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The genetic operators (GOs) of recombination, mutation, and selection are commonly 
included in studies of evolution and evolvability, but they are not the only operators that 
can affect the genotype-to-phenotype (G → P) map and thus the outcomes of evolution. 
In this paper, we present experiments with an epigenetic operator (EO), interactive wiring 
of a circuit, alongside common GOs, investigating both epigenetic and GO effects on 
the evolution of both simulated and physically embodied Braitenberg-inspired robots. 
As a platform for our experiments, we built a system that encoded the genetics for 
the physical circuitry of the analog robots and made explicit rules for how that circuitry 
would be constructed; phenotypic expression consisted of the placement of wires to 
form the circuitry and thus govern robot behavior. We then varied the presence of gene 
interactions across populations of robots, studying how the EO—and its effects on 
G → P maps—affected the results of evolution over several generations. Additionally, a 
variant of these experiments was run in simulation to provide an independent test of the 
evolutionary impact of this EO. Our results demonstrate that robot populations with the 
EO had quantitatively different and potentially less adaptive evolution than populations 
without it. For example, selection increased the rate at which functional circuitry was 
lost in the population with the EO, compared to the population without it. In addition, in 
simulation, EO populations were significantly less fit than populations without it. More 
generally, results such as these demonstrate the interaction of genetic and EOs during 
evolution, suggesting the broad importance of including EOs in investigations of evolv-
ability. To our knowledge, our work represents the first physically embodied EO to be 
used in the evolution of physically embodied robots.

Keywords: epigenetic operators, evolutionary robotics, development, genotype–phenotype mapping, physically 
embodied robots

inTrODUcTiOn

In biology, understanding how development—the mapping of genotype-to-phenotype (G → P)—
shapes the creation of phenotypic variation has created a paradigmatic shift in evolutionary 
theory (Wagner and Altenberg, 1996; Pigliucci, 2010). The long-standing “adult transforma-
tion” paradigm treated development as if it were absent, invariant, or  instantaneous, in spite of 
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Garstang’s (Garstang, 1922) early hypothesis that ontogenies, 
not fully formed adults, evolve (Northcutt, 2002). Implementing 
Garstang’s approach required the tools of modern molecular 
biology to find and track (1) the expression of genes, (2) the 
epigenetic processes that convert gene products into working 
molecular machinery, and (3) the feedback among developing 
cells and tissues in a system that bootstraps its own manufacture 
while interacting autonomously with its local ecology. With the 
understanding that the organism faces and responds to selec-
tion pressures throughout its life, evolutionary developmental 
biology was born (“evo-devo”; Amundson, 2005; Carroll, 2008). 
For roboticists, the evo-devo challenge is to create physically 
embodied systems that incorporate the three scales of time and 
the processes inherent in each: behavior, development, and 
evolution (Pfeifer and Bongard, 2006). Because of the complex-
ity of building and evolving physical robots, this is a daunting 
challenge in the quest for the “evolution of things” (Eiben and 
Smith, 2015). As an initial step toward this goal, in this paper we 
create a physically embodied system that allows us to examine 
systematically how developmental and evolutionary processes 
interact.

An explicit evo-devo approach has proven invaluable in 
the evolution of artificial neural networks (“ANNs”; Kitano, 
1990; Floreano et al., 2008; Mattiussi et al., 2008; for a review). 
Development serves as a new type of evolutionary driver—along-
side the genetic operators (GOs) of mutation, recombination, and 
selection—facilitating evolvability in embodied agents (Bongard, 
2002; Bongard and Pfeifer, 2003; Pfeifer et  al., 2007). Since 
developmental processes, like genetic processes, are complex 
and varied, we recognize them as a class of operators—epigenetic 
operators (EOs).

By our restricted definition, EOs alter the phenotypic expres-
sion of a genome. Recognizing that EOs work in conjunction with 
GOs, our goal is to create a conceptual and physical methodology 
that allows investigators to manipulate the interaction of GOs and 
EOs in physically embodied robots. For starters, if one compares 
two genetically identical populations, one with and one without 
an EO, the evolutionary impact of the EO can be substantial. One 
can manipulate this EO effect by changing the developmental 
rules of the EO directly, altering the fitness landscape, and chang-
ing the initial position of the populations within that landscape 
(Figure 1).

A G → P map without EOs is the equivalent of Northcutt’s 
(Northcutt, 2002) adult transformation paradigm: adults appear 
in final form on the evolutionary stage without explicit recogni-
tion of how they were created. In evolutionary robotics (ER), the 
construction of physically embodied robots has never been, to 
our knowledge, manipulated directly as an experimental variable. 
We do so here, creating an embodied EO that recognizes that 
connections between sensors and motors may interact during a 
developmental process in which the genome’s instructions are 
enacted to sequentially wire a circuit board with a limited set of 
connection pins.

The value of incorporating developmental processes into evo-
lutionary computational models has long been known to the AI 
community. Gruau’s (Gruau, 1994) proposed model evolved cel-
lularly encoded ANNs: the G → P map does not directly represent 

aspects of the phenotype but rather encodes the rules for how 
neural “cells” split and connect to their daughter cells. These rules 
are ordered in a collection of binary trees, which evolve through 
the application of the GOs. Each ANN begins as a single cell, 
but develops into a fully fledged network through execution of 
the rules in each tree during the G → P mapping process. The 
model’s strength lies in the fact that the terminal nodes of trees are 
allowed to point to the root of other trees, allowing for potentially 
useful substructures to repeat in the completed networks.

This idea of reuse underlies a more recent evo-devo 
approach to designing ANNs, HyperNEAT (Stanley et  al., 
2009). HyperNEAT builds on neuro-evolution of augmenting 
topologies (NEAT, a method for evolving ANNs that does not 
require the topology of the network to be set a priori) by incor-
porating a generative and developmental encoding scheme. 
This encoding scheme, called compositional pattern producing 
network (CPPN), indirectly encodes the weights between 
nodes in the ANN (Stanley, 2007). This is done by treating 
the NEAT-evolved ANN as existing in an n-dimensional 
Cartesian space. The CPPN, which is essentially a composition 
of geometric functions, takes the coordinates of every pairwise 
set of nodes as input, and for each returns the output of the 
functions, which represents the connection weight between the 
two nodes. Because the network’s weights are determined by 
repeated application of the same set of functions, the resultant 
connectivity network is often highly regular and symmetrical, 
much like biological brains (cf. Gilbert and Wiesel, 1992). 
Additionally, given that weights are determined as a function of 
the nodes’ positions in space, geometric relationships between 
inputs could be autonomously exploited.

The main advantage of these developmental systems is that 
they efficiently encode phenotypes by doing so indirectly (Eiben 
and Smith, 2015). Genes code for processes that build structures 
rather than for the structures themselves. This efficiency is 
enhanced when genetic structures are reused and redeployed. 
These developmental models were designed with the under-
standing that the process by which a phenotype is constructed 
is as critical to an individual’s fitness as the information coded 
in its genome. However, in biological systems, this construction 
process is not fully specified in the genome (Pigliucci, 2010). 
Instead, epigenetic processes, together forming the genetic 
regulatory network (GRN), alter how the genotype is expressed 
through physical interactions. For example, pleiotropic interac-
tions spread the expression of one gene to many phenotypes. In 
epistasis, two or more genes interact to alter one phenotype. The 
dynamic GRN is the enacted G → P map.

Heeding the call for morphogenetic robotics (Jin and Meng, 
2011) and morphogenetic engineering (Doursat et  al., 2012), 
we note that what is missing from ER is not development 
per  se but rather physically embodied development (PED). 
We take the first simple steps toward combining the two here 
by examining the interactions of EOs and GOs in the evolu-
tion of physically embodied and simulated robots. First, we 
provide a simple conceptual framework for the evolutionary 
impact of EOs on populations (Figure  1). Second, given the 
large number of possible EOs in any system, we use the con-
straints imposed by a physical, analog robot to motivate the 
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FigUre 1 | epigenetic operators (eOs) and selection interact to alter evolution. By design, EOs alter the expression of phenotypes by the genome. In this 
general scenario, the evolution of two populations that are initially genetically identical (a) is controlled by three main factors: (1) type of phenotypic difference 
created by the EO; (2) shape of the fitness landscape; and (3) location of the populations on the fitness landscape (B). Assumptions of this model include the 
following: (1) the fitness gradient is stable over generational time; (2) the rate of mutation is constant but insufficient to replace genetic variance lost by selection; and 
(3) no gene flow exists between the populations. In this example, selection increases the mean and decreases the variance of the EO population (c); the loss of 
variance stalls evolution by selection (D). Given the ability to adjust the factors and the assumptions, the scenario shown here is one of many possible.
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creation of a physically embodied EO. The embodied EO is the 
destructive physical interaction of two or more gene expres-
sion pathways, which we call threads. The instantiation of the 
threads is the physical wiring between sensors and motors (see 
Materials and Methods for details), a G → P mapping process 
that we call “interactive thread development.” Third, we test the 
fundamental hypothesis that an EO will alter the evolutionary 
trajectory of a population. Using physical and simulated robots, 
we compare the evolutionary dynamics of populations with and 
without this EO.

MaTerials anD MeThODs

Physical robot
The Ana BBot from Johuco Ltd. (http://johuco.com) is a physical, 
analog robot inspired by Braitenberg’s (Braitenberg, 1986) vehi-
cles (Figure 2). While a robot with a digital microcontroller could 
be used, we chose an analog robot so that the genome—which 
codes for the connections on the circuit—has an actual, not simu-
lated, expression in the physical world. This physical expression 
of the genome guided our creation of an EO (see EO: Interactive 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://johuco.com


A B

C D

FigUre 2 | ana BBot, a mobile robot that is programmable using jumper wires to connect sensors and motors. (a) Front view, with photocells and IR 
range detectors. (B) Lateral (left) view, showing drive wheels. (c) Robot wired using jumpers. (D) Top view, showing circuit board unwired.
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Thread Development) as the physical interaction of the wires that 
connect components on the circuit board.

The Ana BBot has four sensors, two IR proximity detectors 
and two photosensors, mounted on the front. The Ana BBot 
also has two motors that differentially drive the robot, with an 
unpowered posterior caster wheel to maintain balance. The open 
circuit board (Figure  2D) allows different components to be 
wired together with jumper wires (Figure  2C) that connect to 
headers (“pins”). The robot is programed by changing the wiring 
of its circuit board.

Each of the components on the circuit board has a correspond-
ing group of functionally equivalent pins (“pin groups”). For a 
given input pin group, each pin may receive an electrical signal 
that comes from a variety of sources; for a given output pin group, 
each pin produces an identical electrical signal ranging from 0 to 
1. While the signal between pin groups can be easily modified via 
alteration to the wiring, the strength of the signals themselves can 
be modulated if they pass through one of the robot’s six “neurons.” 
Each neuron has both excitatory and inhibitory input pin groups. 
The neuron outputs the sum of its inputs to a pin group directly 
or via an adjustable threshold for firing. Sensors may bypass the 
neurons and connect directly to the motors. Additional signal 
modulation is possible via the associated gain trimpots for the 
sensors, neurons, and motors and through alterations to the 

internal resistance of the wires. For the purposes of our experi-
ment, trimpots were all centered and only wires with a 470 kΩ 
internal resistance (1× multiplication factor) were used.

Genome
The genome represents possible wirings of the Ana BBot’s 
circuit board (Figure 3). The genome itself consists of a fixed 
number of objects called bases, containing two binary values: 
a bit value and a crossover point value. The bit serves as a basic 
unit of genetic expression analogous to biological nucleobases, 
while the crossover point is used in reproduction to signal a 
potential stop to the copying of data from a parental genome to 
its offspring. Both bits and crossover points may be either 1 or 
0. Within the initial populations, each bit has an equal chance of 
being either 1 or 0. Each of the initial genomes in a population 
has two crossover points (value of 1) assigned randomly to a 
respective number of bases. In these experiments, crossover 
points and bits each have a 1/2,000 probability of being altered 
by the mutation operator.

The genome is split into genetic modules that encode for 
“threads.” A thread specifies a series of wires that form a con-
nection across the circuit, and each genome can code for 0 or 
more threads (Figure  4). We specified that wires cannot form 
self-recurrent connections at input pin groupings of neurons. 
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FigUre 3 | The genome represents the possible wirings of the ana BBot. The pins on the circuit board of the Ana BBot are represented in a matrix, with 
each pin group forming a row and the pins within that group forming its elements. Pin groups used are highlighted in yellow. There are 122 pins. Schematic used 
with permission from Johuco, Ltd. (http://johuco.com).
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Self-recurrent connections were allowed between output pins of 
the neurons; a positive feedback loop that increases signals can 
be achieved through such a configuration. In total, 7,255 unique 
wire connections are possible, as calculated:

 x p p= −( ) / ,1 2  (1)

with p being the total number of pins on the circuit board, 122. 
We subtracted the disallowed self-recurrent connections,

 y x ab b= − −( ) / ,1 2  (2)

where a = 6, the number of neurons on the circuit, and b = 7, the 
number of input pins in each.

In order to map from a binary genome to the physical threads, 
a decoder operates on the genome, treating the genome as a con-
catenation of 4-bit strings and translating each 4-bit component 
into its equivalent decimal number (e.g., 0010 translates to 2, 0101 
translates to 5); although 4-bit strings can represent any number 

from 0 to 15, the decoder only translates components with binary 
values in the decimal range 0–9, reducing the genetic search space 
and thus the computational time required to generate viable 
populations. The resulting decimal digits are then treated as a 
program for generating the resulting wiring—they can be viewed 
as encoding instructions for the movement of an “automaton” 
that traverses the circuit matrix (Figure 3), describing the pat-
tern in which wires are added to create a thread (Figure 4). The 
first two decoded decimal digits are treated as the starting (X, Y) 
coordinates for the first wire; the next two digits determine the 
direction (eight possible, four cardinal, and four inter-cardinal) 
and distance of the jump to the ending position of that wire. If a 
thread contains more than one wire, the origin of the second wire 
will be a free pin in the pin group of the terminus of the previous 
wire connection.

It is possible for the decimal numbers to specify a coordinate 
position that is outside of the bounds of the pin matrix, which 
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FigUre 4 | Development of threads with and without the epigenetic operator (eO) that causes threads to interact destructively. (a) Without an EO, 
independent thread development allows threads to grow as a series of connections that share rows on the pin matrix, as genetically determined. If one thread 
attempts to attach onto an occupied pin, then it wires on an adjacent pin. (B) With the interactive thread EO, development prevents some threads from forming. If 
one thread attempts to attach to an occupied pin, then this interaction destroys that wire. The thread retreats to the previous pin and terminates its growth. In either 
process, once development is completed, the wiring diagram is used to wire the physical Ana BBot. Under the rules of development, the 122 pins may form 7,255 
possible unique connection patterns.
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would not correspond to an actual pin on the circuit. In this event, 
the thread simply terminates, leaving the previous wire connec-
tions, if they exist, intact on the circuit board. It is also possible 
for multiple genes to express threads that code for connection to 
the same pin on the matrix.

EO: Interactive Thread Development
Because the expression of genetically encoded threads involves 
the sequential connection of wires to pins on the circuit board, 
the beginning or end coordinates of wires specified in the second 
thread or later could in principle already be occupied by a previ-
ously specified wire. We treat this kind of physical interaction 

among wire endpoints as an EO: when interaction occurs, the 
forming thread is terminated, hence altering the expression of 
the genotype. We call this EO-driven process interactive thread 
development (Figure 4).

To test the hypothesis that this EO will alter the evolution of 
a population of Ana BBots (see Figure  1), we considered two 
populations: one with interactive thread development; and one 
with independent thread development (Figure  4), which allows 
full phenotypic expression of genes whose threads would be oth-
erwise terminated by the EO of interactive threads. The process of 
gene expression in independent thread development is described 
in Section “Genome”: a genome that specifies the same pin for 
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two different wires expresses both by shifting one of the wires to 
the next sequential unoccupied pin in that pin group.

Mating and Reproduction
Because of the time-consuming nature of experiments with physi-
cally embodied robots, we chose a population size of 10. While 
small, this population size is larger than that of previous work 
on evolving physical robots where selection for phototaxis could 
clearly act in spite of the presence of genetic drift (Long et al., 
2006; Roberts et al., 2014; Livingston et al., 2016). Because of the 
concern that the small size of the population might eliminate or 
under-represent fit genomes in a standard roulette wheel mat-
ing algorithm, we used a simple ranking algorithm for choosing 
mating pairs.

Pairs of individuals are placed into five ranks by order of their 
fitness. Once the pair in the first rank has been crossed, these two 
individuals are moved to the second rank, where they join the two 
individuals there to form a mating pool of four. From that set of 
four individuals, two are randomly chosen to mate. Leaving the 
two unmated individuals in that rank, the two parents are then 
moved to the third rank, creating another pool of four individu-
als. This mate-and-move process continues until the fourth pair 
to mate moves to the fifth and final rank. After the fifth mating, 
those two parents are removed from the gene pool. Returning 
to the second rank, the highest remaining with individuals, the 
process continues with the mating of that pair and their move-
ment to the third rank. This process continues until 10 offspring 
have been created.

The sexual reproduction algorithm recombines the two 
parental genomes (Figure  5). One parent is randomly chosen 
to start the process of replication. Its genome is copied until a 
crossover point shifts copying to the genome of the other parent. 
Once the recombined genome is produced, each of the 540 bases 
is subjected to mutation, with a 1/2,000 chance of mutating either 
the bit or crossover value of each base.

Evolutionary Trials
Three independent variables were manipulated. The first was the 
type of development: with or without an EO (see EO: Interactive 
Thread Development in this section). The second was selection: 
present or absent. The third was the nature of the crossing over: 
unconstrained (occurring anywhere in the genome) or con-
strained to positions between the genes that encode for threads. 
Our primary hypothesis was that an EO will alter the evolutionary 
trajectory of a population under selection (see Figure 1).

The task was phototaxis with obstacle avoidance. Each 
individual circuit phenotype was tested on an Ana BBot in a 
rectangular arena with a single light source and three barriers that 
prevented the robot from traveling straight to the light from its 
starting position (Figure 6). The robot carried a light data logger 
(Onset model HOBO) on its front, on top of the circuit board. 
The amount of light gathered over 2 minute was used as a direct 
measure of fitness for each individual. To control for degradation 
of hardware over the course of evolution, individuals of the two 
populations were tested in register with respect to generation and 
randomly within a generation. In addition, we normalized fitness 
using performance values from a hand-coded circuit, derived 

from Braitenberg’s vehicle IIB (Braitenberg, 1986), that we ran 
each generation.

The task, environment, morphology, and fitness function 
combine to create a complex fitness landscape (Figure 7A). One 
virtue of simple Braitenberg-type vehicles is that their maximal 
performance is easy to predict, at least for circuits with just a few 
threads (Figure 7B). Since our primary goal was to examine the 
evolutionary impact of EOs, we sought to position our popula-
tions at a critical point on the fitness landscape; hence, popula-
tions with independent thread development (no EO) and with 
interactive thread development (EO) had their identical initial 
distributions of the number of threads with a mode of two threads 
and a range of one to three threads (Figure 7C). These genomes 
were randomly generated with a post hoc condition: at least one 
thread must connect a sensor to a motor. This screen was imposed 
because many genetically possible threads do not create a func-
tional circuit; hence, we gave the populations, initially, mobility. 
As early as the third generation in both populations, some indi-
viduals lacked functional threads (details in Section “Results”). 
Because our mating algorithm (see Mating and Reproduction) 
kept these low-fitness individuals in the gene pool, they have 
an opportunity to mate. Thus, the experiments were run until 
mobility was lost. It is important to note that our goal was not to 
show adaptive evolution per se but rather to test the hypothesis 
that an EO can alter the evolutionary dynamics of a population 
of physically embodied robots.

During analysis of these selection experiments, five phenotypes 
in the second generation of the interactive thread development 
population were found to have threads prematurely terminated 
due to errors in the decoding process. Two of the five phenotypes 
lacked an additional motor connection, meaning their behavior, 
and thus their fitness, were possibly affected. This error was fixed 
in subsequent generations. We do not think that the error altered 
the evolutionary trajectory substantially, since the same trend is 
seen in the independent “no selection” trials.

We also ran trials without selection to test the effect of the EO 
without selection and to test the importance of constraining the 
crossover points to intergenic positions. Since these trials require 
no information about fitness (because there is no selection), they 
were run using the algorithms for mating, reproduction, and 
development.

For each statistical analysis, we ran a fully factorial analysis of 
variance (ANOVA) on SPSS (IBM, version 23). For all tests, the 
significance level was 0.05.

simulated robot
To complement the experiments on physical robots, we created 
and evolved simulated Ana BBots to further test the fundamental 
hypothesis that an EO will alter the evolutionary trajectory of a 
population. As with the physical robots, we select for enhanced 
phototaxis with object avoidance. We compare the evolutionary 
dynamics of populations of simulated robots with and without 
the interactive thread EO.

The simulated robots operated in a rectangular, walled 
enclosure modeled after the enclosure of its physical counterpart 
(Figure 8). The enclosure contained three obstacles between the 
robot and the light source. The robot was equipped with four 
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FigUre 5 | reproduction. After two parents are chosen for a given pairing (see text for details), the genome of one is randomly picked to start the process of 
replication with recombination and mutation. The genome is copied until a crossover point is reached. Copying then switches to the genome of the other parent, 
and so forth, until the end of one of the genomes is reached. In the pre-offspring genome, each of the 540 bases is put through a mutation operator that gives a 
1/1,000 chance of change. The final genome of each offspring is a mosaic of two parental genomes further modified by mutation. As crossover points are 
genetically coded and hence transferable to the offspring and susceptible to mutation, they may be eliminated by evolution. Zero crossover points would, by this 
method of reproduction, create asexual reproduction, where only one parent’s genome is copied as the template for the offspring.
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 sensors: two light sensors (placed at front left and front right) and 
two proximity sensors (placed at front left and front right). The 
intensity that a light sensor reads is 1/d2, where d is the distance 
from the sensor to the light source. Shadows of the obstacles were 
not simulated. The intensity that a proximity sensor reads is e, 
where e represents the length of a ray emitted by the sensor, deter-
mined by the first collision of the ray with an obstacle or the inside 
boundary of the arena. The robot had two wheels controlled by 
differential drive and an additional third caster wheel, used for 
balance.

Controller
The ANN created to control the simulated robot modeled that 
of the Ana BBot, with four sensor nodes as inputs, four hidden 
nodes, analogous to the Ana BBot’s neurons, and two motor 
output nodes. Like the Ana BBot’s wires, connections in the 
ANN could occur from the sensor inputs to the motor outputs, 
the sensor inputs to the hidden nodes, the hidden nodes to each 
other, and the hidden nodes to the motor outputs. At each time 
step, the sensor nodes were set to the raw values of the sensors 
without normalization or thresholding. The hidden and motor 
nodes were updated according to the following:

 y y w yi
t

i
t

i ij j
t

j
( ) −( ) −( )= + ( )( )∑tanh ,1 1τ  (3)

where yi
t( ) denotes the value of the ith node at the t-th time step, τi 

denotes the time constant controlling the rate of change of the ith 
node (here all τi = 0.3 following previous work), and wij denotes 
the weight of the connection from node j to node i.

Genotype-to-Phenotype Mapping
The G → P mapping scheme used in the physical experiment was 
re-implemented in simulation as faithfully as possible. Genomic 
parameters were maintained across the physical and simulated 
experiments. Genomes were encoded as strings of 560 bits. These 
genomes dictated where connections should be added to the 
ANN. The procedure for building threads was the same as used 
for the Ana BBot (see Genome), with connections in the ANN 
equivalent to wires in the Ana BBot.

Similar to the process in the Ana BBot, development can fail 
in the following conditions: (1) its target location is outside the 
boundary of the pins; (2) the target pin is already occupied; or (3) 
the target location equals the starting position, in which case no 
movement need occur. In trials with the EO and without (labeled 
“GO”), the process terminates if it experiences condition (1). In 
the EO trials, it also terminates when it experiences conditions (2) 
and (3). In the GO trials, the developmental process will attempt 
to find an empty pin on that row. If it can, it attaches there. If it 
cannot, it terminates.
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FigUre 6 | selection environment for phototaxis with obstacle 
avoidance. (a) The environment consisted of a rectangular arena 
(1.8 × 2.8 m) with the perimeter ringed with cinder blocks (0.2 m height) 
painted matte black. Barriers inside were likewise painted cinder blocks. 
A single 100 W incandescent light hung 70 cm above the floor over one end 
of the arena. The starting position was in the dark area, away from the light. 
(B) Barriers were positioned to prevent any straight path from the start to the 
light. (c) Barriers cast a shadow. From the perspective of the robot, the light 
gradient includes the shadows associated with obstacles.
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originates on pin row j and pin column k, and pik = 0, if there is 
no wire emanating from pin row j and pin column k. Only valid 
pin row pairs are considered, where a valid pin row pair is one 
that connects a sensor pin row to a hidden pin row, a sensor pin 
row to a motor pin row, a hidden pin row to another hidden pin 
row (including its own pin row), or a hidden pin row to a motor 
pin row.

Evolutionary Algorithm and Trials
To increase the generality of these findings, we employed the 
standard AFPO algorithm (Schmidt and Lipson, 2011) to evolve 
the controllers. Each evolutionary trial began with a population 
of 50 random bitstrings. Each was converted into a controller and 
embedded in the simulated robot. The robot was then evaluated 
four times from four different starting positions (Figure  15). 
Each evaluation lasted 300 time steps. After evaluation, fitness 
was calculated as follows:

 f et ette
= +( )== ∑∑ LP RP

1 3001 4 

,  (5)

where LPet and RPet denote the values of the left and right 
photosensors in the e-th environment at the t-th time step, 
respectively.

After all 50 controllers were evaluated, the dominated indi-
viduals were deleted using fitness and age as the two objectives 
(fitness is maximized while age is minimized). The population 
was filled back up to 49 individuals by randomly choosing a non-
dominated individual, copying it, mutating it, and placing it in the 
population. The 50th slot was filled with a random bitstring and 
assigned an age of 0. The next generation was then conducted and 
continued until 50 generations had elapsed.

Two sets of 30 independent evolutionary trials consisting of 
500 generations each were conducted using the EO operator and 
GO operator, respectively.

resUlTs

Physical robots
Evolution of Fitness
The fitness of both populations of Ana BBots decreased sig-
nificantly (p  =  0.009) over generational time (Figure  9A) as 
determined by a 2  ×  7 [Development Type (interactive, inde-
pendent), Generation (1–7)] repeated-measures ANOVA. A 
priori contrasts detected a large and significant (p = 0.012) drop 
in fitness between generations 4 and 5; this drop in fitness may 
correspond to the predicted fitness “cliff ” (see Figure 7). Counter 
to the hypothesis that the EO population should evolve differ-
ently under selection than the non-EO (also referred to as “GO”) 
population, there was no significant difference in fitness or the 
rate of change in fitness between the two (Figure 9B). To deter-
mine whether selection was present, we measured the selection 
differential, S, as the difference in average fitness between those 
parents chosen to mate and the average fitness of the parental 
generation. Selection was present but decreasing in magnitude 
over generational time (Figure  9C). The variance in fitness 
also decreased over generational time (Figure  9D), indicating 
that the convergence of performance onto less mobile robots 

The weight of a connection from neuron j to neuron i is set to 
the following:

 w pji ikk
=∑ ,  (4)

if there are one or more wires traveling from pin row j to pin 
row i, and wij = 0 otherwise. pik denotes the weight of a wire that 
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FigUre 7 | Predicted fitness landscape for ana BBots. Because threads connect sensors to motors, they should be directly proportional to fitness, which 
is measured as the amount of light gathered. (a) The maximal fitness (relative units) depends in a non-linear way on the number of threads. (B) Optimal thread 
configurations for maximal fitness at a given thread number. A single thread connecting a photoresistor (PR) to the motor may allow the robot to rotate toward the 
light source, allowing for a small increase in fitness. Two threads connecting the photoresistors may create the equivalent of a Braitenberg vehicle IIB; the robot will 
move forward and orient toward the light until, in this environment, it encounters an obstacle. Four threads connecting the both photoresistors and IR sensors (IR) to 
the motors may allow the robot to move toward the light and avoid obstacles along the way. For thread numbers of two or higher, lower than maximal fitnesses may 
occur if threads are redundant in their function or if their functions counteract each other. (c) The starting distribution of operational threads for the two populations 
under selection, with and without an epigenetic operator, was identical.
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was collapsing the possibilities upon which selection could act. 
Variance was highly correlated with S for both the independent 
thread (r = 0.982) and interactive thread (r = 0.974) groups. The 
experiment was terminated when none of the robots showed 
mobility.

Evolution of Phenotypes
The hypothesis that the EO population should evolve differently 
under selection than the non-EO population was tested by exam-
ining four phenotypes that had a genetic basis: (1) the number of 
thread interactions, (2) the number of wire connections, (3) the 
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FigUre 8 | simulated ana BBots. As with the physical Ana BBots, the selection environment is phototaxis with obstacle avoidance. Dark gray objects represent 
the obstacles; the light gray object in the background represents the light source. The curved white lines represent the trajectory of the robot (small gray rectangle) 
from its starting position to where it stopped. The grid in the foreground indicates the four possible starting positions. In selection experiments, each controller was 
evaluated four times from four different starting conditions, as shown here for the single best controller evolved without the interactive thread epigenetic operator.
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number of threads, and (4) the number of crossover points. We 
tested the effects of selection, type of development, and generation 
with a 3  ×  7 [Selection (selection, no-selection), Development 
Type (interactive, independent), Generation (1–7)] repeated-
measures factorial analysis of variance (ANOVA). While 11 
generations were run in the no-selection simulations, these data 
were truncated to 7 to facilitate comparison with the robot group.

In contrast with the results for fitness (see Evolution of 
Fitness), the phenotypes showed clear evidence of the impact of 
the EO development on evolution (Figure 10). For the number 
of thread interactions, there was a significant main effect of 
Selection (Figures 10A,B; p < 0.001), with the no-selection group 
having fewer interactions (M = 0.136) than the selection group 
(M = 0.750).

For the number of wires, there was a significant three-way 
interaction among Selection, Generation, and Development 
Type (p < 0.05; Figures 10C,D). This effect is due to the fact 
that there was a two-way interaction between Development 
Type and Generation for the no-selection condition (p = 0.003), 
but not one for the selection condition. Additionally there was a 
two-way interaction between Selection and Development Type 
on number of wires (p  <  0.001) due to the interactive group 
having significantly smaller mean number of wires (M = 1.743, 
SD  =  0.138) than the independent group (M  =  3.257) in the 
no-selection condition, but there being no significant differ-
ences in the selection condition. There was a main effect of 
Development Type (p =  0.003) explained by the independent 
group having significantly more wires (M  =  2.714) than the 

interactive group (M  =  1.850) collapsed across Selection. 
Generation also had an effect on wire count (p < 0.001), with 
the tendency being that wire count decrease with successive 
generations. Additionally there was a main effect of Selection 
(p < 0.001), with the no-selection condition having significantly 
more wires (M = 2.500, SD = 2.064) than the selection condi-
tion (M = 2.064, SD = 0.097).

For the number of threads, there was a significant interac-
tion between Selection, Generation, and Development Type 
(p < 0.05), with a significant interaction between Development 
Type and Generation in the no-selection condition (Figure 10E; 
p  <  0.001), but not in the selection condition (Figure  10F; 
p  =  0.095). Additionally there was a significant interaction 
between Generation and Development Type (p = 0.025) indicat-
ing that the trend of the interactive thread group’s means was to 
decrease with increasing generation, whereas the independent 
thread group’s means showed no clear trend in either direction. 
Development Type was also found to interact significantly with 
Selection (p < 0.001), explained by the interactive group’s mean 
thread count being higher in the selection (M = 1.665) condi-
tion than in the no-selection condition (M = 1.000), whereas the 
independent group’s means were lower in the selection condition 
(M = 1.771) than in the no-selection condition (M = 2.443). There 
was also a main effect of Development Type (p < 0.001), with the 
independent group on average having more threads (M = 2.107) 
than the interactive group (M = 1.329).

For the number of crossover points, there was a two-way inter-
action between Selection and Development Type (Figures 11A,B; 
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FigUre 9 | continued

FigUre 9 | continued 
evolution of physical ana BBots under selection for enhanced 
phototaxis and obstacle avoidance. (a) As detected by ANOVA 
(p < 0.05), fitness decreases over generational time. A significant one-
generation decrease between generations 4 and 5 (asterisk) is present as 
determined by a priori contrasts. Points are estimated marginal means ± 1 
SE, with interactive and independent development pooled. (B) Interactive and 
independent thread developments are shown separately, even though they 
are not statistically distinct. (c) Selection differential, showing positive 
selection on fitness decreasing over generational time. The differential shown 
in a given generation is that applied to the next. (D) Variance in the 
populations, measured by SD, decreases by an order of magnitude over 
generational time. For the interactive development, the correlation between S 
and variance is 0.982; for independent development, the correlation is 0.974.
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p = 0.023); also, there was a significant difference between the 
interactive and independent groups for the selection condition 
(p < 0.001), but not for the no-selection condition (p = 0.715). 
Selection and Generation also interacted significantly on number 
of crossover points, p = 0.019, with crossover points increasing 
more rapidly with Generation in the selection condition than 
in the no-selection condition. Additionally, Development Type 
had a significant effect on crossover (p  <  0.001), explained 
by the independent group having significantly higher means 
(M = 4.407) than the interactive group (M = 3.786). Generation 
also had a significant effect (p  <  0.001), with crossover points 
tending to increase with increasing generations. There was also 
a main effect of Selection (p < 0.001), with the selection group 
having more crossover points (M = 4.464) than the no-selection 
group (M = 3.729).

Given the importance of threads to the function of the robot, 
we had predicted a fitness landscape (see Figure  7). We see a 
precipitous decline in the number of threads in the EO popula-
tion (interactive thread development) under selection from 
generations 2 to 3 (Figure  10F) that corresponds to a drop in 
fitness in the EO population under selection from generations 
2 to 3 (Figure 9B). We do not see a similar drop in the number 
of threads or fitness under selection in the non-EO population 
(independent thread development) until generations 4 to 5. Also 
note that without selection the number of threads in the EO 
population plummets (Figure 10E). While these are qualitative 
results, they are important for three reasons: (1) the number of 
threads appears to be related to fitness, (2) the EO population 
responds differently than the non-EO population, and (3) selec-
tion changes the behavior of the EO population markedly.

To examine the evolution of threads in more detail, we exam-
ined the changes in their distribution patterns over generational 
time (Figure  12). Under selection, the distribution of the EO 
population changes more quickly than that of the non-EO popu-
lation, with the two populations having overlapping distributions 
but different modes and skew after seven generations. Without 
selection, we see a similar rapid response of the EO population 
and different final distributions.

Crossover Point Constraints
To understand the importance of our decision to allow crossover 
points to be anywhere in the genome, we constrained crossover 
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FigUre 10 | selection impacts the evolution of circuit phenotypes in physical ana BBots. (a,B) A significant two-way interaction (p < 0.05) between the 
type of evolution and the type of development (p < 0.05) indicates that under selection (B), the differences between developmental processes are eliminated. 
(c,D) A significant three-way interaction indicates that under selection, the number of wires in both types of development is not different and that the number of 
wires decreases over generational time. (e,F) A significant three-way interaction (p < 0.05) indicates that under selection the number of threads in both types of 
development is not different and that the number of threads decreases over generational time. A univariate three-way fully factorial ANOVA was run on each 
phenotype. Scale of the ordinate is identical across rows. Points are estimated marginal means ± 1 SE.
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points to positions between genes. These trials were run without 
selection. A 2  ×  2  ×  11 [Crossover Placement (constrained, 
unconstrained), Development Type (interactive, independent), 
Generation (1–11)] repeated-measures factorial ANOVA was 
run on the following measures: normalized performance, mean 
number of thread interactions, mean number of wires, mean 
number of crossover points, and mean number of threads. The 
genomic parameters of the “constrained” population were identi-
cal to those of the “unconstrained” population with the exception 
that crossover points were constrained to the intergenic regions 
in the former and not the latter.

For the number of interactions between threads, a significant 
Development Type by Generation interaction (p < 0.001) indicated 

that interactions generally decreased across generational time 
under interactive thread development, but tended to increase 
with generational time under independent thread development 
(Figures 13A,B). A Crossover Placement by Development Type 
interaction (p < 0.001) indicates that independent development 
populations have significantly more interactions (M  =  1.300) 
than interactive development populations (M = 0.600), but only 
under unconstrained crossover placement. In general, interac-
tive development populations had significantly more interac-
tions (M  =  1.159) than interactive development populations 
(M = 0.841; p < 0.001).

For the number of wires, a significant three-way interac-
tion between Crossover Placement, Development Type, and 
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FigUre 11 | selection impacts the evolution of the number of crossover points. A significant three-way interaction (p < 0.05) indicates that under selection 
(B) and independent thread development, the number of crossover points increases faster than without selection (a) and with interactive development. Points are 
estimated marginal means ± 1 SE.
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Generation on number of wires (p  <  0.05) indicates that with 
constrained crossover placement the number of wires decreased 
more slowly for interactive thread development populations 
and increased less rapidly for independent thread populations 
(Figure  13C) when compared with unconstrained crossover 
placement (Figure  13D). There was a significant Development 
Type by Generation interaction (p  <  0.001), indicating that 
wires tended to attenuate under interactive development, but 
stayed relatively stable under independent development. A 
significant Crossover Placement by Development Type interac-
tion (p < 0.05) revealed a significantly larger gap in mean wires 
between independent development (M = 3.182) and interactive 
development (M = 1.218) under unconstrained crossover place-
ment versus under constrained crossover placement (M = 3.364 
and M = 2.400, respectively). The number of wires decreased with 
generation (p < 0.05), the independent group had significantly 
more wires (M = 3.273) than the interactive group (M = 1.809; 
p < 0.05), and that the mean number of wires was higher with 
constrained crossover placement (M = 2.882) than with uncon-
strained (M = 2.200; p < 0.05).

For the number of threads, a significant three-way interac-
tion between Crossover Placement, Development Type, and 
Generation (p  <  0.001) indicates that with interactive thread 
development, threads attenuated more rapidly under uncon-
strained crossover placement (Figure  13F) than constrained 
crossover placement (Figure  13E). A significant Development 
Type by Generation interaction (p < 0.001) reflects the tendency 
for thread count to decrease with generational time under 
interactive development, whereas thread count parabolically 
decreased then increased under independent development. There 
was also a Crossover Placement by Development Type interaction 
(p < 0.001), indicating that thread count is significantly higher 
under interactive development (M  =  1.709) than independent 
development (M  =  1.591) with constrained crossover place-
ment, but significantly lower under unconstrained crossover 
placement (M = 1.055, M = 2.291, respectively). There was also 
a main effect of Generation (p  <  0.05), reflecting the general 
upward parabolic change in thread count. Additionally, the 

independent development populations had significantly more 
threads (M =  1.941) than the interactive development popula-
tions (M = 1.382; p < 0.05).

For number of crossover points, a significant three-way 
interaction between Crossover Placement, Development Type, 
and Generation (p  <  0.05) indicates that under unconstrained 
crossover, the number of crossover points generally increases 
faster with the interactive development group than with the 
independent group (Figure 14A), but this relationship switches 
with constrained crossover placement (Figure 14B). A significant 
two-way interaction between Development Type and Generation 
(p < 0.05) indicates that the independent development popula-
tions accrued crossover points more quickly than the interactive 
group. A significant Crossover Placement by Generation interac-
tion (p  <  0.05) indicates that populations with unconstrained 
crossover points accrue crossover points more rapidly than popu-
lations with constrained crossover points. In general, the number 
of crossover points increased across generations (p < 0.05) and 
populations with unconstrained crossover had more crossover 
points (M  =  4.682) than constrained crossover populations 
(M = 3.041; p < 0.05).

simulated robots
A 2  ×  500 [Development (EO, GO), Generation (1–500)] 
ANOVA revealed a main effect of Development (p < 0.001) and 
Generation (p < 0.001) on the fitness of the best individual in each 
population. There was no interaction effect (p  =  0.175). These 
results (Figure 15) suggest that while the fitness of both types of 
simulated populations increased with successive generations, the 
EO significantly reduced fitness in comparison to the GO (non-
EO) condition. Finally, note that while the fitness in the simulated 
populations increased over time, the fitness decreased over time 
in the physical populations (compare Figures 9 and 15).

DiscUssiOn

In addition to the standard GOs of ER, EOs are a complementary 
class of mechanisms that alter the expression of the genome. 
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FigUre 12 | evolution of threads in the populations of physical robots under selection and with two different types of development. From generations 
1 to 7, the mode of the population with independent development and no epigenetic operator (no EO, green) remained stable at two threads, with or without 
selection. From generations 1 to 7, the mode of the population with interactive development and an EO (red) changed from 2 to 0 without selection and from 2 to 1 
with selection. For clarity, an individual with four threads in the EO population was omitted from (D).
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Physically embodied EOs, as we model them, may have important 
evolutionary consequences, as determined by the specific effect 
of the EO, the shape of the fitness landscape, and the position 
of the population on that landscape (Figure 1). With this model 
in mind, we hypothesized that an EO will alter the evolutionary 

trajectory of a population. This hypothesis is supported by the 
results of preliminary experiments in two populations of physi-
cally embodied robots, one with and one without an interactive 
thread development EO, under selection for enhanced phototaxis 
and obstacle avoidance.
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FigUre 13 | crossover placement impacts the evolution of circuit phenotypes without selection. (a,B) Compared to unconstrained crossover points, 
constrained crossover points cause the number of interactions to evolve in anti-phase oscillation with respect to type of development. (c,D) Compared to 
unconstrained crossover points, constrained crossover points cause the number of wires in both types of development to evolve in concert and then rapidly diverge. 
(e,F) Compared to unconstrained crossover points, constrained crossover points cause the number of threads to evolve in anti-phase oscillation with respect to 
type of development. Scale of the ordinate is identical across rows. Points are estimated marginal means ± 1 SE.
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The generality of this result is extended by experiments run 
in simulation. The difference between the physical and simulated 
robots in terms of the direction of the change in fitness (decrease 
for physical, increase for simulated, Figures  9 and 15, respec-
tively) may reflect different effective algorithms for information 
transmission in the neural networks. In the physical robots, 
signaling is implemented in hardware, while in the simulated case 
we used standard neural network updating models rather than 
trying to simulate the electronic components on the Ana BBot. 
However, the key point of comparison is between the EO (a.k.a. 
interactive thread development) and non-EO (a.k.a. independent 
thread development or GO) conditions; for both simulated and 
physical systems we find that the EO condition degrades the effect 

of selection on the evolution of fitness and phenotypes, respec-
tively. In this critical comparison, the two approaches produce 
consistent results.

While the changes in mean fitness are statistically indistin-
guishable in the EO and non-EO populations of physical robots 
(Figure 9), mean phenotypic values diverge quickly (Figures 10 
and 11). Because of its functional role, the key phenotype is the 
number of threads, where threads are the genetically encoded 
wiring patterns that may connect sensors to motors on the robot’s 
physical circuit board (Figure  4). The distributions of thread 
number within each population are identical initially, in the first 
generation, but then they diverge rapidly (Figure 12). This rapid 
divergence occurs in EO populations both with and without 
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FigUre 15 | evolution of simulated ana BBots with and without 
epigenetic operators (eOs). Relative performance of the robots with 
genetic operator (GO) (blue lines) and EO (red lines). Thirty evolutionary trials 
of GO and EO were performed, for a total of 60 runs, each lasting for 500 
generations. While populations with both types of development increased in 
fitness over time, the GO populations had fitnesses that were significantly 
greater than the EO populations, as detected by ANOVA (p < 0.05). Thick 
lines indicate the mean fitness of the best individual in the population, 
averaged across the trials. Thin lines indicate ±1 SE.

FigUre 14 | crossover placement impacts the evolution of the crossover phenotypes without selection. With crossover placement constrained (a), the 
differences between types of development are eliminated and the growth of points over time is attenuated compared crossover placement being unconstrained (B). 
Points are estimated marginal means ± 1 SE.
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selection, which indicates that the EO effect is not selection in 
disguise; moreover, the effects of EO and selection interact, in 
a statistical sense, which provides additional evidence support-
ing the main hypothesis (compare Figure 10E and Figure 10F). 
In this instance, differences in the evolution under selection of 
two otherwise identical populations appear to be caused by the 
embodied EO of interactive thread development (Figure 16).

From simulations, we have a complementary perspective from 
populations that are larger and evolve for much longer than those 
in the physical robots. Importantly, the hypothesis that an EO 
will alter the evolutionary trajectory of a population is upheld. 

In simulation, otherwise identical populations of Ana BBots with 
EOs evolve fitness more slowly and with lower magnitudes of 
fitness than those lacking them (Figure 15).

The populations of simulated Ana BBots with interactive 
thread EOs—a destructive process predicted to reduce the num-
ber of threads (Figure  1)—are less evolvable than populations 
without them. Although both the EO and GO treatments allow 
for large amounts of neutral mutation, which has been cited as a 
contributor to increased evolvability (Smith et al., 2001; Wagner, 
2008), the GO treatment may allow for more connections to be 
constructed between the sensor and motor layers, or perhaps 
for more efficient, and less self-interfering, networks. This may 
in turn provide more raw materials for subsequent evolutionary 
change. By contrast, the EO treatment may produce fewer overall 
connections between sensor and motor layers, which may in turn 
make any subsequent mutations that change the nature of this 
path more disruptive. Future work will involve more detailed 
analysis of how such pathways in both treatments do change—or 
fail to change—over evolutionary time.

We note that the evolutionary impact of the interactive thread 
EO depends on the shape of the fitness landscape and the location 
of the populations on that landscape (Figure  7). For example, 
if we shifted the starting populations to the right on the fitness 
landscape, more threads result in a loss of fitness as threads are 
redundant in their function or if their functions counteract each 
other. In this situation, the interactive thread EO would increase 
the fitness of the populations by pruning threads. Thus the 
identical EO can have opposite effects on evolution depending 
on where a population sits in a particular fitness landscape.

As we have narrowly defined it, an EO may be any mechanism 
inherent to an agent’s developmental system that alters the expres-
sion of the genome. This leaves investigators with a daunting array 
of EOs from which to choose. To avoid an arbitrary decision, we 
let the physical embodiment of the Ana BBot (Figure 2) guide 
us. This is an analog robot that is programed using jumper wires 
to connect sensors to motors (Figure 3). With this in mind, we 
created a genome that encodes genes that governed multiple, 
separate wiring patterns called threads (Figure  4). Since only 
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Genera�on 5.  Both popula�ons have evolved.
The EO popula�on has increased the number of individuals
with a modal value of 1.  The range of the non-EO popula�on 
has increased to 0 to 3 while the mode is unchanged at 2.

Number of threads

Genera�on 1.  Popula�ons with and without EO start 
with iden�cal distribu�ons and at the same posi�on
in the fitness landscape (gray line).  The mode is 2, with a 
range of 1 to 3.
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Genera�on 3.  A�er two genera�ons of selec�on, 
the mode of the EO popula�on (red) has decreased to 1
and evolved to have a range of 0 to 4  (mode = 1).  The 
non-EO popula�on (green) remains unchanged. 

Genera�on 7.  The modes of the popula�on differ, with
a value of 1 and 2 for the EO and non-EO popula�ons,
respec�vely.  The distribu�ons are skewed in opposite
direc�ons.  No individuals possess 0 threads in the EO 
popula�on.  Both popula�ons are different from the original
(black curve).
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FigUre 16 | The epigenetic operator (eO) of interactive thread development alters evolution. In this qualitative summary of the experiments with physically 
embodied Ana BBots, the two genetically identical populations start with identical distributions in terms of the number of threads (a). Exposed to different parts of 
the fitness landscape (gray line), the two populations quickly diverge from each other (B–D). See Figure 12 for actual distributions.
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a limited set of pins is available for threads, we created an EO, 
interactive thread development, that recognized this physical 
constraint: if different genes code for the same pin, then only the 
first gene expressed may use it and the expression of the other 
gene is left incomplete. In development without this EO, all genes 
are fully expressed by allowing threads that call for the same pin 
to switch to an alternate and functionally equivalent pin.

We recognize that this developmental system is extremely sim-
ple, particularly when compared to one that changes full-body 
morphology in simulated, embodied mobile robots (Bongard, 
2011). But to our knowledge, interactive thread development is the 
first physically embodied EO used in the evolution of physically 
embodied robots. Thus the developmental engine of ER (Eiben 
et al., 2010) has its first physical instantiation, albeit a simple one; 
physical instantiation is a necessary condition for the complete 
life cycle of the evolution of things (Eiben and Smith, 2015) and 
in the physical evolution of ontogenies (Northcutt, 2002).

Embodied development means different things in different 
contexts. For researchers interested in social and socially assistive 
robots (Tapus et al., 2007), for example, development focuses on 
learning and interactive changes in an agent’s cognition (Asada 
et  al., 2001). Others focus on life cycle changes in an agent’s 
morphology (Jin and Meng, 2011; Doursat et  al., 2012). For 
researchers interested in ER, changes in morphology during a 
digitally simulated embodied agent’s lifespan dramatically alter 
the impact of selection on the evolution of behavior (Bongard, 
2011). To bridge the reality gap between the simulation of 
morphological changes and the physical instantiation of those 
changes, we can incorporate the methods of reconfigurable 
robots (Levi et  al., 2014), self-assembling swarms (Rubenstein 
et  al., 2014), and programmable matter (Toffoli and Margolus, 
1991; Felton et al., 2014) to create PED. Combining PED with ER 
creates an approach, ERPED, exemplified in a preliminary and 
simple manner in this study.
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cOnclUsiOn

We have shown that an EO alters the evolution of populations 
of physical and simulated embodied robots under selection for 
enhanced phototaxis and object avoidance. While we must be 
cautious in drawing general conclusions from this preliminary 
result, the specific method employed is easily extended to other 
physically embodied robotic systems. Necessary to this extension 
is to make development explicit, genetic, and physical. When the 
expression of genes is altered by the physical rules and interac-
tions governing the agent’s physical construction, the genotype-
to-phenotype mapping process becomes available as a creative 
tool to ER.
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