces the learning curve for 
using the NUClear system. This makes it easier for new program-
mers to learn and use NUClear.

In addition to the DSL words that are already in the sys-
tem, NUClear is designed to be able to extend its vocabulary 

with new words developed by the user of the framework. 
This allows common functionality to be provided across 
modules specific to the needs of a system. Internally, 
all NUClear DSL words are implemented using the same 
 extension system.

3.1.1. Domain-Specific Language
The following is a list of the DSL words that are included and 
most commonly used in NUClear along with a description and 
an example of their use.

on on<...>(runtime...).then(function);
The on DSL word is the wrapper for every subscription in NUClear. 
NUClear uses this to wrap the template descriptions of the subscription’s 
purpose. The other DSL words are entered as template arguments to this 
function, with any runtime arguments passed as function arguments.

emit emit(message)
Emit is the function that handles the publish part of the messaging system. 
It takes data and forwards it to the functions that have subscribed directly 
(routed at compile time).

Trigger on<Trigger<Type>>()
Trigger statements set up the callbacks and execute when the type is 
emitted. It flags the used data type as a triggering (primary) data type. 
When this callback is executed, it will pass the data that were emitted.

With on<Trigger<TypeA>, With<TypeB>>()
With statements describe additional information that is used by the 
callback. The provided function will not be executed when these data are 
emitted. However, when this function is executed, the latest copy of this 
data will be provided.

Every on<Every<10, milliseconds>>()
Every statement fills the role of periodic callbacks in the system. When an 
every statement is used, the function will execute at that rate.

Always on<Always>().then(function);
Always is used in the rare case that functions must continually execute as 
fast as possible. It allows the system to terminate as a whole when it shuts 
down by ending the execution of this function.

Single on<Trigger<Type>, Single>()
Single is a DSL keyword that ensures that only a single instance of a 
message will be executed at one time. When additional messages of the 
same type are given to this function, they will be dropped.

Buffer on<Trigger<Type>, Buffer<3>>()
Buffer is the general case of the Single keyword. It ensures that only 
the requested number of messages will execute simultaneously. When 
additional messages beyond the requested number are given to this 
function, they will be dropped.

Sync on<Trigger<Type>, Sync<Group>>()
Sync is used to ensure mutual exclusion between several functions at a 
scheduling level. Rather than blocking a thread on a mutex, it will delay 
execution until it has exclusive access among a group of functions. 
Additional messages of the same type are queued for execution unless 
combined with single.

Priority on<Trigger<Type>, Priority::HIGH>()
Priority can control the response of the callback. It will control both the 
priority used to determine the scheduling order in the thread pool and also 
the priority of the thread it will execute on.

Startup on<Startup>()
Functions with this word will execute at startup.

Shutdown on<Shutdown>()
Functions with this word will execute at shutdown.

Configuration on<Configuration>(“File.yaml”)
This allows a program to watch a file in a configuration directory and be 
provided with the latest version of the file when it changes. It is used to 
keep configuration up to date.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


8

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

3.2. low performance penalty
In the context of embedded or low performance hardware, it is 
essential that message routing is performed as quickly as pos-
sible. Other message-passing systems use technologies that incur 
performance penalties from message serialization and copying. 
Instead, NUClear uses shared memory for messages passed 
within a single process. This removes the cost of serializing a mes-
sage and can greatly improve the performance of large messages.

It is also important to minimize the time it takes to dispatch 
a message. To achieve this, NUClear uses template meta- 
programing to establish message routes at compile time. Generally, 
when a message is sent in a message-passing system, there is a 
message broker that executes code to find subscribers who are 
interested in the message. Alternatively, in simpler systems, there 
is a message bus that all subscribers listen to and gather messages 
they are interested in. NUClear eliminates this cost by evaluating 
the route messages take at compile time. The result is that when 
messages are dispatched from a module they are directly sent to 
the modules that require them. This reduces the cost of routing 
the message to acquiring the required data and directly calling the 
subscribers callback function. The downside to this technique is 
that it is only applicable when running within a single process.

NUClear also has an additional latency improvement for 
modules arranged in a pipeline structure. This improvement is 
used when a module emits a message at the end of its callback, 
and that message is only consumed by only one other module. 
In this case, NUClear is able to continue and execute the follow-
ing code directly rather than returning to the thread pool. This 
greatly reduces the latency between the two modules, as when 
combined with compile time routing, there is little that occurs 
between the executions.

Additionally, NUClear is able to perform compile time mes-
sage memory allocation using template meta-programing. It uses 

the information to preallocate the space before the program runs. 
This allows it to scale to any number of messages while maintain-
ing 𝒪(1) dispatch look-up time. The mechanism used to allocate 
messages also enables optimizing compilers to use the knowledge 
of message memory allocation to apply a number of powerful 
optimizations to how messages are sent.

3.3. Simple Utilization of System 
Resources
Another requirement derived from resource-constrained 
environments is the need to easily utilize the full power of the 
hardware. This is primarily achieved by introducing transparent 
multithreading that automatically uses every CPU core available 
on the system. Transparent multithreading in NUClear utilizes a 
thread pool that has enough threads to saturate every CPU core. 
Using this thread pool, NUClear is able to schedule each execu-
tion of a callback function to a different thread. This allows the 
system to utilize all of the cores without the developer needing to 
interact with threads directly.

When a message is sent in the system, the central coordination 
object, known as the PowerPlant, takes ownership of it. From this 
point forward, no modules can modify the message. It is provided 
to other modules with read-only access. The PowerPlant then 
executes callbacks that, known as reactions, are subscribed to 
this message. Each reaction receives an immutable reference to 
the original message and can perform any read operations on it.

The immutability of the data makes transparent multithread-
ing in the system easier. If multiple reactions want to read the 
data, and if it can be guaranteed that they do not modify it, then 
the reactions can be run in parallel without concern for race 
conditions. By forcing immutability, all threading logic can be 
moved directly into NUClear, allowing developers to concentrate 
on their modules instead of threading problems. This technique 
of using immutable data to allow easy multithreading systems 
has been proven in programming languages, such as Erlang and 
Elixir.

In most cases, multithreading will be completely transparent. 
However, it is still important that developers understand that 
they are working in a multi-threaded environment. If a single 
module shares data between two reactions and those reactions 
run in parallel, then the shared data will need to be secured with 
a thread-safe mechanism such as a mutex. NUClear also provides 
functionality in its DSL to let the user specify that certain reac-
tions should not be run in parallel. Specifically, it provides the 
word Single to ensure that only a single instance of a reaction 
is running and to drop any future messages. It also provides 
the word Sync to ensure that only one of a group of reactions is 
running and to queue the remainder. These can be used to solve 
threading concerns.

Differences exist between a multi-threaded system and a 
multi-processed system. In robotic systems, it is common to 
run in a multi-processed mode rather than multi-threaded. 
This allows the system to be distributed across multiple physical 
hardwares, making more efficient use of available resources. It 
can provide a level of crash safety. If a single process in the cluster 
crashes, it does not result in an entire system crash provided 
the remaining modules can run independently. Multi-threaded 

optional on<Trigger<TypeA>, Optional<With<TypeB>>>()
Optional allows statements to signify certain requested types as optional. 
In a traditional co-message call, if both messages are not available, the 
function will not run. If optional is used, these functions can run with an 
empty second argument.

last on<Last<10, Trigger<Type>>>()
Last instructs NUClear to cache the last messages that were emitted. 
When the function is called, it will receive all of the collected messages.

Io on<IO>(file_descriptor)
Used to interact with file descriptors and execute when they are read/
writeable. This is used for communicating with serial devices as well as 
network ports.

network on<Network<Type>>()
NUClear provides a networking protocol to send messages to other 
devices on the network. This can be used to make a multi-processed 
NUClear instance, or communicate with other programs running NUClear. 
The serialization and deserialization is handled by NUClear.

Tcp on<TCP>(port)
TCP allows a program to make a callback on TCP activity, listening on a 
port.

UDp on<UDP>(port)
UDP allows a program to make a callback on UDP activity, listening on 
a port. It also supports listening to UDP broadcast and UDP multicast 
sockets.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


9

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

systems also have this property if the threads the code executes on 
are managed correctly. This requires additional work by designer 
of the multi-threaded system.

Multi-processed systems also have disadvantages. Multi-
processed systems do not always run in a shared memory envi-
ronment, as they may be distributed across machines. They must 
serialize and copy data to the destination nodes. This adds an increase 
in latency between modules and when there is a large amount of 
data to be transferred, this can have significant implications.

Multi-processed systems also suffer from an increase in the 
context switching time. When the operating system in a multi-
processed system switches from one process to another, it changes 
its virtual memory space. This requires the translation lookaside 
buffer to be dumped. Multi-threaded processes share their virtual 
memory space, allowing the buffer to be retained.

NUClear is able to run in a multi-threaded mode, a multi-
processed mode, or a hybrid of the two by grouping modules into 
individual processes. However, when it runs in a multi-processed 
mode, it loses many of its advantages from compile time message 
routing. This is a necessary side effect, as the compiler can no 
longer optimize code paths and it must pass messages by serial-
izing them over a socket.

3.4. Time-Series Data
A common need when interfacing with real-world electrical 
systems is to keep a record of recent data for validation and 
decision-making. The simplest example of this is de-bouncing the 
electrical noise in a button press. To perform this task, the on/
off state is monitored over a time-series, with an internal stateful 
check deciding whether the switch is deemed to have closed or 
not. These types of tasks commonly access the last n instances of 
created data when performing an evaluation.

NUClear handles time-series data at an architectural level 
by increasing the number of previous messages that are stored 
latent in the system. This functionality is provided through the 
Last keyword.

A blackboard system is unable to receive a history of elements, 
as there is no notification of when data are updated. This may 
result in duplicate and missed data depending on the rate of poll-
ing. Rather, the functionality must be added by the producer of 
the data. They must store the additional data on the blackboard 
unaware of when it is not needed.

Message-passing systems are able to provide time-series data, 
as the arrival of messages allows the subscriber to maintain a 
history of the last few messages. This requires the subscriber of 
the messages to maintain their own data store of the most recent 
messages.

In a whiteboard system, it is possible to obtain time-series data 
using the same mechanism as message passing, or blackboard, 
depending on the stored data. However, they are also able to use 
the publish/subscribe channel in order to remain informed of 
changes to static data, allowing the data to be copied.

3.5. Soft Real-Time
Using the functionality provided by Every and Priority, NUClear 
can operate as a soft real-time system. One reason NUClear is suc-
cessful at operating at soft real-time is its compile time dispatch of 

messages. When the binaries are compiled, the periodic functions 
are compiled with them. This allows the periodic functions to 
operate with the jitter and accuracy that the operating system 
providing the timing is capable of. The jitter in NUClear’s peri-
odic Every function was measured at 80 μs when triggering at a 
rate of 1 kHz.

Additionally, as NUClear routes messages at compile time, it 
can achieve lower end-to-end latency between modules. This is 
a reduction in time between dispatching and receiving a mes-
sage. This lower latency can assist systems that have strict timing 
requirements such as hardware feedback loops.

A simple test system was constructed in NUClear and ROS that 
timed and transferred an empty message from end to end. This 
should eliminate any performance differences due to serialization 
and copying of information. The tests were completed with and 
without the CPU being loaded to 100%. All tests were completed 
on an Intel i7 1.8 GHz with 16-GB RAM running Ubuntu 14.04 
Desktop (Linux kernel version 3.13.0.74.80). This test generated 
100,000 data points for each of the sets. The results are shown in 
Figure 7. A TCPROS node was included in the test, as this is the 
default communication method within ROS. To use ROS inter-
node communication requires special setup using ROS nodelets, 
which may not always be possible. The inclusion of TCPROS also 
provides a reference point for network communication speeds.

These results show that NUClear is faster at routing messages 
than ROS. In fact, the latency between modules in NUClear is 
faster than routing within a node in ROS. Interestingly, NUClear’s 
performance improved when using a thread pool under system 
load. This is believed to have been caused by the delay in waking 
up a sleeping thread. When the system is already under load, 
these threads do not go to sleep, which reduces latency. More 
rigorous testing of the compile time message routing system is 
planned for future research.

3.6. Statistics, logging, and Traceability
In complex systems, it can be difficult to determine a system’s 
operational state. NUClear is designed to support powerful sta-
tistics and logging tools. NUClear stores runtime statistics about 
each module and provides mechanisms to receive the information 

FIgURe 7 | Frequency distribution of end-to-end latency for nUclear 
via a thread pool, nUclear directly sending messages, RoS within a 
single node, and RoS between nodes on a single machine (TcpRoS). 
Dashed lines represent the test done with the system running at 100%  
CPU load.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


10

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

logs on a per-module or per-event basis. These features provide 
useful information that assist with debugging and understanding 
the robot’s system.

If an error occurs, it is possible to capture the input that 
caused the error and replay it on the module. This is possible as 
the architecture itself is aware of the information used by each 
callback. Each callback requests the list of all messages required to 
complete its task. This represents the current state of the system. 
Since these messages can be captured at the point of callback, 
data that cause errors can be captured and examined more closely. 
This recording functionality can be used to develop a powerful 
array of tests that accurately reproduce real-world scenarios. 
These features are compiled on demand, with unused features 
not impacting on the performance of the system.

A networked visual debugger, NUsight, is also built into the 
NUbots’ codebase. This system supports streaming operational 
data in real time to a web-based visualizer. The visualizer can per-
form real-time charting of time-series and 3D visualization of the 
robot’s believed state. These features are easy to use in modules in 
the system due to NUClear’s extensibility. Additional DSL words 
are added making code to view internal state only to exist when 
needed and easy to use.

4. nUclear eVAlUATIon

The NUbots’ codebase is used as an example to quantitatively 
assess the improvements provided by the NUClear framework. 
This codebase was chosen as it is a large (~80,000 LOC) codebase 
that previously implemented a blackboard architecture that can 
be used for comparison. Additionally, this codebase has multiple 
distinct binaries with each performing a distinct functional or 
testing role. Each of these roles includes a different set of modules. 
Due to the compile time message passing of NUClear and the 
fact that it uses co-messages, it is possible to extract the graph 
of message relationships between modules from each compiled 
binary. Once extracted, it is possible to transform this graph 
into the equivalent graph for a more traditional message-passing 
system, such as ROS or YARP, by taking all non-triggering data 
and creating a separate subscription event for it. This adds a new 
subscription for this type, as well as a local cache to store the mes-
sage for when it is used. Only one cache is needed per module, so 
it is only counted for the first instance of a type.

4.1. Interface Size
Using co-messages in NUClear reduces listener code compared 
to other message and event-based systems. Rather than having 
a separate subscriber and cache for each data type, there can 
be a single subscriber for multiple data types without needing 
a separate cache. This directly reduces the number of functions 
that must be written to handle these cases. The difference in the 
number of functions that must be written can be seen in Figure 8. 
In this graph, the number of subscription handlers is shown 
for a NUClear system, compared to the theoretical equivalent 
message-passing system for each module.

Figure  8 shows that while some modules have the same 
number of callbacks in both systems, there are many cases 
where up to double the number of subscription handlers must 

be written for a traditional message-passing system. A large 
number of these handlers will also be caching the variable for 
use by the primary function. When refactoring these, caching 
handlers can be forgotten and contribute to dead or poorly 
documented code.

Direct comparison with a blackboard system is difficult, as 
it does not use callbacks and the data must instead be polled. 
However, variables can be read at any time in a blackboard sys-
tem. This results in various problems, including thread safety and 
synchronization.

Whiteboard-based systems allow a similar level of performance 
to the NUClear system in relation to the code efficiency of each 
module, as data are accessible at any time. However, whiteboards 
move the burden of dead and poorly documented data from the 
individual modules to a large, central data store. Over time, this 
can become difficult to maintain.

In comparison with these systems, the callbacks in the NUClear 
system specify which data are needed for a specific operation. This 
removes the responsibility of implementing cached data storage 
from the system and results in a system with significantly less 
implementation overhead, while retaining the speed benefits of 
universally accessible data structures, such as blackboard archi-
tectures. It also maintains most of the modularity and flexibility 
of traditional message-passing systems, such as ROS.

4.2. Memory Usage
NUClear provides a reduced memory footprint in comparison 
to message-passing or blackboard-based systems. This is because 
it is able to determine and store only the data that are live at any 
time. Figure 9 shows the number of additional cache variables 
required for a messaging implementation of each of the binaries 
present in the NUbots’ codebase. These additional variables are 
required as each module must cache any data type that arises 
as a result of a non-triggering message (“With” messages in the 
NUClear framework). As a result of NUClear managing all of 
these variables centrally, additional caching variables are not 
required in a NUClear system. This can be useful for memory 
constrained systems.

FIgURe 8 | The number of functions needed by a module in nUclear 
compared to a messaging system. Each point is a module in the NUbots’ 
codebase. The height above the y = x line indicates how many additional 
callback functions must be written in a message passing system.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


11

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

An indication of memory usage in a theoretical blackboard 
system can be seen in Figure 10. In the NUbots’ system, there 
are currently 121 message types displayed as an 11  ×  11 grid. 
However, only a subset of these messages is used in any binary. 
The binary that uses the largest number of messages only uses 
110. If a blackboard were to be used, all of these messages would 
be stored for every binary. This can also be seen by comparing 
the system to the previous blackboard based NUbots’ system. By 
comparison, NUClear is able to determine which messages are 
needed for listeners at compile time and does not store unused 
data types.

4.2.1. Cache Computational Overhead
In a message-passing system, there is an additional cost incurred. 
When a message is received in a traditional messaging system and 
is used as additional data, it must be cached. Writing this cache 
costs performance from copying the data to a local variable for 

storage. Large messages can have a significant cost if they must be 
repeatedly copied to local variables. Additionally, when the data 
rates are not matched, much of the copied data are never used. For 
example, in the NUbots’ codebase, the sensors are read at a rate of 
120 Hz and images at 30 Hz. Ninety sensor messages per second 
would not be used, but in a message-passing system would still be 
cached. When the code is running on a system with limited CPU 
power, these costs reduce the available computational resources 
for other tasks.

5. TARgeT plATFoRMS

The current primary target for the NUClear architecture is the 
Darwin-OP platform (Ha et al., 2011). Modified versions of the 
Darwin-OP that have slightly different kinematics and camera 
sensors are also supported, pictured in Figure  11. These plat-
forms have twenty degrees of freedom provided by ROBOTIS 
serial controlled servomotors, a six degree-of-freedom IMU and 
a webcam for sensing. On-board processing is provided by an 
embedded Atom z530 processor running at 1.6 GHz.

The NUClear architecture has also been used in the RobotX 
Maritime challenge on an autonomous marine platform. This 
platform involved the use of an embedded control system and a 
set of four global shutter cameras with wide field of view lenses. 
Due to the system modularity that NUClear allows, large parts of 
the vision system were taken from the NUbots’ soccer codebase 
with minimal changes.

Future plans include deploying NUClear to the NimbRo-OP 
platform (Allgeuer et al., 2015) and autonomous quadcopters. 
These will be interesting platforms to test the flexibility of the 
NUClear architecture. The larger Nimbro-OP platform also 
provides opportunities for direct comparisons with a ROS-
based framework. This future work will support a comparison 
of maintainability and efficiency across a spectrum of robot 
software architectures with the factor of hardware variation 
removed.

FIgURe 9 | The number of additional cache variables that would be 
required if the nUbots’ codebase was implemented in a message-
passing system. These additional variables would be required to store data 
that were requested as a non-triggering type. Each point represents a single 
binary from the NUbots system.

100%

0%

Message usage across binaries

FIgURe 10 | The distribution of usage for the 121 message types 
across binaries in the nUbots’ system. This serves as an indication as to 
how much memory an equivalent blackboard system would use.

FIgURe 11 | Modified Darwin-ops of the 2015 nUbots team equipped 
with new 3D-printed heads using a higher resolution camera, padded 
jackets to soften falls, and soccer studs to improve grip on artificial 
grass.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


12

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

6. cASe STUDy – nUbots’ coDeBASe

The architecture implemented in NUClear allows a humanoid 
robot to perform a variety of tasks within structured and semi-
structured environments. Taking advantage of the message pass-
ing and storing capabilities of the system and building on these 
in each of the subsystems has allowed a flexible, but principled 
approach to robot control. A simplified flow of information 
through the NUbots’ system is given in Figure 12.

The core of the NUbots’ system is a see-think-do type infor-
mation flow. This is common to previous architectures. It allows 
for information to be taken in from the surroundings and for 
planning and movement to take place. In addition to innova-
tions and improvements within the subsystems of this loop, the 
architecture also allows a generic fast-path that enables all motor 
skills to react to changes in the environment quickly. This can 
provide balance and reflexive protection skills more easily than in 
previous systems, with reaction speeds that are faster than current 
message-passing systems.

6.1. Vision pipeline
Many challenges for mobile and embedded robotics involve the 
use of computer vision to sense and navigate environments. In 
recent years, environments for humanoid robotics challenges 
have transitioned from a well-defined color and pattern-based 
structure toward more realistic environments. As these challenges 
increasingly reflect the real-world, semi-structured environments 
where shape and context give vital additional information about 
the world must be considered. The machine vision community 
has developed many approaches to structure-based detection. 
However, most of these cannot yet be computed in real-time 
on lower power embedded systems. The vision pipeline of the 
NUClear system represents an efficient compromise between 
structure-based and color-based systems by using color classi-
fication to find regions of interest, followed by edge-based shape 
fitting to find particular objects (Quinlan et al., 2004; Henderson 
et al., 2008; Houliston et al., 2015).

The vision system used in the NUbots’ system shows one 
significant difference to embodied vision systems, popular in 
the ROS message-passing system. The source code provided by 

Allgeuer et al. (2015) uses a monolithic vision module in ROS, 
as the performance penalty for message-passing (particularly for 
large data types such as images) for ROS communications is con-
sidered quite high. This can make message-passing vision systems 
in ROS slow to process and report changes in the environment. 
Due to the much faster message dispatch, the NUClear architec-
ture is able to provide both better modularity and performance by 
parallelizing module execution where possible. Additionally, the 
multithreading controls provided by the NUClear architecture 
remove the need for detecting when the system is overloaded 
and lagging. This removes the need for implementing queues and 
high-watermark throttling.

The first stage in the vision pipeline involves reducing an 
image from raw pixel data to color and edge information. Using 
the thread-aware features of the NUClear architecture, the vision 
pipeline ignores incoming images when the compute load is too 
high. It is also possible to define multiple input camera streams, 
each of which processes and drops frames independently and 
fairly. This allows smooth operation for multi-camera robots, 
as well as avoids loading down the system with heavy image 
processing. The image color classification itself is performed 
using a look-up table that converts pixel values into symbolic 
colors.

Several investigations have been made into automating and 
improving color classification within these systems (Henderson 
et al., 2008; Röfer et al., 2011). The current system furthers this 
work by dynamically adapting to light and color conditions based 
on detected objects and regions. Using the NUClear framework’s 
Priority keyword, it is possible to run the dynamic color adapta-
tion as a low priority process that does not interfere with the 
system’s normal running or process outdated data.

Objects are detected using a collection of independent color 
and shape-based detector modules (Murch and Chalup, 2004). 
As the inputs and outputs for detector modules are defined as 
messages and the NUClear system is compiled as a collection of 
modules, it is very simple to include or swap out detectors for 
various testing purposes. This strength is similar to the utility that 
ROS provides; however, message dispatch times are significantly 
reduced. This allows real-time tracking of relatively fast-moving 
objects such as rolling balls. NUClear also provides a functional-
ity to disable and enable the execution of modules at run time, 
allowing detectors that are not needed for the current task to be 
switched off.

Versions of image color classification have been used within 
the context of robot competition environments for some time. 
However, improvements in camera sensors and noise filtering 
have reached a level of robustness suitable for deployment in 
more difficult and dynamic environments. As such, this system 
was also used in the RobotX Maritime Challenge with minimal 
modification.

6.2. localization and Mapping
With the modularity of the rest of the NUClear architecture, it 
is important when developing localization components to allow 
for a range of inputs and drop-in replacements. Localization 
modules take visual detector observations and orientation sensor 
updates as inputs. The structure of observations provides an angle 

Robot Sensors

Camera Color
Classification

Object
Detection

Localization

PlanningMotor
Skills

FIgURe 12 | high level overview of the nUbots’ information flow loop. 
Each of the elements represents a collection of modules that work together 
to achieve the goal of that element.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


13

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

and distance from the robot in three dimensions. This supports 
inputs to be as diverse as users’ faces to marker symbols on the 
ground, while using the same interface. Multiple estimations 
with differing confidences are allowed for each detection, as 
there may be more than one hint in the image about the distance 
of the object. The significant difference between NUClear and 
other message-passing architectures for localization and map-
ping is that NUClear removes the need for maintaining caches 
and matching sensor timestamps when performing data fusion 
updates reducing the amount of code required. This improves 
the clarity of the code and algorithms used, as well as improving 
efficiency slightly.

6.3. planning and Actuation
The NUbots’ system utilizes an extended form of subsumption 
logic (Brooks, 1986) to arbitrate access between skill modules 
and the robot’s hardware. The system operates through the 
registration of each module at system start-up (which can be 
specified by the NUClear Startup event), along with their current 
subsumption priority and the hardware components they wish to 
control. The subsumption controller then allocates resources to 
the registered modules based on which module has the highest 
priority for a subset of the robot’s limbs. The subsumption prior-
ity of a module can be changed in real time by request from that 
module, allowing the system to dynamically allocate control as 
priorities change.

The use of a flexible, thread-aware message-passing system 
with very fast dispatch times supports the implementation of 
modular reflexive behaviors and failsafes without impacting on 
the implementation of the rest of the system. This has been used 
in the NUbots’ system to implement universal reflexive responses. 
An obvious candidate for reflexive behavior on a bipedal platform 
is the implementation of a protective reflex to reduce damage from 
falls. This reflex acts on the filtered gyroscope and accelerometer 
data produced from the sensors without going through any other 
processing or delays. If the robot is falling, the reflex takes high-
est priority on all limbs until the accelerometer indicates that the 
robot has come to rest.

The fall reflex was originally designed to mimic humans, put-
ting arms out to soften the impact. It was found that throwing the 
arms forward with elbows bent and then deactivating the motors 
to become fully compliant was effective at reducing the impact 
to the robot’s body. These types of reflexes are only effective if 
action is taken almost at the instant the robot realizes it will fall; 
otherwise, there will not be enough time to effectively reposition 
the body. For this reason, slower message-passing systems may 
not be able to effectively implement reflexes as independent 
modules.

Head behavior is one of the unique challenges involved with 
humanoid robotics. If a robot is to be truly humanoid, it should 
not use a visual system that has a field of view greater than that 
of a human. This limits the amount of the environment that can 
be perceived at any one time. Humans meet this challenge with 
two key behavioral systems: head movement and eye movement. 
The movement of the head adjusts the coarse field of view, while 
the much faster movement of the eye defines where high detail is 
perceived (Duchowski, 2007).

The NUbots’ head behavior system has been developed to 
mimic the blur-reduction of human eye behavior, in particular, 
the vestibulo-ocular reflex (Fetter, 2007). The vestibulo-ocular 
reflex is the mechanism by which stationary objects in the world 
are stabilized on the retina of the eye during head movement. 
This works through a tight feedback loop with both vestibular 
information from the balance system and visual information. 
Humanoid robots have a similar problem with image stabiliza-
tion. When the robot’s body rotates, typically the head rotates 
with it. This can blur the camera images. The NUbots’ system 
takes the most recent orientation information, in the form of a 
rotation matrix, and uses this to set a constant look direction 
in the global reference frame regardless of the robot’s motion. 
As with the fall-protection reflex, this type of reflexive behavior 
requires very fast end-to-end response times to be effective.

6.4. Robot learning
Learning is a fundamental human skill. As online planning 
and machine learning algorithms advance, it is important to 
incorporate features that simplify their implementation on any 
robot software architecture. Distinctions must be made between 
online learning, offline learning, on-board learning, and learning 
processed on an more powerful external system. Most message-
passing systems support network communication and data out-
put for offline learning. The NUClear architecture also provides 
a high efficiency framework for implementing embodied and 
online learning systems, as well as methods for sharing, storing, 
and visualizing the data produced by these systems.

Of particular use in the context of learning is the NUClear 
Last keyword. This provides a cached stream of events to be 
processed during learning updates. This simplifies the imple-
mentation and maintenance of embodied movement-based 
optimization and learning algorithms, which often operate 
in batch mode on a stream of evaluation data at the end of a 
movement (Kalakrishnan et al., 2011; Budden et al., 2013). As 
such, NUClear simplifies the development process for many 
embodied machine learning algorithms when compared to 
previous architectures such as the platform of Kulk and Welsh 
(2012). Due to lower system overhead and faster inter-module 
communications, NUClear is also more efficient than traditional 
message-passing architectures such as ROS when fulfilling this 
role. NUClear has key advantages over other systems due to its 
co-messaging and built-in keywords that allow simpler imple-
mentation of machine learning algorithms.

7. conclUSIon

Message-passing systems are an ideal solution to robotic archi-
tectures. This is supported by the popularity of the ROS research 
architecture and other message-passing architectures. Systems 
based on message passing have been at the forefront of software 
architectures for high functioning robots for the last decade. The 
isolated components operate independently and when coupled 
with a message-passing system, they can be altered and replaced 
with much greater ease.

The limitations that prevented these architectures from being 
deployed on robots without sufficient performance have been 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


14

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

ReFeRenceS

Allgeuer, P., Farazi, H., Schreiber, M., and Behnke, S. (2015). “Child-sized 3d 
printed igus humanoid open platform,” in IEEE-RAS International Conference 
on Humanoid Robots (Humanoids) (Seoul: IEEE).

Barrett, S., Genter, K., He, Y., Hester, T., Khandelwal, P., Menashe, J., et al. (2013). 
“UT austin villa 2012: standard platform league world champions,” in RoboCup 
2012: Robot Soccer World Cup XVI, Volume 7500 of Lecture Notes in Artificial 
Intelligence (LNAI), eds X. Chen, P. Stone, L. E. Sucar, and T. V. D. Zant  (Berlin; 
Heidelberg: Springer), 36–47.

Beck, F., and Diehl, S. (2011). “On the congruence of modularity and code 
coupling,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th 
European Conference on Foundations of Software Engineering, ESEC/FSE ‘11 
(New York: ACM), 354–364.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE 
J. Robot. Autom. 2, 14–23. doi:10.1109/JRA.1986.1087032 

Bruyninckx, H. (2001). “Open robot control software: the OROCOS project,” in 
IEEE International Conference on Robotics and Automation, 2001. Proceedings 
2001 ICRA, Vol. 3. (Piscataway, NJ: IEEE), 2523–2528.

Budden, D., Walker, J., Flannery, M., and Mendes, A. (2013). “Probabilistic  
gradient ascent with applications to bipedal robot locomotion,” in 
Australasian Conference on Robotics and Automation 2013 (ACRA 2013), eds 
J. Katupitiya, J. Guivant, and R. Eaton (Australian Robotics & Automation  
Association).

Coleman, R., Estivill-Castro, V., Fernandez, E., Geffner, H., Gilmore, E., 
Ferrer, J., et  al. (2013). Mi-Pal Team Description 2013. Available at: 
 http://www.informatik.uni-bremen.de/spl/pub/Website/Teams2013/MiPAL.pdf

Corke, P., Sikka, P., Roberts, J. M., and Duff, E. (2004). “DDX: a distributed soft-
ware architecture for robotic systems,” in Proceedings of the 2004 Australasian 
Conference on Robotics and Automation (ACRA 2004), eds N. Barnes  and D. 
Austin  (Australian Robotics & Automation Association).

Dantam, N., Lofaro, D., Hereid, A., Oh, P., Ames, A., and Stilman, M. (2015). 
The Ach library: a new framework for real-time communication. IEEE Robot. 
Autom. Mag. 22, 76–85. doi:10.1109/MRA.2014.2356937 

Duchowski, A. (2007). Eye Tracking Methodology: Theory and Practice, Second 
Edition. Springer-Verlag London Limited.

Edwards, S., and Lewis, C. (2012). “Ros-industrial: applying the robot operating 
system (ROS) to industrial applications,” in IEEE Int. Conference on Robotics 
and Automation, ECHORD Workshop. St. Paul.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. (1980). The hearsay-II 
speech-understanding system: integrating knowledge to resolve uncertainty. 
ACM Comput. Surv. 12, 213–253. doi:10.1145/356810.356816 

Fetter, M. (2007). Vestibulo-ocular reflex. Dev. Ophthalmol. 40, 35–51. 
doi:10.1159/000100348 

Ha, I., Tamura, Y., Asama, H., Han, J., and Hong, D. (2011). “Development of open 
humanoid platform DARwIn-OP,” in Proceedings of SICE Annual Conference  
2011 (SICE2011) (Tokyo: The Society of Instrument and Control Engineers 
(SICE) and IEEE), 2178–2181.

Hammer, T., and Bäuml, B. (2014). The communication layer of the aRDx software 
framework: highly performant and realtime deterministic. J. Intell. Robot. Syst. 
77, 171–185. doi:10.1007/s10846-014-0095-9 

Hayes-Roth, B. (1985). A blackboard architecture for control. Artif. Intell. 26, 
251–321. doi:10.1016/0004-3702(85)90063-3 

Henderson, N., King, R., and Chalup, S. (2008). “An automated colour calibration 
system using multivariate Gaussian mixtures to segment HSI colour space,” in 
Proceedings of the 2008 Australasian Conference on Robotics and Automation 
(ACRA 2008), eds J. Kim  and R. Mahony  (Australian Robotics & Automation 
Association).

Houliston, T., Metcalfe, M., and Chalup, S. K. (2015). “A fast method for adapting 
lookup tables applied to changes in lighting colour,” in RoboCup 2015: Robot 
World Cup XIX, Volume (9513) of Lecture Notes in Artificial Intelligence (LNAI) 
(Berlin; Heidelberg: Springer), 190–201.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). 
“Stomp: stochastic trajectory optimization for motion planning,” in Robotics 
and Automation (ICRA), 2011 IEEE International Conference on (IEEE), 
4569–4574.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1997). “RoboCup: the 
robot world cup initiative,” in Proceedings of the First International Conference 
on Autonomous Agents, AGENTS ‘97 (New York: ACM), 340–347.

Kulk, J., and Welsh, J. S. (2012). “A NUPlatform for software on articulated 
mobile robots,” in Leveraging Applications of Formal Methods, Verification, 
and Validation, Communications in Computer and Information Science, eds R. 
Hähnle, J. Knoop, T. Margaria, D. Schreiner, and B. Steffen  (Berlin; Heidelberg: 
Springer), 31–45.

Lim, J., Shim, I., Sim, O., Kim, I., Lee, J., and Oh, J.-H. (2015). “Robotic software 
system for the disaster circumstances: system of team KAIST in the DARPA 
robotics challenge finals,” in 2015 IEEE-RAS 15th International Conference on 
Humanoid Robots (Humanoids) (Danvers: IEEE), 1161–1166. doi:10.1109/
HUMANOIDS.2015.7363509 

Magyar, G., Sinčák, P., and Krizsán, Z. (2015). “Comparison study of robotic mid-
dleware for robotic applications,” in Emergent Trends in Robotics and Intelligent 
Systems, Volume 316 of Advances in Intelligent Systems and Computing, eds 
P. Sinčák, P. Hartono, M. Virčíková, J. Vaščák, and R. Jakša (Cham: Springer 
International Publishing AG), 121–128.

removed through the development of the NUClear framework. 
The NUClear framework is able to operate at speeds that approach 
native function calls, while also providing transparent multi-
threading and type safe data storage. The ability to access multiple 
message types simultaneously greatly speeds the development of 
new modules, as this access pattern mirrors humanoid robots’ 
sensor systems. In contrast to other message-passing systems, 
it allows programmers to specify the global data requirements 
as a part of the listener declaration, rather than constructing a 
separate listener for each piece of data required. These data are 
guaranteed by the NUClear framework to be accurate and act as 
a clear dependency definition in one place, which improves the 
knowledge of the system.

These advantages make the NUClear system a valuable propo-
sition for research robotics. The advantages also suggest that 
further investigation should be taken into message based systems 
that contain a global message store. These systems have properties 
that greatly simplify the fusion and processing of data streams that  
are required for modern humanoid robotics, which could lead to 
more maintainable and flexible systems in the future.

AUThoR conTRIBUTIonS

The system has been developed over several years where the 
students of the team (TH, JW, JF, and MM) contributed code 
development with the software architecture work performed by 
TH. The academics in the team (SC, AM, and YL) contributed 
management and supervision. The lead authors of the current 
manuscript are TH with assistance from JW. Information for 
sections of the case study was provided by JF and MM.

AcKnoWleDgMenTS

The authors are grateful to all previous members of the NUbots 
team who contributed to development of the software base since 
2002. Additional key developers and contributors at various 
stages of this process were Brendan Annable, Monica Olejniczak, 
Peter Turner, Aaron Wong, and Jake Woods. The authors thank 
Alex Biddulph for his assistance running the timing comparisons 
with ROS. The authors are also grateful to Ellie-Mae Simpson for 
assistance proofreading this manuscript.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/JRA.1986.1087032
http://www.informatik.uni-bremen.de/spl/pub/Website/Teams2013/MiPAL.pdf
http://dx.doi.org/10.1109/MRA.2014.2356937
http://dx.doi.org/10.1145/356810.356816
http://dx.doi.org/10.1159/000100348
http://dx.doi.org/10.1007/s10846-014-0095-9
http://dx.doi.org/10.1016/0004-3702(85)90063-3
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363509
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363509


15

Houliston et al. NUClear

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 20

Matamoros, J. M., Savage-Carmona, J., and Ortega-Arjona, J. L. (2015). “A 
comparison of two software architectures for general purpose mobile service 
robots,” in 2015 IEEE International Conference on Autonomous Robot Systems 
and Competitions (ICARSC 2015), eds A. Valente, R. Morais, L. Almeida, and L. 
Marques (Los Alamitos: IEEE Computer Society), 131–136.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform. 
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761 

Murch, C. L., and Chalup, S. K. (2004). “Combining edge detection and colour 
segmentation in the four-legged league,” in Proceedings of the 2004 Australasian 
Conference on Robotics & Automation (ACRA’2004), eds N. Barnes and D. 
Austin  (Australian Robotics & Automation Association).

Orebäck, A., and Christensen, H. I. (2003). Evaluation of architectures for mobile 
robotics. Auton. Robots 14, 33–49. doi:10.1023/A:1020975419546 

Page-Jones, M. (1988). The Practical Guide to Structured Systems Design, 2nd Edn. 
(Upper Saddle River, NJ: Yourdon Press).

Pressman, R. S. (2005). Software Engineering: A Practitioner’s Approach, 6th Edn. 
(Columbus, OH: McGraw-Hill Education).

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS: 
an open-source robot operating system,” in 2009 IEEE ICRA Workshop on Open 
Source Software, Vol. 3.

Quinlan, M. J., Chalup, S. K., and Middleton, R. H. (2004). “Application of SVMs 
for colour classification and collision detection with AIBO robots,” in Advances 
of Neural Information Processing Systems (NIPS’2003), Vol. 16, eds S. Thrun, L. 
Saul, and B. Schölkopf  (Cambridge, MA: The MIT Press), 635–642.

Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., et al. (2011). 
B-Human Team Report and Code Release 2011. Available at: http://www.b- 
human.de/downloads/coderelease2012.pdf

Thórisson, K. R., List, T., DiPirro, J., and Pennock, C. (2005a). A Framework 
for AI Integration. Technical Report, RUTR-CS05001. Reykjavik University 
Department of Computer Science.

Thórisson, K. R., List, T., Pennock, C. C., Dipirro, J., Magnusson, F., Thórisson, 
K. R., et al. (2005b). “Whiteboards: scheduling blackboards for interactive 
robots,” in AAAI-05 Workshop on Modular Construction of Human-Like 
Intelligence, Twentieth Annual Conference on Artificial Intelligence, Pittsburgh, 
PA, July 9-13, 2015 (Palo Alto, CA: AAAI).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Houliston, Fountain, Lin, Mendes, Metcalfe, Walker and Chalup. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.1023/A:1020975419546
http://www.b-human.de/downloads/coderelease2012.pdf
http://www.b-human.de/downloads/coderelease2012.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems
	1. Introduction
	2. Robotic Software Architectures
	2.1. Blackboard
	2.2. Messaging
	2.3. Whiteboard
	2.4. 2012 NUbots’ Architecture
	2.5. Comparisons

	3. The NUClear Framework
	3.1. Simple API
	3.1.1. Domain-Specific Language

	3.2. Low Performance Penalty
	3.3. Simple Utilization of System Resources
	3.4. Time-Series Data
	3.5. Soft Real-Time
	3.6. Statistics, Logging, and Traceability

	4. NUClear Evaluation
	4.1. Interface Size
	4.2. Memory Usage
	4.2.1. Cache Computational Overhead


	5. Target Platforms
	6. Case Study – NUbots’ Codebase
	6.1. Vision Pipeline
	6.2. Localization and Mapping
	6.3. Planning and Actuation
	6.4. Robot Learning

	7. Conclusion
	Author Contributions
	Acknowledgments
	References


