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We conducted a user study for which we purposefully programmed faulty behavior into 
a robot’s routine. It was our aim to explore if participants rate the faulty robot different 
from an error-free robot and which reactions people show in interaction with a faulty 
robot. The study was based on our previous research on robot errors where we detected 
typical error situations and the resulting social signals of our participants during social 
human–robot interaction. In contrast to our previous work, where we studied video 
material in which robot errors occurred unintentionally, in the herein reported user study, 
we purposefully elicited robot errors to further explore the human interaction partners’ 
social signals following a robot error. Our participants interacted with a human-like 
NAO, and the robot either performed faulty or free from error. First, the robot asked 
the participants a set of predefined questions and then it asked them to complete a 
couple of LEGO building tasks. After the interaction, we asked the participants to rate 
the robot’s anthropomorphism, likability, and perceived intelligence. We also interviewed 
the participants on their opinion about the interaction. Additionally, we video-coded the 
social signals the participants showed during their interaction with the robot as well 
as the answers they provided the robot with. Our results show that participants liked 
the faulty robot significantly better than the robot that interacted flawlessly. We did not 
find significant differences in people’s ratings of the robot’s anthropomorphism and per-
ceived intelligence. The qualitative data confirmed the questionnaire results in showing 
that although the participants recognized the robot’s mistakes, they did not necessarily 
reject the erroneous robot. The annotations of the video data further showed that gaze 
shifts (e.g., from an object to the robot or vice versa) and laughter are typical reactions 
to unexpected robot behavior. In contrast to existing research, we assess dimensions 
of user experience that have not been considered so far and we analyze the reactions 
users express when a robot makes a mistake. Our results show that decoding a human’s 
social signals can help the robot understand that there is an error and subsequently 
react accordingly.

Keywords: social human–robot interaction, robot errors, user experience, social signals, likeability, faulty robots, 
error situations, Pratfall Effect
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1. inTrODUcTiOn

Social robots are not yet in a technical state where they operate 
free from errors. Nevertheless, most research approaches act on 
the assumption of robots performing faultlessly. This results in a 
confined standpoint, in which the created scenarios are consid-
ered as gold standard. Alternatives resulting from unforeseeable 
conditions that develop during an experiment are often not further 
regarded or simply excluded. It lies within the nature of thorough 
scientific research to pursue a strict code of conduct. However, we 
suppose that faulty instances of human–robot interaction (HRI) 
are nevertheless full with knowledge that can help us further 
improve the interactional quality in new dimensions. We think 
that because most research focuses on perfect interaction, many 
potentially crucial aspects are overlooked.

Research that is specifically directed at exploring erroneous 
instances of interaction could be useful to further refine the qual-
ity of HRI. For example, a robot that understands that there is 
a problem in the interaction by correctly interpreting the user’s 
social signals could let the user know that it understands the 
problem and actively apply error recovery strategies. Knowing 
the severity of an error could further be helpful for the robot in 
finding the adequate corrective action.

Since robots in HRI are social actors, they elicit mental models 
and expectations known from human–human interaction (HHI) 
(Lohse, 2011). One aspect we know from HHI is that imperfec-
tions make human social actors more likeable and more believ-
able. The psychological phenomenon Pratfall Effect states that 
people’s attractiveness increases when they commit a mistake. 
Aronson et al. (1966) suggest that superior people may be viewed 
as superhuman and distant while a mistake would make them 
seem more human. Similarly, one could argue that robots are 
often seen as impeccable, since this is how they are presented 
in the media (Bruckenberger et  al., 2013). Especially, people 
who have not interacted with robots themselves build their 
mental models and expectations about robots from those media. 
Moreover, experience with technology in general is mostly based 
on interaction with consumer products, such as smartphones or 
TVs. Those products are very common and need to work more 
or less error-free in order to get accepted on the market. For 
example, a TV which has problems in sound will not survive long 
on the market. People expect technology they paid for to work 
without errors. What makes the interaction with social robots 
different is that a TV is not seen as a social actor, in contrast to 
a social robot. This might result in people assuming robots to be 
without fail, which makes them likewise seem distant (Pratfall 
Effect). Robots that commit errors, on the other hand, could 
then be viewed as more human-like and, in subsequence, more 
likeable. With their study on an erroneous robot in a competi-
tive game-play scenario Ragni et al. (2016) provided additional 
evidence that people consider robots in general as competent, 
functional, and intelligent.

In our effort to embrace the imperfections of social robots 
and create more believable robot characters, we propose to 
specifically explore faulty robot behavior and the social signals 
humans show when a robot commits a mistake. The term social 
signal is used to describe verbal and non-verbal signals that 

humans use in a conversation to communicate their intentions. 
Vinciarelli et  al. (2009) argued that the ability to recognize 
social signals is crucial to mastering social intelligence. It is our 
long-term goal to enable robots to communicate about their 
errors and deploy recovery strategies. To achieve this ambitious 
goal, more general knowledge about robot errors is required. 
We report on a user study where we purposefully elicited faulty 
robot behavior.

Our user study is based on our previous research where we 
analyzed an extensive pool of video data showing social HRI 
instances where the robot made an error. The videos covered a 
variety of scenarios in different contexts, different robots, and a 
multitude of social signals. The robot errors happened uninten-
tionally and, thus, the data created a sound basis for studying the 
nature of error situations. We found that there are two different 
kinds of robot errors, i.e., social norm violations (SNV) and 
technical failures (TF) (Giuliani et  al., 2015), for which human 
interaction partners respond with typical social signals (Mirnig 
et  al., 2015). A social norm violation means that the robot’s 
actions deviate from the underlying social script, that is, the com-
monly known interaction steps a certain situation is expected to 
take. For example, a participant orders a drink from a bartender 
robot, the robot signals it has understood but then asks again for 
the participant’s order. A technical failure means that the robot 
experiences a technical disruption that is perceived as such by 
the user. For example, a robot picks up an object but then loses it 
while grasping. From an expert perspective all robot errors might 
be considered as technical failures. Since, we are interested in the 
human perception of robot errors, we distinguish error types 
from how a human most likely perceives error events.

With the user study presented in this paper, we expand our 
previous research in purposefully eliciting robot errors and 
researching the resulting social signals of the human interaction 
partners. We measured how users perceive a robot that makes 
errors during interaction (social norm violations and technical 
failures) as compared to a robot operating free from errors.

The directed exploration of robot errors in social interaction 
is a new and upcoming topic. The HRI research community has 
reported first results on exploratory user studies. For example, 
Salem et  al. (2015) conducted an experiment with an errone-
ous robot. The researchers measured how the robot’s behavior 
influenced how the participants rated its trustworthiness and 
reliability. They also measured if robot errors affect the task per-
formance. The researchers found that while participants rated the 
correctly behaving robot as significantly more trustworthy and 
reliable, the fact that a robot performs correctly or faulty did not 
influence the objective task performance.

In an earlier work, Salem et  al. (2013) researched the effect 
of speech and gesture congruence on perceived anthropomor-
phism, likability, and task performance. In their experiment, a 
robot either spoke only, spoke while making congruent coverbal 
gestures, or spoke while making incongruent coverbal gestures. 
The researchers found that congruent coverbal gesturing makes 
a robot appear more anthropomorphic and more likeable. This 
effect was even stronger for incongruent coverbal gesturing. 
However, incongruent coverbal gesturing resulted in a lower 
task performance. Following our line of argumentation, such 
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incongruent behavior violates the human social script, as humans 
do not expect incongruent messages from different modalities in 
everyday interactions (Schank and Abelson, 1977). Therefore, 
incongruent multimodal robot behavior results in a social 
norm violation. Ragni et al. (2016) reported similar effects. The 
researchers performed a study in which a human and a robot 
competed against each other in a reasoning task and a memory 
task. During the interaction, the robot either performed with or 
without errors. While participants rated the faulty robot as less 
competent, less reliable, less intelligent, and less superior than 
the error-free robot, participants reported having enjoyed the 
interaction more when the robot made errors. However, the task 
performance was significantly lower in the faulty robot condition.

Gompei and Umemuro (2015) investigated how a robot’s 
speech errors influenced how familiar and sincere it was rated. 
The researchers found that speech errors made early in an inter-
action might lower the robot’s sincerity rating. However, speech 
errors that are introduced later in the interaction might increase 
the robot’s familiarity. Short et al. (2010) investigated people’s 
perception when playing rock–paper–scissors with a robot that 
either played fair, cheated verbally by announcing a different 
hand gesture, or cheated with its actions by changing the hand 
gesture. The researchers found that a cheating robot resulted in 
a bigger social engagement, in comparison to one which plays 
fair. They stated that the results suggest that participants showed 
more verbal social signals to the robot that cheated. Participants 
were surprised by the cheating behavior of the robot, although 
verbal cheating was perceived as malfunction, while cheating 
through action was perceived as deliberate cheating behavior. 
These findings support our assumption that through unex-
pected behavior, people see a robot as a more social actor and 
that unexpected behavior might be interpreted as erroneous 
behavior.

In an online survey, Lee et al. (2010) found that when a service 
robot made a mistake, this has a strong negative impact on peo-
ple’s rating of the service quality and the robot itself. However, 
when the robot deployed a recovery strategy, both the rating of 
the service and the rating of the robot improved. The researchers 
deployed different recovery strategies and found that all of them 
increased the ratings of the robot’s politeness. A robot which 
apologized for its mistake was seen more competent, people 
liked it more and felt closer to it, and a robot offering compensa-
tion for its mistake (such as a refund) was rated to be of more 
satisfying service quality but participants were hesitant to use 
the robot again. Whereas, an apology and a recovery strategy 
of offering options was perceived to foster reuse likelihood. In 
a related online survey, Brooks et  al. (2016) explored people’s 
reactions to the failure of an autonomous robot. In the survey, 
participants were asked to assess situations where an autono-
mous robot experienced different kinds of failures that affected 
a human interacting with it. They found that people who saw an 
erroneous robot rated it rather negatively on a series of items 
(i.e., How satisfying, pleasing, disappointing, reliably, depend-
able, competent, responsible, trustworthy, risky to use is the 
robot?), while people who experienced a robot without failure 
rated it positively. When the erroneous robot deployed mitiga-
tion strategies to overcome the error either by prompting human 

intervention or by deploying a different approach, people’s rat-
ings toward the erroneous robot became less negative. However, 
the amount the strategy influenced peoples reaction depended 
on the kind of task, the severity of the failure, and the risk of the  
failure.

To enable a robot to generate help requests in case of an error 
situation, Knepper et al. (2015) developed their inverse seman-
tics algorithm. It allows the robot to phrase precise requests that 
specify the kind of help that is needed. The researchers evalu-
ated their algorithm in a user study and found that participants 
preferred the precise request over high level, general phrasings. 
While in their approach errors are recognized through the 
robot’s internal state and the environment (e.g., the robot is 
supposed to pick up an object which it can visually detect, but 
the object is out of its reach), we envision an approach where the 
robot can additionally detect an error through its human inter-
action partner’s social signals. For example, Gehle et al. (2015) 
explored gaze patterns of human groups upon unexpected 
robot behavior in a museum guide scenario. They found that 
groups of visitors responded to unexpected robot behavior with 
stepwise gaze coordination, applying different modes of gaze 
constellation. Unexpected robot behavior is likely to conflict 
with the user expectations about the adequate social script in a 
certain situation. Therefore, unexpected robot behavior can lead 
to a social norm violation. A deviation from the social script 
resulted in a different strategy in the human gaze coordination 
(social signals). Hayes et  al. (2016) performed a user study in 
which participants were instructed to teach a dance to a robot. 
They explored how humans implicitly responded when the robot 
made a mistake. The authors used a very small sample in their 
explorative study and did not provide a statistical analysis of 
their descriptive results.

Our approach extends the existing findings in several 
dimensions. While the errors in the study of Ragni et al. (2016) 
were based on errors from HHI, the errors we used were mod-
eled based on data from HRI. Our work and that of Ragni 
et  al. (2016) further cover different aspects: (a) their errors 
were task-related, ours non-task-related; (b) they covered the 
cognitive ability of the robot and we dealt with socially (in)
appropriate robot behavior and more general soft- and hard-
ware problems; and (c) they assessed the overall enjoyment of 
the interaction and users’ task performance, while we looked 
into the interconnectedness of likability, anthropomorphism, 
and intelligence. We chose to examine these factors since they 
are commonly used and accepted measures in the HRI domain. 
We were especially interested in likability as it contributes 
to the overall user experience and it may foster technology 
acceptance. Since erroneous behavior potentially compromises 
intelligence ratings, we were also interested in exploring if our 
robot’s mistakes make it seem less intelligent. In the light of 
the Pratfall Effect, we wanted to see if the robot’s anthropomor-
phism level is influenced by the fact that it makes or does not 
make mistakes.

The related literature shows that the importance of explor-
ing robot errors has been recognized. We extend the state of the 
art with our data-driven approach by systematically analyzing 
specific kinds of errors and their effects on the interaction 
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experience, as well as the users’ reactions to those errors (i.e., 
social signals).

2. MaTerials anD MeThODs

We set up a Wizard of Oz (WOz) user study to specifically explore 
robot errors. A human and a robot interacted with each other in 
two verbal sessions. The first session was a verbal interview where 
the robot asked a few questions to the participant. The second 
session was a LEGO task, where the robot invited the participant 
to build a few simple objects. We chose this setup in order to reen-
act the verbal context of the related work (Giuliani et al., 2015; 
Mirnig et al., 2015). In addition, the interview session enabled us 
to collect qualitative data on the participants’ opinions, which we 
included in our data analysis.

The user study was performed between subjects, with each 
participant taking part in one of the following two conditions: 
(a) no error (baseline—the robot performs error-free) and  
(b) error (experimental condition—the robot commits eight 
errors over the entire interaction). To base the user study on the 
previous findings from Giuliani et  al. (2015) and Mirnig et  al. 
(2015), we programmed the robot to commit two social norm 
violations and two technical failures in each session. Based on 
our previous research, we defined these two types of error as the 
typical mistakes robots make in HRI. Therefore, we suppose that 
an interaction including these error types would be perceived as 
plausible. The complexity, severity, and risk level of the induced 
errors were chosen in alignment with our scenario. Naturally, 
different scenarios will entail other errors, different severity and 
risk levels. For example, Robinette et al. (2014) investigated faulty 
behavior of robots in safety critical situations. They simulated 
erroneous behavior of an emergency guiding robot that helps 
people to escape from a dangerous zone. They found that after 
the first error of the robot, people’s attitude toward the robot 
decreased significantly. However, the decision to follow the robot 
in a follow-up interaction was not affected by their decreased 
attitude.

2.1. hypotheses
As discussed in the previous sections, it is known that humans 
often base their expectations about robots on how robots are 
portrayed in the media. Since the media present robots frequently 
as perfect entities, we assume that social robots making errors 
negatively influence how their human interaction partners 
perceive them. Based on the findings on faulty robot actions in 
HRI as discussed so far and in light of the Pratfall Effect, we have 
postulated the following hypotheses for our user study:

H1: A robot that commits errors during its interaction with 
humans is perceived as more likeable than a robot that 
performs flawlessly.

H2: A robot that commits errors during its interaction with 
humans is perceived as more anthropomorphic than a 
robot that performs flawlessly.

H3: A robot that commits errors during its interaction with 
humans is perceived as less intelligent than a robot that 
performs flawlessly.

2.2. User study Design
For the WOz user study, the participants were asked to interact 
with a NAO robot.1 We set the interaction up in two sessions. 
During the first session, the robot asked a set of predefined ques-
tions to the participant in order to restrict the thematic dimension 
of the conversation. During the second session, the robot invited 
the participant to perform a couple of tasks using LEGO bricks.

In the interview session, the robot asked ten questions to the 
participant. The first three questions were meant to make the 
participant familiar with the situation and to create a comfortable 
atmosphere. For this reason, they were always presented in the 
same order and they never contained an error. The subsequent 
seven questions were asked in random order and four out of seven 
questions contained errors in the error condition.

In the LEGO session, the participant had to (dis-)assemble 
LEGO bricks according to the robot’s instructions. The first two 
tasks were assigned in the same order for all participants and they 
did not contain errors. The subsequent eight tasks were assigned 
in random order and four out of eight tasks contained errors in 
the error condition.

The interview session lasted for an average of 3 min and 37 s 
(SD = 59 s) and the LEGO session 8 min and 14 s (SD = 1 min 
and 54 s). We decided for this two-part setup to keep the partici-
pants entertained with a diversified scenario. The two-part setup 
provided us also with the possibility to introduce a greater variety 
of errors and to achieve a higher number of errors in total.

The user study was performed in the User Experience and 
Interaction Experimentation Lab at the Center for Human-
Computer Interaction at the University of Salzburg. The robot 
was wizarded from a researcher seated behind a bookshelf so 
that the wizarding was not obvious to the participant. A second 
researcher, likewise seated behind the bookshelf, controlled the 
video recording. During the entire interaction the participants 
stood adverse to the NAO robot at a distance of approximately 
1.5 m. NAO was standing on a desk (see Figure 1 for the setup). 
The transition between the two sessions was immediate with no 
break in between. Both sessions happened in the same setting. 
The only change was that the researcher placed a wooden box 
(80 cm × 50 cm × 50 cm) on the table in front of the robot right 
before the LEGO session started. The box was used to provide the 
participants with a comfortable height to complete the building 
tasks. Together with the box, the participants were given a set of 
LEGO blocks (prebuilt shapes) with which they were to perform 
the tasks (see Figure 2).

The between-subjects design required each person participat-
ing in either one of the two conditions. In the baseline condition, 
the robot performed free from errors. In the experimental condi-
tion, the robot committed two social norm violations and two 
technical failures each in both sessions. After each robot error, 
the researchers waited for the situation to unravel without them 
interfering. In many cases, the participants showed a reaction that 
confirmed that they had noticed the error (e.g., some participants 
laughed or frowned) and then moved on. The researchers only 
intervened in the rare cases where the interaction was severely 

1 https://www.ald.softbankrobotics.com/en/cool-robots/nao
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FigUre 2 | legO blocks that were provided to the participants.

FigUre 1 | study setup with the participant interacting with the robot 
and two researchers seated behind a bookshelf who supervised the 
technology.

Table 1 | interview session.

# Question error type error

Fixed order 1 What do you think is a robot? – None

2 Which three properties come to your mind when you think about robots? – None

3 Which robots do you know? – None

Randomized order 4 Would you like a robot that assists you with household chores? SNV The robot waits 15 s until it speaks again

5 Why do you think some people are afraid of robots? SNV The robot starts speaking after 2.5 s, cutting 
off the participant

6 Which skills would you like for a robot to have? – None

7 In which areas could humanoid robots be helpful? – None

8 Have you interacted with a robot before? TF The robot starts speaking but cuts the 
sentence off after “interac”

9 Is hard- or software more important to you? TF The robot repeats the sentence 6 times

10 Which tasks would you never entrust a robot with? – None

The questions comprised two Social Norm Violations (SNV) and two Technical Failures (TF).
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with the robot, in order to limit the interference as much as 
possible.

The three starting questions in the interview session and 
the first two building tasks were meant as an introduction and 
were not varied in order. Therefore, the robot errors occurred 
in the randomized questions/tasks only. Tables 1 and 2 give an 
overview on the questions and tasks and which errors occurred 
together with which question or task. The questions were similar 
in both conditions. The difference between the baseline and the 
experimental condition was achieved by the presence or absence 
of the robot errors.

The induced errors were mainly modeled based on our previ-
ous findings on typical robot errors as reported in the studies of 
Giuliani et al. (2015) and Mirnig et al. (2015). Only LEGO task 
number 7 in the error condition was inspired by unusual requests 
as reported in the study of Salem et al. (2015).

The setup of our user study is based on real-life HRI. It is 
data-driven in representing actual error situations and cor-
responding robot errors that occur when humans interact with 
state-of-the-art social robots, which makes our setup ecologi-
cally valid.

2.3. User study Procedure
The participants were welcomed to the laboratory. After a short 
briefing, they were asked to sign an informed consent. Next, the 
participants were asked to complete questionnaires to assess their 
demographics, personality traits, and attitude toward robots. 
The participants were introduced to the robot and they were 
given an overview on the process of the user study. As soon as 
the participants took their position opposite the robot, the user 
study began. First, the participants answered a set of questions the 
robot asked them (Session 1). Second, the robot instructed the 
participants to complete a set of building tasks with LEGO blocks 
(Session 2). After the interaction with the robot, the participants 
were again asked to complete the questionnaire assessing their 
attitude toward robots. They were further asked to complete a 
questionnaire rating the robot’s likability, anthropomorphism, 
and perceived intelligence. The study was finalized with a closing 
interview where the researcher asked the participants four open-
ended questions, which were followed by a short debriefing in 

interrupted, for example, when the participant directly addressed 
the researchers and commented on the error. In this case, the 
researcher simply asked the participant to continue interacting 
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FigUre 3 | study procedure.

Table 2 | legO session.

# Task error type error

Fixed order 1 Place all single-color blocks on top of each other. The order does not matter  
[participant performs task]. Unfortunately, the colors do not match how  
I imagined. Please take the blocks apart again.

– None

2 What animal comes to your mind? Please draw it with the blue blocks  
onto the green board and show it to me.

– None

Randomized 
order

3 Pick the multicolor block you like least. Disassemble it and build something new. – None

4 Build a tower from all blocks that have red pieces in them. – None

5 Build a bridge from four blocks that gets as long as possible [participant performs  
task]. Wonderful! Please disassemble the bridge into the four original blocks.

– None

6 Count how many parts the red pyramid is made of. If you need to disassemble the  
pyramid to count the bricks put it back together in the end. Tell me the number.

– None

7 Place all single-color blocks on the right side and the remaining blocks on the  
left (no error condition)/Throw three blocks on the floor at once! (error condition).

SNV In the error condition, instead of giving the 
sorting task to the participant, the robot 
instructs the participant to throw three 
blocks on the floor at once

8 Place all blocks in a row sorting them by size. Begin with the smallest. SNV The robot waits 15 s until it speaks again

9 Build something creative from the yellow and the blue block. TF The robot repeats the word yellow as if 
stuck in a loop (“Build something creative 
from the yellow, yellow, yellow, …”)

10 Which facial expression depicts your current emotional state? Please draw  
the expression with the blue blocks onto the green board [participant performs task].  
Please place the picture in my hands. With the command “grasp!” I close my hands.

TF The robot tries closing its hands but 
repeatedly fails to grasp the piece

The tasks comprised two Social Norm Violations (SNV) and two Technical Failures (TF).
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which the purpose of the study was explained to the participants. 
The study procedure is depicted in Figure 3.

2.4. Dependent Measures
Before the interaction, we asked our participants to fill in the Big 
Five Inventory (BFI) questionnaire by John et al. (2008). We used 
this questionnaire to analyze if people’s personality influences 
how they perceive the robot. The BFI consists of 44 items (5-point 

Likert-scaled), constructing five subscales (extraversion, agreea-
bleness, conscientiousness, neuroticism, and openness). This 
questionnaire is a well-accepted instrument among psychologists 
to assess the personality of humans. Therefore, we chose to use it 
for exploring potential connections between personality and how 
a social robot is perceived.

We used the Negative Attitude Toward Robots Scale (NARS) 
(Nomura et al., 2004) to assess participants’ general attitude toward 
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FigUre 4 | Participant interacting with the robot during the legO 
building session.
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robots. The NARS consists of 14 items (5-point Likert-scaled) that 
account for three scales: people’s negative attitude toward (S1) 
interaction with robots, (S2) social influence of robots, and (S3) 
emotions in interaction with robots. We asked the participants to 
complete the questionnaire before and after their interaction with 
the robot in order to measure if the interaction changed people’s 
attitude. The NARS is a widely used questionnaire in the HRI 
community and it provides researchers with a comprehensive 
understanding of human fears around social robots.

To explore how our participants rate the robot, we used three 
subscales from the Godspeed Questionnaire Series by Bartneck 
et  al. (2009), i.e., anthropomorphism, likability, and perceived 
intelligence. Each of the scales consists of five 5-point Likert-
scaled items. The scales were developed in the HRI community 
to specifically assess users’ perception of social robots. We chose 
the questionnaires since they are frequently used and widely 
accepted among the HRI community. The concepts the question-
naires cover are very relevant to social HRI and they represent 
the concepts we explore with our research. This questionnaire 
was administered once, after our participants’ interaction with 
the robot.

2.5. interview Data
We used two sources to gain qualitative data from the participants 
regarding their attitude toward robots. First, the robot asked the 
participants about their opinion on robots in the interview ses-
sion (see Table 1). Second, in the concluding interview after the 
interaction and after all the other questionnaires were filled in, we 
asked the following questions:

 1. Did you notice anything special during your interaction with 
the robot that you would like to tell us?

 2. Did your attitude toward robots change during the interaction?
 3. What would you change about the interaction with the robot?
 4. What did you think when the robot made a mistake? (This 

question was only asked for participants who took part in the 
error condition.)

2.6. Participants
A total of 45 participants took part in our user study (25 males 
and 20 females). The participants were recruited over a university 
mailing list and social media. They were primarily university 
students and they had no previous experience with robots. Their 
age ranged from 16 to 76 years, with a mean age of 25.91 years 
(SD = 10.82). As regards conditions, 21 participants completed 
the error condition and 24 the no error condition. The partici-
pants’ technology affinity was rated on average with a mean of 
3.09 (SD  =  1.49; 5-point Likert-scaled ranging from 1—“not 
technical” to 5—“technical”) and their preexperience with robots 
was below average with a mean of 1.96 (SD = 0.82; 5-point Likert-
scaled ranging from 1—“never seen” to 5—“frequent usage”).

2.7. Manipulation check
In order to verify that the manipulation programmed into the 
robot’s behavior was effective, we analyzed the videos of the 
interactions. Out of the 21 participants of the error condition, 18 
exhibited clearly noticeable reactions upon the robot’s faults (e.g., 

laughing, looking up from the LEGO at the robot, annoyed facial 
expression). During the closing interview with the researcher, 15 
of the 21 participants stated that they noticed the robot making 
errors. All three persons who had not shown reactions upon the 
robot’s errors in the video mentioned them in the interview. We, 
therefore, conclude that our manipulation was effective.

3. resUlTs

We used non-parametric statistical test procedures for data 
analysis, since our data were mostly not normally distributed 
(Kolmogorov–Smirnov test). Mann–Whitney-U tests were used 
to compare between two independent samples (between the two 
conditions and between the genders). Wilcoxon rank-sum tests 
were used to compare paired samples (ratings of the same scales 
before and after the interaction).

We coded the qualitative data from both interviews themati-
cally (the one the robot conducted and the concluding interview 
after the interaction). We further annotated the video recordings 
from the participants’ interaction to investigate their social 
signals when experiencing an error situation with the robot. 
Figure 4 shows a participant interacting with the robot during 
the LEGO building session. The coding was performed from one 
of the authors since we coded objectively visible events only.

3.1. Questionnaire Data
The gender distribution across conditions was roughly balanced. 
While 24 participants (15 males and 9 females) interacted with a 
flawless robot in the no error baseline condition, 21 participants 
(10 males and 11 females) were interviewed by an error-prone 
robot in the error experimental condition.

3.1.1. Participants’ Personality
We explored if our participants’ personality influenced their 
rating of the robot by measuring five major personality traits. 
The scales of the BFI are constructed with semantic differential 
items that measure the participants’ position between two poles 
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Table 3 | Mean values (sD) of the nars questionnaire before and after the interaction (error and no error combined).

nars scale before interaction after interaction

S1: negative attitude toward situations of interaction with robots Mean = 2.07 (SD = 0.59) Mean = 2.09 (SD = 0.67)
S2: negative attitude toward social influence of robots Mean = 2.94 (SD = 0.77) Mean = 3.11 (SD = 0.89)
S3: negative attitude toward emotions in interaction with robots Mean = 2.99 (SD = 0.87) Mean = 2.79 (SD = 0.77)
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(e.g., 1—introvert to 5—extravert). The arithmetic mean of these 
items with no emphasis on either one of the poles is 3.

3.1.1.1. Scale Reliability
The subscales extraversion, neuroticism, and openness resulted 
in high reliability (Cronbach’s α = 0.82, 0.81, and 0.85). The reli-
ability for the conscientiousness scale was acceptable (α = 0.71) 
and the one for agreeableness borderline acceptable (α = 0.61).

3.1.1.2. Participants’ Overall Personality
The results showed that the participants were slightly more extro-
verted (mean = 3.34, SD = 0.72), conscientious (mean = 3.42, 
SD = 0.57), and open (mean = 3.38, SD = 0.79) than the arith-
metic mean. They were rather agreeable (mean = 3.79, SD = 0.47) 
and slightly less neurotic than average (mean = 2.91, SD = 0.73).

3.1.1.3.  Participants’ Personality Compared between 
Conditions
We performed Mann–Whitney-U tests to explore if participants’ 
personality profile differed between conditions. The tests for all 
three subscales were non-significant, showing that participants’ 
personality profile did not differ between people who completed 
the error condition and people who completed the no error condi-
tion (U ≥ 235, z ≥ −0.388, p ≥ 0.553, r ≥ 0.03).

3.1.2. Participants’ Negative Attitude toward Robots
We measured people’s negative attitude toward robots for two rea-
sons. First, we wanted to assess our participants’ general attitude. 
Therefore, we administered the NARS questionnaire before the 
participants’ interaction with the robot. Second, we assumed that 
participants’ attitude would be affected through the high number 
of errors. Therefore, we administered the questionnaire a second 
time, following the interaction. The individual NARS items range 
from 1—“I strongly disagree” to 5—“I strongly agree.”2 This 
means that low-scale values indicate that people have a more 
positive attitude toward robots and high-scale values denote a 
rather negative attitude.

3.1.2.1. Scale Reliability
We checked the reliability for all three subscales, before and after 
the interaction. The reliability for S1 before interaction resulted 
in borderline acceptable reliability (Cronbach’s α = 0.64), S1 after 

2 [15] recommend calculating the NARS scales by summing up the item values. 
Since the scales are constructed of a varying number of items, the scale scores are in 
that case not comparable at first sight (Scale 1 would range from 6-30, Scale 2 from 
5-25, Scale 3 from 3-15). Therefore, we calculated the scale values by averaging 
the scale items. With this, the values of the three scales become comparable more 
quickly and they also correlate with the range of the individual items.

interaction in acceptable reliability (α = 0.74). The reliability for 
S2 before interaction was too low (α  =  0.51). To increase reli-
ability, we excluded item 2 (I feel that in the future society will 
be dominated by robots), and we recalculated the scale which 
resulted in borderline acceptable reliability (α  =  62). S2 after 
interaction was recalculated accordingly after excluding item 2 
(α = 0.77). S3 resulted in borderline acceptable reliability both 
before and after interaction (α before interaction  =  0.62, after 
interaction = 0.67).

3.1.2.2. Participants’ Overall Negative Attitude toward Robots
While our participants’ rating for S2 and S3 resulted in a neutral 
standpoint, the rating for S1 showed that participants have a 
rather positive to neutral attitude toward interacting with robots 
(mean values before interaction are presented in Table 3).

3.1.2.3.  Participants’ Negative Attitude toward Robots 
Compared between Before and After Interaction
We were interested in investigating if our participants’ negative 
attitude toward robots was influenced by their interaction with 
the robot. We conducted Wilcoxon rank-sum tests to evaluate if 
the ratings differed significantly before and after the interaction. 
The results showed that there was no significant difference in 
NARS ratings before and after the interaction with the robot (S1: 
W = 248.00, z = −0.59, p = 0.558, r = −0.06; S2: W = 460.00, 
z = 1.66, p = 0.097, r = −0.18; and S3: W = 234.50, z = −1.81, 
p = 0.071, r = −0.19). The mean values for the three scales before 
and after the participants’ interaction with the robot are provided 
in Table 3.

3.1.2.4.  Participants’ Negative Attitude toward Robots 
Compared between Conditions
We explored if participants’ rating after their interaction with 
the robot differed between the error and no error condition. We 
conducted Mann–Whitney-U tests for the scales completed after 
interaction. However, none of the scales resulted in significant 
differences between the conditions (S1: U  =  277.50, z  =  0.85, 
p = 0.395, r = 0.13; S2: U = 324.50, z = 1.66, p = 0.098, r = 0.25; 
and S3: U = 277.00, z = 0.58, p = 0.564, r = 0.09).

3.1.2.5.  Participants’ Negative Attitude toward Robots 
Compared between the Genders
We performed Mann–Whitney-U tests to assess if the NARS rat-
ings differed between male and female participants. The ratings 
for S2 and S3 (both before and after interaction) did not differ 
significantly. However, both ratings for S1 differed significantly 
between men and women (S1 before interaction: U  =  419.50, 
z = 3.89, p = 0.000, r = 0.58 and S1 after interaction: U = 341.50, 
z = 2.41, p = 0.016, r = 0.36). This result yielded in a large (before) 
and medium (after) effect size. For an overview on the mean 
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Table 5 | godspeed mean values (sD) compared between conditions.

godspeed scale error no error Mann–Whitney-U

Anthropomorphism Mean = 1.97, SD = 0.66 Mean = 2.33, SD = 0.78 U = 182.00, z = −1.60, p = 0.109, r = 0.24
Likabilitya Mean = 4.30, SD = 0.49 Mean = 3.93, SD = 0.70 U = 340.00, z = 2.02, p = 0.044, r = 0.30
Perceived intelligence Mean = 3.33, SD = 0.62 Mean = 3.23, SD = 0.76 U = 267.50, z = 0.35, p = 0.723, r = 0.05

aSignificant differences.

Table 4 | nars s1 mean values (sD) before and after interaction for 
male and female participants.

nars s1 Males Females

Before Mean = 1.77, SD = 0.54 Mean = 2.46, SD = 0.42
After Mean = 1.87, SD = 0.55 Mean = 2.35, SD = 0.73
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values refer to Table  4. Even though males and females rated 
their potential interaction with a robot as rather positive, male 
ratings are significantly more positive than those of the female 
participants.

3.1.3. Participants’ Rating of the Robot
We measured how people rated the likability, anthropomorphism, 
and perceived intelligence of the robot after interacting with it. To 
do so, we used the three corresponding subscales of the Godspeed 
questionnaire, each of which consists of five semantic differential 
items. These items measure the participants’ position between 
two poles. Therefore, the arithmetic mean of these items with no 
emphasis on either one of the poles is 3. The calculated likability 
score ranges from 1—“dislike” to 5—“like,” anthropomorphism 
from 1—“fake” to 5—“natural,” and perceived intelligence from 
1—“incompetent” to 5—“competent”.

3.1.3.1. Scale Reliability
The anthropomorphism and perceived intelligence scales resulted 
in acceptable reliability (Cronbach’s α = 0.78 and 0.79) and lik-
ability in high reliability (α = 0.83).

3.1.3.2. Participants’ Overall Rating of the Robot
Our participants rated the robot less anthropomorphic than the 
arithmetic mean (mean = 2.16, SD = 0.74), slightly more intel-
ligent (mean = 3.28, SD = 0.69), and considerably more likeable 
(mean = 4.10, SD = 0.63).

3.1.3.3. Participants’ Rating of the Robot Compared between 
Conditions
In order to explore if people who experienced erroneous robot 
behavior rated the robot differently from those participants 
who had interacted with a flawless robot, we conducted Mann–
Whitney-U tests (see Table  5). While the mean ratings for 
anthropomorphism and perceived intelligence did not differ sig-
nificantly between conditions, participants’ rating of the robot’s 
likability differed significantly between conditions. People who 
interacted with an erroneous robot liked the robot significantly 
more than people who interacted with a flawless robot. This dif-
ference yielded in a medium effect size.

3.1.3.4. Participants’ Rating of the Robot Compared between 
the Genders
We conducted further Mann–Whitney-U tests to detect potential 
differences in robot ratings between the genders. The tests showed 
that none of the three scales resulted in different ratings for 
male and female participants (anthropomorphism: U = 290.50, 
z =  0.93, p =  0.352, r =  0.14; likability: U =  317.50, z =  1.55, 
p = 0.121, r = 0.23; perceived intelligence: U = 323.00, z = 1.68, 
p = 0.094, r = 0.25). We further checked if our participants’ age, 
their preexperience with robots, and their technological affinity 
influenced how the robot was rated. None of these attributes 
resulted in significant differences.

Given our results, we can infer the following for our previ-
ously postulated hypotheses. Our participants liked the robot 
that made errors significantly more than the flawless robot which 
confirms our hypothesis 1. The hypotheses 2 and 3 have to be 
rejected since the robot committing errors did neither result in 
significantly higher anthropomorphism nor in significantly lower 
perceived intelligence ratings.

3.2. Qualitative Data
For the qualitative data analysis, we annotated the video record-
ings of the interview and LEGO sessions from the error condition. 
We hand coded the social signals the participants showed toward 
the robot, not toward the researcher, and which were objectively 
countable. Ambiguous events were discarded. For two of the par-
ticipants, there was no video data due to technical problems from 
the recording equipment. The video data reported are based on 
the remaining 19 participants that completed the error condition. 
The data from the concluding interview were coded thematically 
in order to support our findings.

In this results section, we will report those findings from the 
qualitative data that are related to our research topic of robot 
errors.

3.2.1. Interview and LEGO Session
3.2.1.1. Interview Session
NAO began the interview with asking the participants to state 
their definition of a robot. The majority of people provided a very 
technical definition: 17 people used the word machine, 10 the 
word device, and 10 referred to a robot as some other technical 
object. While 2 people directly referred to NAO as being a robot 
(“NAO, you are a robot.”), 4 participants used an “organic” noun 
(i.e., human, life form, and creature). However, they still used a 
technical adjective to further specify that noun (i.e., mechanical, 
artificial, electronic, and technical). Two participants provided 
unrelated answers.
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FigUre 6 | emotions the participants expressed during the legO session.

FigUre 5 | an example of how the participants showed their current 
emotion to naO during the legO session.
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We had the above question included in the robot’s question-
naire to gather people’s general standpoint on robots. Since most 
of the participants regarded a robot as a technical object, we 
assumed that they would want it to work reliably. In order to back 
our assumption up, the robot’s next question targeted the three 
most prominent qualities people attribute with a robot. Again, 
many participants listed technical terms (N = 24; e.g., mechanical, 
electronic, and programmed). While 11 participants attributed a 
practical quality to robots (e.g., helpful, efficient, and diligent), 3 
people said robots were intelligent, and 6 people pointed out that 
robots are controlled by humans (e.g., there is human intelligence 
in the background, not very intelligent, no free will). As regards 
performance, 3 people referred to robots as precise/reliable, 1 par-
ticipant said that robots would do what they are meant to, given 
they are programmed correctly, and only one person said that 
robots often make errors. This confirms our previous assumption 
that people assume robots to perform error-free.

The questions reported above were asked at the beginning 
of the interview. In order to make the participant familiar with 
the situation, no errors were included in here, irregardless of the 
condition (for a complete description of the user study procedure 
refer to Section 2.2). Therefore, the answers were not influenced 
by the fact that the robot made or did not make mistakes. The 
following questions, however, contained robot errors in the error 
condition.

Upon asking the participants which skills they would want a 
robot to have, 8 participants referred to robots as error-free (e.g., 
should do what people tell it to do, work reliably, and make no 
mistakes). Other skills included that the robot should be help-
ful and take on work that is too difficult/tedious/dangerous for 
humans (N = 13), it should be communicative and understand 
the human (N = 5), it should be easy to handle (N = 3), and it 
should be witty (N = 2).

3.2.1.2. LEGO Session
The robot asked the participants to express their current emo-
tional state with LEGO bricks. The emotional state declarations 
were classified through lip and/or eyebrow shape (for an example 
see Figure  5). Most of the emotional state declarations were 
closely modeled to emoticons that are widely used in social 
media. Depictions that could not clearly be matched to an emo-
tion were excluded (no data entries in Figure 6). No apparent 
difference in participants’ emotional state could be detected 
between the conditions. While the majority of participants was 
happy, only a few indicated a neutral expression. In the baseline 
condition, one participant reported a puzzled feeling and one felt 
silly. In the experimental condition, one participant indicated to 
be sad, one surprised. For an overview on all emotions refer to 
Figure 6.

In the error condition, the robot failed to grasp the LEGO 
board that the participants were supposed to hand over. Since the 
participants were instructed to tell the robot to grasp, we wanted 
to know how often participants were willing to repeat their 
instructions. The number of expressed instructions (“grasp!”) 
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Table 6 | Mean number of social signals and standard deviation (sD) per 
error situation.

error situation Mean sD

Interview—robot waits 15 s (SNV) 1.69 0.946
Interview—robot cuts participant off (SNV) 1.44 0.784
Interview—robot stops mid-word (TF) 0.95 0.911
Interview—speech loop (TF) 1.63 1.065 
LEGO—throw block on the floor (SNV) 1.16 0.765
LEGO—robot waits 15 s (SNV) 1.00 0.953
LEGO—speech loop (TF) 2.00 1.106
LEGO—robot fails to grasp (TF) 2.63 1.26

Table 7 | Overview on social signal categories and frequencies per error type.

category social signals Frequencies  
in snV

Frequencies 
in TF

Speech Statements, questions 13 16
Smile/laughter Smiles, laughs, giggle 29 30
Facial expressions Frown, raised eyebrows, corners of the mouth lowered, eyes wide open 6 17
Head movements Tilted head, nodding 5 12
Body movements Lean forward, step back, touch face, adjust glasses, put hands on hip, put hands behind back, take hands 

out from pockets, raise arm and dance, sway, snap fingers, move LEGO parts around in front of the robot
8 19

Gaze shift Shift gaze to or away from robot, wandering gaze 26 43

Total number of social 
signals

87 137
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ranged from 2 to 7 (mean = 4.16, SD = 1.21). This result lets us 
assume that people are to some extent patient with a faulty robot.

Upon placing an unusual request in the error condition, the 
participants’ willingness to comply was striking. A total of 17 
participants threw LEGO blocks to the floor when asked to do so 
and 2 participants bent down and placed them on the floor, but 
no one refused to carry out the robot’s request. The fact that the 
participants complied with the robot’s unusual request links up 
with the research of Salem et al. (2015). The authors report that 
although people seemed to know that the robot’s request was not 
right (the researchers made the robot ask a number of unusual 
things of the participants, such as throwing someone’s personal 
mail in a garbage can), people complied as long as the action was 
not fatal and could be undone.

3.2.1.3. Social Signals
As we intended, the participants correctly interpreted the  
majority of social norm violations (SNV) and technical failures 
(TF) as error situations. The effectiveness manifests in the cir-
cumstance that most participants produced social signals when 
the robot made an error. Only the error where the robot waited for 
15 s until it spoke was not recognized in 3 cases in the interview 
and in 7 cases in the LEGO session. The video footage showed 
that during the LEGO session, the participants were simply 
preoccupied with the previous task. This means that they were 
still dealing with the LEGO bricks (e.g., disassembling, counting, 
assembling, etc.) and, thus, did not pay attention to the robot’s 
long silence. During the interview session, three participants 
were more patient than the rest of our sample and just waited for 
the robot to continue. The SNV in the interview session where 
the robot cut the participant off did not work in one case. This 

participant provided such a short but coherent answer that he 
was finished by the time the robot started speaking.

Each of the 19 participants experienced 8 error situations, 
which results in 152 error situations. From those, 11 were not 
recognized as error (see above) and in 19 cases, the participants 
did not show a reaction toward the robot. This leaves us with 122 
error situations in which the participants showed 1 or more social 
signals (maximum 5). See Table 6 for an overview on the mean 
number of social signals per error situation.

The mean number of social signals expressed during a 
SNV is 1.36 (SD = 0.56) and during a TF 1.53 (SD = 0.72). A 
Kolmogorov–Smirnov test for normality over the differences of 
the variable scores indicated that the data are normally distributed 
(D(19) = 0.131, p = 0.200). We performed a paired-samples t-test 
and found that the amount of social signals the participants 
produced did not differ significantly between SNV and TF 
(t(18) = −1.112, p = 0.281, d = 0.27). Table 7 gives an overview 
on how many social signals were made for each category in 
each type of error situation. The table also shows which kinds 
of social signals were grouped in the categories. Our analysis 
contains only social signals that were made toward the robot. 
Signals toward the present experimenters were not included in 
our analysis (e.g., verbal statements to the experimenter, head 
turns in the direction of the experimenter). We hand coded the 
data by counting the objectively perceivable events. Thereby, we 
distinguished a head tilt (head moves sideways with gaze staying 
in place) from a shift in gaze (the participant’s gaze shifts vis-
ibly from, e.g., the robot to the LEGO parts). Head turns (head 
movements with the gaze leaving the scene) were all directed 
toward the present experiment and, thus, disregarded.

A Kolmogorov–Smirnov test for normality over the fre quency 
differences of the variable scores for the speech category indicated 
that the data deviate from normal distribution (D(19) = 0.250, 
p = 0.003). Therefore, we performed Wilcoxon signed-rank tests 
to assess the differences in frequencies for each category. Table 8 
provides an overview on the mean number of social signal of each 
category per error situation type. The results show that during 
technical failures people made significantly more facial expres-
sions, head movements, body movements, and gaze shifts.

3.2.2. Concluding Interview by the Researcher
After the participants finished interacting with the robot and after 
they completed the postinteraction questionnaires (NARS after 
interaction and Godspeed), they were asked four open-ended 
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Table 8 | social signals shown during social norm violations and 
technical failures.

social signal social norm 
violation

Technical 
failure

Wilcoxon signed rank

Mean (sD) Mean (sD) Z p-Value r-Value

Speech 0.68 (0.820) 0.84 (0.958) 0.758 0.448 0.12
Smile/laughter 1.53 (1.219) 1.58 (0.902) −0.074 0.941 −0.01
Facial expressions 0.32 (0.582) 0.89 (0.809) −2.147 0.032 −0.35
Head movements 0.26 (0.562) 0.63 (1.165) −2.121 0.034 −0.34
Body movements 0.42 (0.607) 1.00 (0.816) −2.484 0.013 0.40
Gaze shift 1.37 (0.831) 2.26 (1.098) −3.090 0.002 0.50
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questions in the final interview. While the questions 1–3 asked 
about some general aspects of the participants’ impression of 
the interaction and the robot, question 4 specifically targeted 
the robot’s errors (see Section 2.5 for the specific questions). 
Therefore, question 4 was only asked for participants in the error 
condition. The resulting data were analyzed through an affinity 
diagram (Holtzblatt et al., 2004). An affinity diagram is a method 
for organizing ideas, challenges, and solutions into a wall-sized 
hierarchical diagram.

In question 1, participants were asked to report anything par-
ticular they had noticed during their interaction with the robot. 
Here, 12 participants reported that the robot had made some 
mistakes (e.g., it went in a loop; it cut my word). The participants’ 
answers to question 2 did not include any mentions about the 
robot’s mistakes. In question 3, 7 participants reported that they 
would like to change the faulty robot behavior (e.g., fix the techni-
cal bugs; it does not leave time for you to respond; loops).

With the final question in the interview, we specifically targeted 
the robot’s errors, in asking what the participants thought of the 
robot making mistakes. While 7 participants uttered specifically 
negative aspects (e.g., unpleasant; confusing; that’s just what one 
would expect from technology; I was unsure if the interaction had 
stopped; I thought I had made a mistake), 10 participants uttered 
positive feelings when asked about the fact that the robot made 
mistakes (e.g., funny; friendly; it was great that the robot did not 
make it look like I made a mistake; I do not like it less because of the 
mistakes; it would be scary if all went smooth because that would 
be too human-like).

4. DiscUssiOn

Our results showed that the participants liked the faulty robot 
significantly more than the flawless one. This finding confirms the 
Pratfall Effect, which states that people’s attractiveness increases 
when they make a mistake as shown by Aronson et al. (1966). 
Therefore, the psychological concept can successfully be trans-
ferred from interpersonal interaction to HRI. Upon the attempt of 
including socially acting robots into this concept, we can extend 
it to: “Imperfections and mistakes carry the potential of increasing 
the likability of any social actor (human or robotic).” The same 
effect was previously researched by Salem et  al. (2013), where 
incongruent behavior of a robot can be seen as a social norm 
violation as such behavior violates participants’ expectations 
from a social script. To overcome this error situation, participants 

changed their social signals, but on the other hand they rated the 
likability of the robot higher. Similarly, Ragni et al. (2016) showed 
that the participants in their study enjoyed the interaction with 
the faulty robot significantly more, than the participants who 
had interacted with a flawless robot. On the other hand, their 
participants who had interacted with the faulty robot, rated it 
less intelligent, less competent, and less superior, which again 
confirms the Pratfall Effect.

The repeated evidence of this phenomenon existing in HRI 
strengthens our argument to create robots that do not lead to 
believe they perform free from errors. We recommend that robot 
creators design social robots with their potential imperfections in 
mind. We see two sources for these imperfections that link back to 
the two error types found in HRI. On one hand, creators of social 
robots should follow the notions of interpersonal interaction to 
meet the expectations humans have about social actors and with 
it socially interacting robots. On the other hand, it is advisable to 
embrace the imperfections of robot technology. Technology that 
is created with potential shortcomings in mind can be designed 
to include methods for error recovery. Therefore, one way to go 
here would be to make robots understand they made an error 
by correctly interpreting the human’s social signals and indicate 
their understanding to the human user. Both of these sources 
of imperfections will lead to more believable robot characters 
and more natural interaction. Of course, this applies to social 
robots operating in non-critical environments. Safety-relevant 
applications and scenarios must under all circumstances operate 
at zero-defect level.

Interestingly, we could not find a comparable effect for anthro-
pomorphism in our data. The robot’s anthropomorphism level was 
rated similar, irregardless of the fact if the robot made errors or 
not. Our result is different from the findings of Salem et al. (2013), 
who also used a human-like robot, and where the participants 
rated the faulty robot more anthropomorphic as the flawless one. 
The researchers used coverbal gestures, while we programmed 
the robot to provide mostly random gestures to make it appear 
more life-like. This might have in general diminished the effect 
of anthropomorphism in our setup (which is indicated by the 
low overall anthropomorphism level). However, more research 
is required to further explore the role of anthropomorphism in 
faulty robot behavior.

Contrary to our assumption, the faulty robot was not rated as 
less intelligent than the flawless one. This seems striking since the 
robot made several errors over a relatively short interaction time. 
Furthermore, most participants had noticed the robot making 
errors, while, at the same time, they had indicated to regard a 
robot as something very technical that should perform reliably. 
One potential explanation could be the fact that the induced 
errors were non-task-related. Follow-up research is required to 
further explore the perceived intelligence of erroneous robot 
behavior.

Upon asking the participants about their current emotional 
state, the majority of participants showed the robot that they were 
happy. The participants were also quite patient and tried handing 
the object several times, when the robot failed grasping it. All of 
these observations point toward the notion that a faulty social 
robot is a more natural social robot. In our future research on this 
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topic, we will extend our approach to include more user experi-
ence measures to get a more profound understanding on the 
users’ perception of the robot. For example, it will be interesting 
to further investigate possible impacts on subjective performance 
and acceptance.

Our data showed that when people interacted with a social 
robot that made an error, they were likely to show social 
signals in response to that error. In our previous research, we 
performed an analysis of video material in which robot errors 
occurred unintentionally and we found that users showed social 
signals in about half the interactions (Mirnig et al., 2015). In 
the herein reported study, however, most participants showed 
at least one social signal per error situation. We explain this 
difference in part with the high error rate (8 errors in an average 
total interaction time of about 12 min). Users seem to anticipate 
the robot making more errors once they experienced it is not 
flawless and responded more frequently with social signals. 
The reason for the increased number of social signals could 
also be based on the size of the robot. While the majority of 
interactions from the previous study were with a human-sized 
robot at eye level, the robot in our case was small and placed 
slightly below participants’ eye level. This aspect remains to be 
studied further.

With our results we show again that humans respond to a 
robot’s error with social signals. Therefore, recognizing social 
signals might help a robot to understand that an error happened. 
According to the frequencies of occurrence, gaze shifts and smile/
laughter carry most potential for error detection, which is in line 
with our previous findings in the study of Giuliani et al. (2015). 
Upon a detailed analysis on the categories of social signals we 
found that people make significantly more gaze shifts during 
technical failures. This result is in contrast to our previous find-
ings where significantly more gaze shifts were made during social 
norm violations. We take from this that gaze shifts are a potential 
indicator for robot errors, but it remains to be studied if they can 
be used to distinguish between the two error types.

We also found that people made significantly more facial 
expressions, head-, and body movements during technical 
failures. The increase in social signals during technical failures 
may be rooted in the circumstance that the technical failures were 
more obvious in the present user study. For example, in the video 
material from the previous study the robot failed to grasp an 
object that was placed in front of it. In our setup, the robot failed 
to grasp an object that the participant handed to it, which made 
the participant more actively perceive the robot’s error.

Contrary to our previous findings, we did not detect signifi-
cant differences in spoken social signals. This could be grounded 
in the fact that due to the setup, the robot had in general a much 
larger share in spoken utterances.

In response to the robot’s unusual request, most users showed 
social signals. The kind of signals (gaze shifts and laughter) 
displayed the users’ slight discomfort and provided evidence that 
they knew the robot’s request implied a deviation from the social 
script of the situation. However, most users nevertheless followed 
the robot’s order and threw the LEGO blocks to the floor. In addi-
tion to the previous results as reported in the study of Mirnig 
et al. (2015), this result provides further evidence that users show 

specific social signals in response to robot errors. Future research 
should be targeted at making a robot understand the signals and 
make sense of them. A robot that can understand its human inter-
action partner’s social signals will be a better interaction partner 
itself and the overall user experience will improve.

Since most of our participants had not interacted with a robot 
before, a potential novelty denotes a certain limitation to our 
results. Some participants were probably captivated with the 
technology, which made them remain patient. It remains to 
be studied how such novelty wears off over time and how this 
influences people’s willingness to interact. It will, furthermore, 
be interesting to assess the dimensions of faults. That is, how 
extensive can an error become until it becomes a deal-breaker. 
Ragni et  al. (2016) already provided evidence that erroneous 
robot behavior decreases performance of a human interact-
ing with the robot. It could also be interesting to explore how 
users react in case of the robot giving ambiguous information. 
Further aspects of robot errors that are worthwhile exploring are, 
for example, the following. What kinds of errors are forgivable 
and which ones are not? What is the threshold for error rate 
or number of errors until the participants’ patience is over or 
performance drops considerably? A lot more specific research 
is required to understand and make use of the effects of errors 
in social HRI.

5. cOnclUsiOn

With our user study we explored how people rated a robot 
making errors in comparison to a perfectly performing robot. 
We measured the robot’s likability, anthropomorphism, and 
perceived intelligence. We found that the faulty robot was rated 
as more likeable, but neither more anthropomorphic nor less 
intelligent. We recommend robots to be designed with their pos-
sible shortcomings in mind as we believe that this will result in 
more likeable social robots. Similar to interpersonal interaction, 
imperfections might even have a positive influence in terms of 
likability. We expect social HRI that embraces the imperfectness 
of today’s robots to result in more natural interaction and more 
believable robot characters.

Our results confirm existing HRI research on robot likability 
such as the studies of Salem et al. (2013) and Ragni et al. (2016), 
hinting at error-prone robots supposedly resulting in more 
believable robots. Our work successfully proves the existence of 
the psychological concept Pratfall Effect in HRI and suggests that 
it should be our community’s aim to bear potential shortcomings 
of social robots in mind when creating them. The nature and 
extent of errors that can be handled through the interactional 
design remain yet to be studied.

With our results we could again show that humans respond 
to faulty robot behavior with social signals. A robot that can rec-
ognize these social signals can, in subsequence, understand that 
an error happened. We detected gaze shifts and laughter/smiling 
as the most frequently shown social signals, which is in line with 
our previous research.

We see the following next steps to the ambitious goal of creat-
ing social robots that are able to overcome an error situation. 
First, it needs to be studied how we can let robots understand 
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that an error occurred. Second, robots must be enabled to com-
municate about such errors. Third, robots need to know how to 
behave in an error situation in order to effectively apply error 
recovery strategies.
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