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Neuroscience simulators allow scientists to express models in terms of biological concepts, 
without having to concern themselves with low-level computational details of their implementation. 
The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently 
and accurately translating ideas into a working simulation. We review long-term trends in the 
development of programmable simulator interfaces, and examine the benefits of moving from 
proprietary, domain-specific languages to modern dynamic general-purpose languages, in 
particular Python, which provide neuroscientists with an interactive and expressive simulation 
development environment and easy access to state-of-the-art general-purpose tools for scientific 
computing.
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IntroductIon
Many models in computational neuroscience 
can be expressed by equations that have exact 
 mathematical solutions, but a far greater number 
cannot, and approximate solutions must be found 
using numerical methods, a technique commonly 
referred to as simulation.

The earliest neuroscience simulations were 
 perhaps those of Andrew Huxley, using a Brunsviga 
mechanical calculator (Hodgkin, 1976), for his 
Nobel prize-winning work with Alan Hodgkin 
on the action potential (Hodgkin and Huxley, 
1952). Huxley  performed his  calculations by 
hand only because the Cambridge University 
electronic computer was  undergoing an upgrade, 
but soon enough simulations of nerve cell mem-
branes were being performed by computers, with 
 programs written in languages such as FOCAL 
and FORTRAN (Moore, 1994).

The programs for such early simulations were 
designed from the ground up, with investiga-
tors concerning themselves with the technical 

details of early computers, the biological details 
of the system under study, and with devising 
efficient algorithms for numerically solving the 
 differential equations (Figure 1A). With the 
maturation of the field, however, the details of 
the numerical methods began to be standard-
ized, and an increase in research productivity 
could be achieved by hiding the details of solv-
ing the equations from the investigator, allowing 
them to focus on the biological concepts. Thus a 
number of general-purpose neuroscience simu-
lation programs (“simulators”) began to appear 
in the late 1980s and early 1990s (Figure 1B), 
such as CABLE (the forerunner of NEURON; 
Hines, 1989), GENESIS (Wilson et al., 1989), 
NODUS (De Schutter, 1989), Axontree (Manor 
et al., 1991), Nemosys (Eeckman et al., 1993) and 
SWIM (Ekeberg et al., 1994) (see Moore, 1994 
for much more detail on this era).

The major advantages of using simulation 
software rather than writing simulation  programs 
from scratch are: increased productivity, since 
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and we considered it more expressive than the 
BASIC-like interpreter, FOCAL, previously used 
in our lab for interactively calling functions and 
assigning/evaluating variables in C or FORTRAN 
compiled libraries. In 1984, the precursor to the 
NEURON simulation environment, CABLE, 
switched from FOCAL to Hoc for setup and con-
trol of neural simulations. A fundamental exten-
sion to Hoc syntax was made in the late 1980s in 
order to represent the notion of continuous cables, 
called sections. Sections are connected to form a 
tree shaped structure and their principle purpose 
is to allow the user to specify the physical prop-
erties of a neuron without regard for the purely 
numerical issue of how many compartments are 
used to represent each of the cable sections. In the 
early 1990s, Hoc syntax was again extended to pro-
vide some limited support for classes and objects, 
that is, data encapsulation and polymorphism, but 
not inheritance; useful containers for numerical 
data, such as vectors and matrices, were added and 
a graphical interface was developed.

Hoc is now a fairly full-featured, general pro-
gramming language that serves its purpose well. 
However, it has turned out to be an orphan lan-
guage limited to NEURON users and, along with 
all other DSLs for neural simulators, inevitably 
suffers in comparison with mainstream, general-
purpose interpreted languages such as Python 
(http://www.python.org), Ruby (http://www.
ruby-lang.org/) or Scheme (Abelson et al., 1998), 
or with general scientific programming environ-
ments such as MATLAB (The Mathworks, Inc.), 
which have hundreds of developers and many 
thousands of users in all domains of science and 
engineering. Furthermore, continuing develop-
ment and maintenance of the general program-
ming language features of a DSL steals significant 
time and effort from neurobiology domain-spe-
cific improvements.

Given these limitations and costs of domain-
specific languages for simulators, the natural next 
step in the evolution of programming languages 
for neural simulators is to replace home-grown 
DSLs with a general purpose programming 
language, with neurobiology-specific concepts 
implemented in the general purpose language 
(Figure 1C). This relieves the simulator devel-
oper of the need to develop and maintain 
standard programming language features, con-
nects both developers and users to a wider sci-
entific and technical programming  community, 
and in most cases enables an enhanced repre-
sentation of domain-specific concepts, since 
modern, widely-used languages are almost 
inevitably more powerful and expressive than 
home-grown DSLs.

much less code has to be written; fewer bugs, since 
the simulator will be used by many people, not 
just one or two, and hence bugs are encountered 
and fixed earlier; improved conceptual control of 
the simulation, since low-level computation and 
book-keeping are done by the simulator, allowing 
the user to focus on the scientific concepts.

There are several ways in which models and 
their environment (inputs, parameterization, 
instrumentation, output files, etc.) can be speci-
fied in a simulator: through a text-based con-
figuration file, through a graphical interface, 
or through a special-purpose, domain-specific 
programming language, either compiled or, 
more commonly, interpreted. The advantages 
of configuration files or graphical interfaces are 
that the user need not have any knowledge of 
programming, and that it is much more difficult, 
or impossible, to introduce an error or incon-
sistency into the model (though, of course, the 
model defined by the user may differ from his 
or her intention). This is particularly important 
when using a simulator as an educational tool. 
For research, however, the greater flexibility 
introduced by a domain-specific programming 
language is often indispensable.

ProgrammIng languages  
for neural sImulators
Until very recently, with few exceptions, each 
simulator that offered the option of a domain-
specific programming language (DSL) came 
with its own proprietary language, specific to 
that simulator.

These languages often started out restricted in 
scope, then gradually added functionality as the 
software was developed (Cannon et al., 2007). At 
a minimum, a DSL for a neural simulator needs to 
be able to represent neuroscience concepts, such 
as ion channels, synapses, dendrites, neurons, and 
to interact with the operating system by reading 
and writing files and accepting user input. Beyond 
this minimum, the following features are desir-
able: features for structured programming, at 
least functions/procedures and preferably classes 
and objects; a variety of data structures such as 
lists, associative arrays, matrices; a mathematical 
library; a graphical interface.

To illustrate this trend of gradual accumu-
lation of features, consider the interpreter for 
the NEURON simulation environment. Hoc 
(Kernighan and Pike, 1984) was incrementally 
developed by those authors within the context 
of a tutorial on “Program Development” using 
 standard UNIX software tools. As a language devel-
opment example, Hoc had a syntax for expressions 
and control flow vaguely similar to the C language 

Simulator
A simulator is a computer program  
that numerically solves the equations 
used to represent a particular model, 
resulting in a simulation of the system 
being modelled.

Interpreted language
An interpreted language is one in which 
each line of source code is translated 
into machine code just before it is 
executed. In contrast, in a compiled 
language all the source code is 
translated at once, to be executed later. 
Interpreted languages allow interactive 
programming, i.e., a user can type a line 
of code, execute it, and then decide 
what to do next based on the results  
of that line.

Domain-specific language
In contrast to a general-purpose 
programming language, a domain-
specific language is a language 
dedicated to a particular problem 
domain, which allows concepts from 
that domain to be expressed more 
clearly than with a general-purpose 
language. Examples outside 
neuroscience include spreadsheet 
formulas, the PostScript language for 
page rendering, and the typesetting 
language .

NEURON simulation environment
NEURON is a simulator for modelling 
individual neurons and networks  
of neurons. It provides tools for 
conveniently building, managing,  
and using models in a way that is 
numerically sound and computationally 
efficient. It is particularly well-suited  
to problems that are closely linked  
to experimental data, especially those 
that involve cells with complex 
anatomical and biophysical properties.
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MOOSE (Ray and Bhalla, 2008), STEPS (Wils and 
De Schutter, 2009), Topographica (Bednar, 2009) 
and NCS (Drewes et al., 2009), and in the choice of 
Python as the sole or principal interface language 
for new simulators such as Brian (Goodman and 
Brette, 2008) and PCSIM (Pecevski et al., 2009).

The latter examples demonstrate that new 
simulators need not inevitably reprise the path 
described above, and nowadays can adopt a 
 general-purpose language from the beginning. 
It is also possible to replace one general-purpose 
 language with another, as was done in the rewrite 
of CSIM (which originally used MATLAB) to 
produce PCSIM, and by Topographica, which 
initially adopted Scheme before replacing it 
with Python.

Python as a ProgrammIng language 
for neural sImulatIon
Python is a dynamic object-oriented programming 
language that is widely used in both commercial 
and academic settings for systems integration, as 
a scripting language, as a web-development lan-
guage, and for scientific computing.

Such a general purpose language should: 
(i) be interpreted, allowing interactive use of the 
simulator; (ii) be easy to learn, given that most 
of its users will be neuroscientists with little for-
mal computer science training or experience; 
(iii) provide support for modularity, facilitating 
the construction and maintenance of complex 
programs; (iv) have a large scientific/engineer-
ing user base (not restricted to neuroscience), 
providing a ready-made library of tools for data 
analysis and visualization; (v) have a large general 
user base outside of science, providing general 
purpose tools for database access, graphical inter-
faces, network access, debugging, etc.

A number of languages, among them Python, 
Perl (http://www.perl.org), Ruby and Scheme, meet 
these criteria and would be suitable candidates for 
a simulator interface language. For a number of 
reasons, it is the Python programming language 
that has seen widespread uptake among simulator 
developers in recent years, resulting in the addition 
of Python interfaces to several existing simulators, 
including NEURON (Hines et al., 2009), NEST 
(Eppler et al., 2008), Nengo (Stewart et al., 2009), 

Figure 1 | (A) The earliest approach to computational simulations: the user 
(neuroscientist) is also the software developer, and simulation code is written 
from the ground up. (B) Development of general-purpose neural simulators.  
The simulator is developed by a small group of people, and has its own 
domain-specific language (DSL) for representing neuroscience concepts.  
The DSL also contains functionality for visualizing results and performing 
numerical analysis. The simulator is used by a larger group of scientists, who 
may not be programming experts, and who use the DSL to create their 
simulations. (C) The DSL is replaced or augmented by a general-purpose 

interpreted programming language. The simulator developers are able to 
concentrate on the domain-specific functionality, and to leverage tools  
for visualization, analysis, database access, network access, etc., developed by 
third-party developers external to neuroscience. The users benefit from greatly 
expanded functionality and easier extensibility of the simulator. The programmer 
icon was originally created by David Vignoni, and is reused here under the terms 
of the GNU Lesser General Public Licence (LGPL) (http://www.gnu.org/licenses/
lgpl.html). As a consequence, this image is also licensed under the LGPL. 
Copies of the image file are available on request from the corresponding author.
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The advantages of using Python in the context 
of neuronal simulations are:

•	 it	is	an	interpreted	language,	making	interac-
tive exploration of code or data possible, and 
providing immediate feedback to the user.

•	 clear,	 expressive	 syntax.	 This	 makes	 code	
easy to write and, perhaps more importantly, 
easy to read, facilitating sharing, debugging 
and re-use. Python code is generally concise 
enough to make it easy to see and understand 
the overall structure, but not so concise as to 
be confusing.

•	 powerful	data	structures	such	as	lists	and	dic-
tionaries are built-in to the language.

•	 it	has	an	extremely	flexible	implementation	
of object-oriented programming, which is 
important in producing well-structured, 
reusable code, making it possible to create 
models of high complexity (almost inevita-
ble in neuroscience) with non-complicated 
code.

•	 it	has	a	large	standard	library,	providing	built-
in, extensive functionality for data processing, 
database access, network programming, etc.

•	 a	 large	 number	 of	 freely-available,	 third-
party libraries for graphical interfaces, 
scientific computing, etc., are available. Of 
particular note is the SciPy package (http://
www.scipy.org), which provides extensive 
and high-speed facilities for manipulation of 
 numerical data.

•	 it	is	easy	to	interface	Python	with	code	writ-
ten in other programming languages. A com-
mon approach is to develop a user interface 
in Python, with its ease-of-use and rapid 
development time, and to implement com-
putationally-expensive code in a fast, compi-
led language such as C, C++ or FORTRAN.

•	 it	 is	 easy	 to	 learn	 (Raymond, 2000), due 
mainly to the first three points in this list.

Although many of the above are also true of 
other programming languages, taken together 
Python seems to have the best combination. 
There is also a virtuous circle effect: as Python 
is more widely used in scientific computing, the 
range of available libraries, of teaching materi-
als, and of expertise becomes wider, making it 
yet more attractive.

the Python Interface to neuron
To give a concrete example of the use of Python 
in a neuroscience simulator, we present here the 
Python interface to NEURON, which coexists, and 
interoperates with, the original Hoc interpreter. 
NEURON with Python works on Windows, Mac 

OS X, Linux, and many other platforms such as the 
IBM Blue Gene/L/P and Cray XT3  supercomputers. 
Downloads and installation instructions can be 
found at http://www.neuron.yale.edu.

The fundamental objects for representing 
neurons in NEURON are the membrane  section 
(an un-branched piece of a dendrite, axon or 
soma), and the membrane mechanism, which 
may either be inserted at a particular point in a 
section, as for synapses or electrodes, or distrib-
uted over the entire surface of the section, as for 
ion channels.

Each of these objects is represented by a 
Python class. In the following listing we create 
a section for the soma, a section for a dendrite, 
connect them together, insert Hodgkin-
Huxley sodium and potassium channels in the 
soma, and place a synapse near the end of the 
dendrite:

>>> from neuron import h
>>> soma = h.Section()
>>> dend = h.Section()
>>> dend.connect(soma, 0, 0)
>>> soma.insert(’hh’)
>>> syn = h.ExpSyn(0.9, sec=dend)

This code is not very far removed from the code 
used to perform the same task in Hoc, the main 
difference being that Hoc has special keywords 
create, connect and insert, whereas the 
Python interface uses the standard syntax for cre-
ating a new object and calling “methods” (object-
oriented programming terminology for functions 
that are bound to an individual object).

The gain in representing membrane sections 
as standard objects, rather than using special key-
words to create and manipulate them, is that the 
full power of Python’s object-oriented approach 
can be brought to bear, allowing sub-classes to 
inherit behaviour from their parent classes, encap-
sulation of data and functionality within the class, 
and allowing sections to be passed as arguments to 
functions, all of which lead to cleaner, easier-to-
understand code. Hoc does have object-oriented 
capabilities, but they do not apply to sections, and 
do not support inheritance.

While the syntax improvements are valu-
able, a much greater benefit of moving from 
a special-purpose to a widely-used, general-
purpose language is the availability of all the 
libraries and modules developed in the general-
purpose language. This is described in the next 
section.

Despite these gains, the move away from the 
special-purpose language might nevertheless 
be negative overall if some of the capabilities of 

SciPy
SciPy is perhaps the most important  
of many open-source packages  
for scientific computing that use  
the Python programming language.  
It is an excellent example of the sort  
of powerful tool that becomes available 
to simulator users when the simulator 
interface is a general-purpose 
programming language such as Python.
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brane potential trace is stored in a vector vm, the 
following code saves it to HDF5:

>>> import tables, numpy
>>> h5 = tables.openFile(‘test.h5’, 
...      ‘w’)
>>> h5.createArray(‘/’, ‘V’,  
...      numpy.array(vm))
>>> h5.close()

MorphML (Crook et al., 2007) is an XML-based 
format for exchanging neuronal morphology data. 
An increasing number of neuron reconstructions 
are available in this format, and it was desirable 
to allow these morphologies to be imported into 
NEURON. Hoc does not provide any tools for 
processing XML data (it would be possible, but 
time-consuming to create them), but Python pro-
vides a number of such tools. By using Hoc and 
Python together, the process of adding MorphML 
support was greatly accelerated. Taking lines of 
code as a crude measure of development effort, 
we can compare the 1180 lines of NEURON’s 
NeuroLucida v3 import tool, written purely in 
Hoc, to the 448 lines (78 lines of Hoc, 370 lines 
of Python) needed for MorphML import. A fuller 
description of the MorphML import is given in 
Hines et al. (2009).

The availability of Python interfaces for mul-
tiple simulators allows two or more simulators 
to be coupled via the interpreter to compose 
compound models, as explored in Ray and 
Bhalla (2008). With the addition of run-time 
simulator interaction, such as provided by the 
MUSIC library (Ekeberg and Djurfeldt, 2008), 
such interactions become possible in distrib-
uted computing environments on a large-scale 
while remaining controllable from a single 
interactive Python prompt (in the distributed 
case using the parallel capabilities of IPython). 
Moreover, it becomes possible to provide a uni-
fied meta-interface to Python-based simula-
tors. PyNN (Davison et al., 2009)  is one such 
meta-interface, and allows network models of 
point neurons (integrate-and-fire, single com-
partment Hodgkin-Huxley, etc.) to be simulated 
on NEURON, NEST, Brian and PCSIM without 
any modification of the code. Such a common 
interface facilitates model cross-checking, trans-
lation, evaluation of the optimal simulator for a 
given problem, and provides a simulator-agnos-
tic foundation upon which to develop higher-
level modelling abstractions.

In our opinion, the most promising future 
applications of Python in neuroscience simula-
tion include the following:

the special-purpose language were lost, or if the 
expertise built-up by modellers in that language 
were no longer applicable. This is not the case for 
NEURON, since all the functionality of Hoc is still 
available through a special object representing the 
Hoc interpreter (h in the code example above). 
The h object allows us to use Hoc commands such 
as create, e.g.:

>>> h(‘create soma’)
>>> h.soma
<nrn.Section object at 0x8194080>

and makes any of the classes defined in Hoc 
 available to Python, such as the ExpSyn mech-
anism in the example above, or the important 
Vector class, which is used for recording, graph-
ing and many other purposes. Through Python, 
Hoc Vector objects can be used in most cases 
where Numpy, Scipy, and Matplotlib (Hunter, 
2007), the most important scientific modules, 
accept lists or arrays:

>>> from numpy import array
>>> l1 = [1, 2, 3, 4, 5]
>>> a1 = array(l1)
>>> v1 = h.Vector(l1)
>>> v2 = h.Vector(a1)
>>> a2 = array(v1)
>>> l2 = list(v2)
>>> from matplotlib.pylab import plot
>>> plot(v1)

This easy interoperability between Hoc and 
Python makes it easy to re-use existing code  written 
in Hoc in a new simulation using Python, without 
needing to rewrite or convert the older code.

This has been a very brief introduction to using 
Python with NEURON. A more extensive descrip-
tion is given in Hines et al. (2009). Although 
the details differ, the general benefits described 
above apply equally to other simulators that use 
a  general-purpose language, such as Python, as 
their user interface.

current and future uses of Python
Python makes a vast library of third-party mod-
ules available to NEURON users for use in their 
simulations. We give here two examples: export-
ing data and importing XML. Suppose the user 
would like to export simulated voltage traces to 
a standard binary format for scientific data, such 
as HDF5 (http://www.hdfgroup.org/HDF5), 
for later analysis in Python, MATLAB, etc. The 
PyTables package (www.pytables.org) provides 
the required functionality. Supposing the mem-
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•	 it	 frees	 up	 simulator	 developers	 to	 concen-
trate on neuroscience-specific features, leaving 
ancillary functionality to the general language.

•	 it	 makes	 available	 to	 both	 developers	 and	
users an extensive collection of tools for data 
analysis, visualization, debugging, testing, etc.

•	 it	provides	tools	for	well-structured	program-
ming, so that simulating complex models of 
complex neural structures need not imply 
complex, hard-to-understand code.

•	 competency	 gained	 in	 programming	 a	
 simulator is transferrable to other domains 
of programming, both inside and outside 
science.

•	 where	 multiple	 simulators	 adopt	 the	 same	
general purpose language, as is the case with 
Python, the energy barrier for translating 
models between simulators is lowered. Each 
simulator still effectively has its own repre-
sentations for neuroscience domain-specific 
concepts (but see Davison et al., 2009), but 
now all simulators can access the same data 
structures, and exploit the same built-in and 
external libraries. Furthermore, it becomes 
much easier to develop tools, for visualiza-
tion or data analysis, that will work with any 
Python-supporting simulator.

From the point of view of the NEURON simu-
lator, we recommend that new users of NEURON 
and those already familiar with Python should use 
Python rather than Hoc to develop new models. 
There is no need to rewrite legacy code in Python, 
as it will continue to work using the Hoc inter-
preter or mixed in with new Python code and 
accessed via the h object.

Our expectation is that the recent widespread 
adoption of Python for simulator interfaces will 
lead to accelerated progress in computational 
neuroscience. Although part of the complexity 
of neuroscience models comes from the una-
voidable complexity of the neural systems under 
study, the extra complexity added by our software 
systems can certainly be reduced. Python alone 
is not a silver bullet that completely alleviates the 
problem of avoidable complexity in neuroscience 
modelling – simulation-based computational 
neuroscience must at the least also adopt other 
tools from mainstream software engineering – 
but it provides a solid foundation for develop-
ing readable, modular, well-structured, reusable 
models; developing and sharing tools for simula-
tion project management, data analysis and visu-
alisation, etc.; and leveraging the work of other 
scientific and engineering communities, without 
which we cannot hope to begin to tame the com-
plexity of the brain.

•	 more	 expressive,	 well-structured	 and	 easy-
to-understand models, as expanded on in 
previous sections;

•	 development	 of	 graphical	 user	 interfaces	
using the power of the most recent cross-
platform GUI toolboxes such as Qt or 
GTK+, either replacing or complementing 
existing GUIs. The possibility of creating 
a single GUI for multiple simulators (like 
the existing neuroConstruct, Gleeson et al., 
2007, but fully interactive) is also very 
interesting;

•	 integration	 of	 the	 simulator	 in	 a	 complete	
Python-based workflow for simulation 
projects, including stimulus generation, 
visualization, data analysis and databasing;

•	 support	 for	 declarative	 formats	 for	 neu-
roscience models (based on XML or other 
formats), such as NeuroML (Goddard et al., 
2001, http://www.neuroml.org) or SBML 
(Hucka et al., 2003).

dIscussIon

“About half the time spent on a typical 
simulation project involves creating and 
tuning the model. Thus, a good user inter-
face may contribute more to the overall 
efficiency of a project than pure computa-
tion speed.”

De Schutter (1992)

“Increasingly, the real limit on what com-
putational scientists can accomplish is how 
quickly and reliably they can translate their 
ideas into working code.” 

Wilson (2006)

Available, affordable computer power and the 
amount of experimental data available to con-
strain models have both increased greatly in the 
14 years that separate these two quotations. So, 
however, have the ambition of computational 
neuroscientists and the complexity of the simu-
lations they develop, so that the influence of the 
simulator user interface on the efficiency and 
correctness of a neuronal simulation project is 
greater than ever.

In this article, we have coarsely sketched the 
history of simulator interface development, and 
have highlighted the most recent trend: for home-
grown interfaces to be replaced by modern, pow-
erful, general purpose programming languages, 
particularly Python.

This trend has a number of positive 
consequences:
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