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The increasing availability and complexity of data has led to new opportunities and chal-
lenges in veterinary epidemiology around how to translate abundant, diverse, and rapidly 
growing “big” data into meaningful insights for animal health. Big data analytics are used 
to understand health risks and minimize the impact of adverse animal health issues 
through identifying high-risk populations, combining data or processes acting at multiple 
scales through epidemiological modeling approaches, and harnessing high velocity data 
to monitor animal health trends and detect emerging health threats. The advent of big 
data requires the incorporation of new skills into veterinary epidemiology training, includ-
ing, for example, machine learning and coding, to prepare a new generation of scientists 
and practitioners to engage with big data. Establishing pipelines to analyze big data in 
near real-time is the next step for progressing from simply having “big data” to create 
“smart data,” with the objective of improving understanding of health risks, effectiveness 
of management and policy decisions, and ultimately preventing or at least minimizing the 
impact of adverse animal health issues.
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iNtrODUctiON

As our capacity to collect and store data continues to expand rapidly, challenges in veterinary epide-
miology are shifting from data acquisition to translating data into meaningful insights about animal 
health. While human medicine and public health have harnessed big data to optimize “precision” 
care and track trends in human diseases (1–8), big data in the field of veterinary medicine have 
been mostly focused on spatial analyses and bioinformatics (9–13). However, the use of big data for 
animal disease surveillance is a rapidly growing field (14, 15). The promise of big data, as has been 
witnessed in areas ranging from human health to business and marketing, is the capability to target 
specific populations and track or even anticipate trends (16). The development and refinement of 
such capabilities in veterinary epidemiology could significantly improve our ability to identify and 
respond to emerging animal health concerns, especially if collection and analysis of data occurs in 
near real-time rather than retrospectively.

Big data typically have certain characteristics, referred to as the four “V’s” (Figure 1) (16, 17): 
Volume refers to the size of the dataset, which is typically an order of magnitude or more than what 
has previously been available within a given field (10); variety refers to different forms of data that 
may have been generated for different purposes or collected at different spatial or temporal scales; 
veracity addresses uncertainties in data; and velocity refers to the rate at which data are accrued. High 
velocity data should not be thought of as a “dataset,” but rather a “data stream” (17, 18). Applying 
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FiGUre 1 | Characteristics of big data: volume, variety, velocity, and value. Arrows represent that data are progressively getting larger (more volume), more variable, 
and are accruing at faster rates than historically in the field of veterinary epidemiology. Italicized words are examples of types of data in veterinary epidemiology that 
meet some combination of volume, variety, and velocity.
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analytics to volume, variety, veracity, and velocity generates a 
fifth “V”: the value of big data to create novel insights and inform 
decision-making. The analysis of big data, as applied to veterinary 
epidemiology, is not fundamentally novel compared to traditional 
or historical practices, but rather differs in complexity, scale, and 
scope.

Veterinary epidemiological data that are or are becoming “big” 
include “-omics” data, geospatial data, publically available data 
repositories such as World Animal Health Information System1 
and EMPRES Global Animal Disease Information System 
(Empres-i2), clinical data or digitized health records from both 
companion and food animals, data on animal movement from 
local to international scales, and production data from food ani-
mal industries (Figure 1) (14, 15, 19). The analysis of such data 
can be used to understand health risks and minimize the impact 
of adverse animal health issues by, for example, increasing the 
effectiveness of control and surveillance by identifying high-risk 
populations through the analysis of spatial and animal movement 
data; combining disparate data or processes acting at multiple 
scales through epidemiological modeling approaches; and har-
nessing high velocity data to monitor animal health trends and 
for early detection of emerging health threats.

Generating and storing big data are becoming increasingly 
easy, but we now face challenges in translating the abundance of 
available data into meaningful information. This challenge, com-
bined with the capability to analyze epidemiological patterns in 
near real-time, creates a need to develop effective tools and data 
pipelines to move from simply having “Big Data” into the creation 
of “Smart data.” Using the four V’s as an organizing framework, 

1 http://www.oie.int.
2 http://empres-i.fao.org.

we review recent examples of big data analytics and highlight 
insights gained from approaching veterinary epidemiology with 
a big data perspective.

vOLUMe: iDeNtiFYiNG HiGH-risK 
POPULAtiONs WitH BiG DAtA

Collecting and analyzing very large data sets has become 
increasingly common as technologies for storage and computa-
tion advance. For example, research utilizing bioinformatics 
approaches, detailed data on the demographics and movements 
of animal populations, and large scale spatial datasets routinely 
generate terabytes of data, stimulating a new frontier of advanced 
analytics to handle such data (9–11). Here, we do not provide 
an exhaustive review of the use of high volume datasets in vet-
erinary epidemiology, but rather select a few diverse examples 
that highlight the potential use of big data to identify high-risk 
populations.

Risk of infection is rarely homogenous in a population, and the 
ability to identify heterogeneities in risk allows for targeted sur-
veillance and control measures. Risk-based strategies are typically 
more cost-effective than non-targeted strategies, both in terms of 
early detection and rapid control of a disease (10, 20–22). Because 
movement of animals between locations is a key risk factor for 
many infectious diseases, many countries now implement manda-
tory animal traceability programs (23–26). For example, national 
or multinational programs, such as the European Union’s Trade 
Control and Expert System and the United Kingdom’s Cattle 
Tracing System, track shipments of production animals across 
space and time, generating a rich source of information for rapid 
response to health threats (27–29). In the absence of national 
regulatory frameworks, large production companies often keep 
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records on the movement of animals between company farms 
(30). Movement data from a single swine production company in 
the US contained information on the origin and destination of 9.1 
million pigs annually, totaling ~25,000 per day. Such databases 
can be used to construct contact networks that represent poten-
tial transmission pathways in a population, and social network 
analysis can be used to quantify the connectivity of each node 
within the network and to assess the population’s vulnerability 
to infectious disease epidemics (26, 31–33). Identifying premises 
that likely play critical roles in disease spread, such as highly con-
nected farms or farms lying on bottlenecks within the network, 
can inform control measures that are more effective at limiting 
disease spread than non-targeted approaches (10, 21, 25). Given 
the high velocity nature of animal movement data, it is relatively 
easy to envision how risk estimates could be updated in near 
real-time, provided that data are efficiently captured in the field, 
analyzed, and reported to decision-makers.

Substantial spatial heterogeneities exist in the occurrence 
of infectious diseases, and management and analysis of large 
spatial datasets represents another facet of voluminous data (34). 
Numerous spatially explicitly datasets exist for environmental 
and climatic factors [e.g., Ref. (35)], land cover and use [e.g., 
Ref. (36, 37)], distributions of at-risk, reservoir, and vector 
populations [e.g., Ref. (37–39)], and satellite imagery and remote 
sensing products (40). In addition, the increasing use of GPS 
tracking devices creates a rich source of data on the movement 
of people, vehicles, and animals that can be used to dynamically 
represent exposure and transmission dynamics (41). These data 
can be combined with geo-referenced disease data [e.g., Ref. (42)] 
to identify environmental correlates of disease through ecological 
niche modeling, thus contributing to our ability to understand 
and map a pathogen’s geographic distribution (9, 43–45). By 
utilizing near real-time updates in environmental data and 
locations of new cases, risk maps can become evolving rather 
than static representations of risk (43, 46). Remote sensing, in 
particular, could be re-framed as a high velocity source of data, 
as many satellite-based data are updated at regular intervals (43). 
Ultimately, the ability to predict the occurrence of pathogens 
through space and time will allow for more effective targeted 
surveillance and control.

vArietY: cOMBiNiNG DisPArAte DAtA

The challenge emerging from the need to assemble datasets from 
multiple, disparate sources is not new within epidemiology. 
Analysis of such data is complicated in that data are often aggre-
gated at different spatial and temporal scales, and datasets must 
be aggregated or disaggregated to harmonize the spatiotemporal 
scale of the consolidated dataset. Even when combining a single 
type of data (i.e., diagnostic records) from various institutions, 
inconsistencies in data structure and vocabulary must be mapped 
to make the data interoperable.

The use of universally recognized data formats is important 
for enhancing connectivity of data between different sources (e.g., 
different laboratories and clinics) (47, 48). Human diagnostic 
laboratories have long had standardized vocabularies for health 
records, such as HL7, LOINC, and SNOMED, but standardized 

vocabularies are typically underused in veterinary medicine (49). 
To overcome this challenge, the Clinical Wildlife Health Initiative 
has worked to create a standardized terminology for clinical signs 
in admitted wildlife. This standardization enhances the ability to 
pool data from multiple clinics into a common dataset, thus creat-
ing a powerful network of clinics in which health trends could be 
tracked (50). Similar efforts are underway for swine diagnostic 
data (48). Related to the current lack of data standardization, 
many sources of animal health data are not readably usable 
in statistical models, such as “unstructured” text-heavy data 
(15, 49, 51). While it is possible to use text-mining techniques 
to extract information from unstructured text fields in clinical or 
diagnostic records (52, 53), homogenizing and naturalizing data 
into uniform and standardized formats is critical for maximizing 
accuracy and ensuring smooth automation (8).

Finally, data relevant to disease dynamics are representa-
tive of processes that operate at different spatial and temporal 
scales. Epidemiological modeling provides a means to connect 
processes across multiple scales and account for the inherent 
dynamic elements of disease systems. For stochastic disease 
models, thousands or even hundreds of thousands of simula-
tions are performed to understand the behavior of the system 
and optimize parameter values, thus requiring extensive com-
putational resources and generating big data. Machine learning 
techniques, such as random forests and genetic algorithms, are 
used to optimize parameter values so that the model simulates 
epidemiological dynamics that closely resemble real-world 
data. Computational modeling provides an effective means to 
link data to processes, and understand mechanistically how 
disparate data may interact to influence the occurrence of 
disease.

veLOcitY: HArNessiNG HiGH veLOcitY 
DAtA

Of the Vs of big data, velocity represents the largest departure 
from traditional data processing in veterinary epidemiology, but 
it also has the most potential for revolutionizing the field, par-
ticularly in regard to monitoring and surveillance (2, 3, 7, 15, 19, 
54). Sources of high velocity data include digitized records from 
clinics and diagnostic laboratories, analysis of Google search 
trends and social media, and mortality and abattoir data (2, 3, 15, 
49, 54–56). Analysis of data through time allows for the establish-
ment of baselines to which emerging data can be compared (49). 
The typical values for a metric that relates directly or indirectly 
to disease (e.g., incidence or production levels) are summarized 
for a particular population or spatial location, and deviations 
outside the normal variation of the metric can be used as an 
indicator of an outbreak (57, 58). Time-series analysis provides 
an additional method for mathematically quantifying temporal 
patterns, incorporating seasonality and long-term trends (58). 
Short-term predictions can then be made in terms of expected 
incidence or prevalence over time. Departures from expectations 
can be considered “anomalies” and may serve as early warnings 
for emerging threats or altered disease dynamics that warrant 
further investigation or intervention (54, 56, 58).
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FiGUre 2 | (A) Data pipeline utilized by the Morrison Swine Health Monitoring Project for generating near real-time insights about the spatiotemporal incidence of 
porcine reproductive and respiratory syndrome (PRRS) virus, including weekly reports on the (B) incidence of PRRS, with trends reported as an exponential 
weighted moving average (EWMA), and (c) heatmaps of PRRS risk based on the geographic distribution of sow farms shedding PRRS.
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For example, a recent initiative involving 700 veterinary 
hospitals in the US tracked the daily proportion of patients with 
certain clinical signs, contrasting new data with averages from a 
retrospective period of time. As a proof-of-concept, the system 
was able to rapidly detect a simulated outbreak scenario and gen-
erate an outbreak alert (19). Similarly, daily condemnation rates 
of pig carcasses at abattoirs in Canada were evaluated to detect 
aberrations in the data stream that may signal a disease outbreak. 
Aberrations detected in a retrospective analysis coincided with 
several documented disease outbreaks in swine, thus demonstrat-
ing the potential timeliness of a syndromic surveillance system 
based on abattoir data streams (59). Finally, Guernier et al. (54) 
found that Google search trends could be used to track the occur-
rence of tick paralysis in companion animals in Australia, and 
certain search terms could potentially be used as early indicators 
of high-risk periods. These examples highlight the potential 
for high velocity and high volume data to enhance surveillance 
capabilities. Such applications may be particularly relevant for 
syndromic surveillance, where the causative agent may not be 
identified and the focus of the analysis is on tracking suites of 
clinical signs, or a syndrome, that may be associated with an 
endemic or emerging disease (49).

The capability to acquire and analyze high velocity data streams 
requires the development of data pipelines, which can automate 
and streamline the processing of big data for real-time insights 
and rapid response. For example, the Morrison Swine Health 
Monitoring Project (MSHMP) is a high velocity data stream that 
is effective at tracking the spatiotemporal dynamics of several, 
high-impact infectious diseases in the US swine industry (60, 61). 
As of November 2016, MSHMP included data from more than 
1,000 sow farms managed by 29 production companies; the status 
of ~46% of breeding sows in the US are tracked through MSHMP 
on a weekly base. In this case, the data pipeline involves (a) 

capture of data from disparate data sources, including veterinar-
ians and diagnostic laboratories, (b) storage and (c) processing 
data to prepare datasets for (d) data visualization and analysis to 
(e) ultimately interpret and report up-to-date trends in incidence, 
prevalence, genetic diversity, and spatial occurrence of swine 
diseases in the US (Figures 2A–C). This data pipeline is being 
used, for example, to establish dynamic baselines for porcine 
reproductive and respiratory syndrome (PRRS) virus incidence, 
detect the onset of seasonal PRRS epidemics, and provide value 
to participating producers.

creAtiNG vALUe: BiG DAtA 
cHALLeNGes AND OPPOrtUNities iN 
veteriNArY ePiDeMiOLOGY

In the coming decades, the greatest challenge in big data epide-
miology will be to move toward creating value. Putting big data 
to work requires expanding our definition of the V’s of big data to 
include three A’s: accuracy, accessibility, and automation. While 
some may purport that the sheer quantity of big data means that 
inaccuracies in the data are washed out, this may not be true if 
issues with confounding, measurement error, and selection bias 
scale with sample size (5, 47, 62). For example, data mining based 
on Google searches or Twitter may misrepresent the population 
at risk given biases in internet use. In addition, the value of 
extracting data from clinical records or diagnostic laboratory 
databases is dependent on the quality of record keeping and 
data entry. Thus, error checking and quality control should be 
incorporated into big data processing to ensure reliability (47). 
Accessibility it also a critical challenge, encapsulating fundamen-
tal concerns related to data confidentiality and ownership (8, 14, 
18, 47), data engineering issues revolving around data structure 
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and connectivity (8), and limited availability of trained person-
nel capable of extracting data from databases (14). Finally, high 
velocity data create a need to automate data pipelines for routine 
and repeated use. Automation is key for harnessing big data for 
monitoring and surveillance (8, 49, 56).

A major criticism of big data analytics is that it lacks the rigor 
of hypothesis-driven, controlled experiments for determining 
causation (16, 62). However, correlations identified through the 
analysis of big data are useful for hypothesis generation and pre-
diction (5, 17). In addition, the increasing numbers of measurable 
explanatory factors available from diverse sources necessitate the 
use of relatively new (to veterinary epidemiologists) statistical 
approaches, such as machine learning, that are more appropriate 
for handing datasets with a large number of covariates (17, 18, 
63–65). Due to the large number of potential variables, care must 
be taken to identify spurious correlations (5, 66), and the use 
of large datasets does not necessarily increase a study’s validity. 
Sound epidemiological principles for the interpretation of obser-
vational data are required (62).

As in all long-term monitoring programs, sustainability 
of big data surveillance and monitoring efforts is a constant 
challenge (49). For example, voluntary reporting programs 
such as MSHMP rely on weekly reporting by veterinarians, 
and adoption of new data standards and sharing of data across 
organizations requires investment of time, resources, and 
complicated data-sharing agreements. Even ensuring that all 
data fields are complete in clinical or diagnostic records (such 
as location data) requires investment of time and diligence by 
workers (14, 47). Despite substantial individual and institu-
tional investments, the collective and long-term benefits for 
big data animal health monitoring at the population, regional, 
or national level may be murky for the individual practitioner. 
Thus, sustainability may depend on creating short-term value 
for participating entities. For companion animal and equine 
medicine, aggregated health data could be used to research and 
subsequently deliver “precision” veterinary care that is tailored 
to the individual (5, 8). For livestock industries, short-term 
value may focus on research that intends to improve herd and 
flock management.

The advent of big data has implications for the education of 
veterinary epidemiologists (6, 13, 17, 51), including technical 
skills, such as computer programming, that may not be a tradi-
tional part of epidemiological training. While epidemiologists 

may never be responsible for creating complete software applica-
tions, the ability to manage relational databases or write simple 
scripts in a programming language to facilitate preparing data 
for analysis is critical when datasets become too large to process 
manually. Further, the analysis of big data often entails the use of 
supercomputing resources, which usually requires some familiar-
ity with parallel processing and IT systems. To train the current 
workforce, workshops with hands-on computational activities 
are needed. Current curricula in graduate education should 
be expanded to include machine learning as well as traditional 
statistics, and coding as well as core epidemiological skills. 
Alternatively, graduate programs in the veterinary sciences could 
actively recruit students with computer science backgrounds 
that will readily be able to apply big data thinking to veterinary 
data. Veterinary epidemiologists with skillsets that allow them to 
directly engage with, manipulate, and analyze large datasets will 
be ideally situated to propel veterinary epidemiological research 
and practice into the coming decades.

The role of big data in veterinary epidemiology, and veterinary 
medicine more generally, has in some ways been inevitable from 
the beginning of the digital age, where data have become ever 
easier and cheaper to generate and store. At this point in time, 
we are at a turning point in terms of our ability to translate big 
data, which has existed for well over a decade, into smart data that 
create meaningful insights for animal health. Forward thinking 
is required to position our IT systems and workforce to harness 
the potential of big data. Indeed, from our perspective, big data 
should not be described as something that exists, but rather a 
capability. The real promise of big data is to create value out of 
disparate, chaotic pieces and extract real-time insights from data 
streams, thus creating a potentially revolutionary opportunity for 
veterinary epidemiology.
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