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Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation
to progress in learning is at the origins of the remarkable structure of children’s developmental trajectories. In this view, children engage
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in exploratory and playful activities for their own sake, not as step
that intrinsically motivating activities correspond to expected dec
avoid both predictable and unpredictable situations in order to fo
Based on a computational model and a series of robotic experime
behavior of increasing complexity characteristic of several behavio
the putative circuitry underlying such an intrinsic motivation system
tonic dopamine acts as a learning progress signal. The second is
microcortical circuits that act both as prediction and metapredicti
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INTRODUCTION
Imagine an 8-month-old toddler playing with a plastic toy car. He grasps
the toy, examines it from different angles, puts it on the floor again, pushes
it from the side, makes it turn over, and sometimes by chance, manages to
have it rolling. Then, he spends some time banging the toy on the floor to
produce interesting sounds but after a moment he seems to lose interest
in this noisy activity. As he looks around, he sees just a few steps away an
old magazine unfortunately left on the floor. He walks to this novel exciting
target, and methodologically starts to tear it into pieces.

Why did this child suddenly lose interest in his current activity to

pick up another one? What is generating curiosity/interest/exploration in
the first place? We will not have understood a crucial part of children’s
remarkable learning capabilities until we will be able to understand the
neural processes that led to such kinds of organized behavior sequences.
Indeed, two fundamental characteristics of children’s development seem
to be linked with the way they explore their environment.

First, children seem to acquire new know-how in a continuous and
open-ended manner. Their capabilities for acting and perceiving contin-
uously reach new level of sophistication as they engage in increasingly
complex activities. In just a few months, children learn to control their body,
discriminate between themselves and others, recognize sounds, smells,
tactile and visual patterns and other multimodal situations, interact with
people and objects, crawl, stand, walk, jump, hop, run, treat others as
intentional beings, participate with them in joint attention processes, in
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ward other extrinsic goals. The central hypothesis of this paper is
e in prediction error. This motivation system pushes the infant to
on the ones that are expected to maximize progress in learning.
, we show how this principle can lead to organized sequences of
nd developmental patterns observed in humans. We then discuss

the brain and formulate two novel hypotheses. The first one is that
t this progress signal is directly computed through a hierarchy of
ystems.

cal microcircuits, meta-learning, development

on-verbal and verbal communication, exchange shared meanings and
ymbolic references, play games, engage in pretend play, and eventually
ntegrate society as autonomous social beings. A significant amount of
ata describes how new skills seem to build one upon another, suggesting
continuum between sensory-motor development and higher cognitive

unctions (Gallese and Lakoff, 2005). But the driving forces that shape this
rocess remain largely unknown.

Second, childrens’ developmental trajectories are remarkably struc-
ured (Thelen and Smith, 1994). Each new skill is acquired only when
ssociated cognitive and morphological structures are ready. For exam-
le, children typically learn first to roll over, then to crawl, and sit, and only
hen these skills are operational, do they begin to learn how to stand.
ikewise, sudden transitions occur from apparent insensitivity to input to
tages of extraordinary sensitivity to new data. Some pieces of information
re simply ignored until the child is ready for them. It is as if children were
orn equipped with natural means for measuring and handling complexity

n order to learn in the most effective way.
Most existing views fail to account for the open-ended and self-
rganized nature of developmental processes. Development is either
educed to an innately defined maturational process controlled by some
ort of internal clock, or, in contrast, pictured as a passive inductive pro-
ess in which the child or the animal simply catches statistical regularities
n the environment (see (Karmiloff-Smith, 1992; Thelen and Smith, 1994)
or a critical review of current views of development). More generally,
pigenetic developmental dynamics as a whole are rarely addressed as
n issue as research tends to focus simply on the acquisition of particu-

ar isolated skills. We intend to explore an alternative view, namely that
pigenetic development is an intrinsically motivated active process. This
iew hypotheses that at the origins of the remarkable structure of devel-
pmental sequences lies a basic internal impulse to search, investigate
nd make sense of the world and progress in learning. This driving force
hapes exploration in specific ways permitting efficient learning. In this
iew, infants engage in exploratory activities for their own sake, not as
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steps toward other extrinsic goals. Of course, adults help by scaffolding
their environment proposing learning opportunities, but this is just help:
eventually, infants decide by themselves what they do, what they are
interested in, and what their learning situations are. Far from a passive
shaping, development has to be viewed as a fundamentally active and
autonomous process.

Several researcher in psychology seem to suggest that such a kind
of system exists in the human brain and that human behavior can
be intrinsically motivated. However, they have postulated many differ-
ent mechanisms at the origins of what we may call curiosity or other
incentives for exploration. The central hypothesis of this paper is that
intrinsically motivating activities corresponds to expected decrease in
prediction error. We argue that children (and adults) act in order to maxi-
mize progress in prediction and that this incentive shape their exploratory
strategy. After reviewing how concepts related to intrinsic motivation sys-
tems have been elaborated and discussed in psychology, neuroscience
and machine learning, we present a computational model of circuits that
can compute and optimize progress in prediction. Through a series of
experiments with physical robots we show how these circuits can indeed
lead to organized sequences of behavior of increasing complexity, char-
acteristic of many behavioral and developmental patterns observed in
humans and mammals. We then review different hypotheses about where
the circuitry underlying such an intrinsic motivation system could be
located in the brain. In particular, we discuss the putative role of tonic
dopamine as a signal of progress and formulate hypotheses about neo-
cortical columns acting both as prediction and metaprediction systems.
Eventually, we present a novel research program to study intrinsically moti-
vated learning, involving brain imagery experiments during exploratory
behavior.

INTRINSIC MOTIVATION SYSTEMS:
HISTORY OF A CONSTRUCT
This section presents an overview of the complex history of the concept of
intrinsic motivation system. First, it reviews psychological models of intrin-
sic motivation. Second, it examines how neuroscience research, despite
dominant views hostile to this kind of construct, has nevertheless exam-
ined closely mechanisms linked with novelty-seeking behavior. Third, it
argues that some recent machine learning models are good candidates
for bridging the gap between psychological and neuroscience models,
offering a concrete instantiation of intrinsic motivation system in the form
of progress-driven control architectures.

Psychology
In psychology, an activity is characterized as intrinsically motivated when
there is no apparent reward except the activity itself (Ryan and Deci,
2000). People seek and engage in such activities for their own sake and
not because they lead to extrinsic reward. In such cases, the person seems
to derive enjoyment directly from the practice of the activity. Following this
definition, most children playful or explorative activities can be character-

ized as being intrinsically motivated. Also, many kinds of adult behavior
seem to belong to this category: free problem-solving (solving puzzles,
cross-words), creative activities (painting, singing, writing during leisure
time), gardening, hiking, etc. Such situations are characterized by a feel-
ing of effortless control, concentration, enjoyment and a contraction of the
sense of time (Csikszenthmihalyi, 1991).

A first bloom of investigations concerning intrinsic motivation hap-
pened in the 1950s. Researchers started by trying to give an account
of exploratory activities on the basis of the theory of drives (Hull, 1943),
which are non-nervous-system tissue deficits (like hunger or pain) that
organisms try to reduce. For example, (Montgomery, 1954) proposed a
drive for exploration and (Harlow, 1950) a drive to manipulate. This drive
naming approach had many short-comings which were criticized by White
in 1959 (White, 1959): intrinsically motivated exploratory activities have
a fundamentally different dynamics. Indeed, they are not homeostatic:
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he general tendency to explore is never satiated and is not a consumma-
ory response to a stressful perturbation of the organism’s body. Moreover,
xploration does not seem to be related to any non-nervous-system tissue
eficit.

Some researchers then proposed another conceptualization. Fes-
inger’s theory of cognitive dissonance (Festinger, 1957) asserted that
rganisms are motivated to reduce dissonance, that is the incompatibility
etween internal cognitive structures and the situations currently per-
eived. Fifteen years later a related view was articulated by Kagan stating
hat a primary motivation for humans is the reduction of uncertainty in the
ense of the ‘ìncompatibility between (two or more) cognitive structures,
etween cognitive structure and experience, or between structures and
ehavior’’ (Kagan, 1972). However, these theories were criticized on the
asis that much human behavior is also intended to increase uncertainty,
nd not only to reduce it. Human seem to look for some forms of optimality
etween completely uncertain and completely certain situations.

In 1965, Hunt developed the idea that children and adult look for
ptimal incongruity (Hunt, 1965) He regarded children as information-
rocessing systems and stated that interesting stimuli were those where
here was a discrepancy between the perceived and standard levels of
he stimuli. For, Dember and Earl (1957) the incongruity or discrepancy in
ntrinsically-motivated behaviors was between a person’s expectations
nd the properties of the stimulus. Berlyne (1960) developed similar
otions as he observed that the most rewarding situations were those
ith an intermediate level of novelty, between already familiar and com-
letely new situations. Whereas most of these researchers focused on
he notion of optimal incongruity at the level of psychological processes,

parallel trend investigated the notion of optimal arousal at the phys-
ological level (Hebb, 1955). As over-stimulation and under-stimulation
ituations induce fear (e.g., dark rooms, noisy rooms), people seem to be
otivated to maintain an optimal level of arousal. A complete understand-

ng of intrinsic motivation should certainly include both psychological and
hysiological levels.

Eventually, a last group of researchers preferred the concept of chal-
enge to the notion of optimal incongruity. These researchers stated that
hat was driving human behavior was a motivation for effectance (White,
959), personal causation (De Charms, 1968), competence, and self-
etermination (Deci and Ryan, 1985).

In the recent years, the concept of intrinsic motivation has been less
resent in mainstream psychology but flourished in social psychology and
he study of practices in applied settings, in particular in professional and
ducational contexts. Based on studies suggesting that extrinsic rewards
money, high grades, prizes) actually destroy intrinsic motivation (an idea
ctually articulated by Bruner in the 1960s (Bruner, 1962)), some employ-
rs and teachers have started to design effective incentive systems based
n intrinsic motivation. However, this view is currently at the heart of many
ontroversies (Cameron and Pierce, 2002).

In summary, most psychological approaches of intrinsic motivation
ostulate that ‘‘stimuli worth investigating’’ are characterized by a partic-
lar relationship (incompatibility, discrepancy, uncertainly, or in contrast,

redictability) between an internal predictive model and the actual struc-
ure of the stimulus. This invites us to consider intrinsically motivating
ctivities not only at the descriptive behavioral level (no apparent reward
xcept the activity itself) but also primarily in respect to particular internal
odels built by an agent during its own personal history of interaction. To

rogress in the elucidation of this relationship and investigate among all
he psychological models presented which are the ones really susceptible
1) to drive children’s development and (2) to be supported by plausible
eural circuits, we will now give an overview of the neuroscience and
achine learning research regarding intrinsic motivation systems.

euroscience
n neuroscience, dominant views in behavioral neuropsychology have
mpeded for a long time discussions about putative intrinsic causes to
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behavior. Learning dynamics in brain systems are still commonly studied
in the context of external reward seeking (food, sex, etc.) and very rarely as
resulting from endogenous and spontaneous processes. Actually, the term
‘‘reward’’ has been misleading as it is used in a diffent manner in neu-
ropsychology and in machine learning (Oudeyer and Kaplan, 2007; White,
1989; Wise, 1989). In behavioral neuropsychology, rewards are primarily
thought as objects or events that increased the probability and intensity
of behavioral actions leading to such objects: ‘‘rewards make you come
back for more’’ (Thorndike, 1911). This means the function of rewards is
based primarily on behavioral effects interpreted in a specific theoretical
paradigm. As Schultz puts it ‘‘the exploration of neural reward mecha-
nisms should not be based primarily on the physics and the chemistry
of reward objects but on specific behavioral theories that define reward
function’’ ((Schultz, 2006) p. 91)

In computational reinforcement learning, a reward is only a numerical
quantity used to drive an action-selection algorithm so that the expected
cumulated value of this quantity is maximal in the future. In such con-
text, rewards can be thought primarily as internal measures rather than
external objects (as clearly argued by Sutton and Barto (1998)). This may
explain why it is much easier from a machine learning perspective to
considerer the intrinsic motivation construct as a natural extension of
the reinforcement learning paradigm, whereas dominant behavioral the-
ories and experimental methodology in neuroscience does not permit
to consider such construct. This is certainly one reason why com-
plex behaviors that do not involve any consummatory reward are rarely
discussed.

In the absence of experimental studies concerning intrinsically moti-
vated behaviors, we can consider what resembles the most: exploratory
behaviors. The extended lateral hypothalamic corridor, running from the
ventral tegmental area to the nucleus accumbens, has been recognized
as a critical piece of a system responsible for exploration. Pankseep calls
it the SEEKING system (Panksepp, 1998) (different terms are also used as
for instance behavioral activation system (Gray, 1990) or behavioral facil-
itation system (Depue and Iacono, 1989)). ‘‘This harmoniously operating
neuroemotional system drives and energizes many mental complexities
that humans experience as persistent feelings of interest, curiosity, sen-
sation seeking and, in the presence of a sufficiently complex cortex, the
search for higher meaning.’’ ((Panksepp, 1998) p.145). This system, a tiny
part compared to the total brain mass, is where one of the major dopamine
pathway initiates (for a discussion of anatomical issue one can refer, for
instance, to (Rolls, 1999; Stellar, 1985)).

The roles and functions of dopamine are known to be multiple and
complex. Dopamine is thought to influence behavior and learning through
two, somewhat decoupled, forms of signal: phasic (bursting and pausing)
responses and tonic levels (Grace, 1991). A set of experimental evidence
shows that dopamine activity can result from a large number of arous-
ing events including novel stimuli and unexpected rewards (Hooks and
Kalivas, 1994; Schultz, 1998; Fiorillo, 2004). On the other hand, dopamine
activity is suppressed by events that are associated with reduced arousal
or decreased anticipatory excitement, including the actual consumption

of food reward and the omission of expected reward (Schultz, 1998).
More generally, dopamine circuits appear to have a major effect on our
feeling of engagement, excitement, creativity, our willingness to explore
the world, and to make sense of contingencies (Panksepp, 1998). More
precisely, growing evidence currently supports the view of dopamine as
a crucial element of incentive salience (‘‘wanting processes’’) different
from hedonic activation processes (‘‘liking processes’’) (Berridge, 2007).
Injections of GABA in the ventral tegmental area and of a dopamine
receptor agonistic in the nucleus accumbens cause rats to stop search-
ing for a sucrose solution, but still drink the liquid when moved close
to the bottle (Ikemoto and Panksepp, 1999). Parkinsonian patients who
suffer from degeneration of dopaminergic neurons experience not only
psychomotor problems (inability to start voluntary movement) but also
more generally an absence of appetite to engage in exploratory behav-
ior and a lack of interest for pursuing cognitive tasks (Bernheimer et al.,
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973). When the dopamine system is artificially activated via electrical
r chemical means, humans and animals engage in eager exploration of
heir environment and display signs of interest and curiosity (Panksepp,
998). Likewise, the addictive effects of cocaine, amphetamine, opioids,
thanol, nicotine and canabinoid are directly related to the way they acti-
ate dopamine systems (Carboni et al., 1989; Pettit and Justice, 1989;
oshimoto et al., 1991). Finally, too much dopamine activity are thought
o be at the origins of uncontrolled speech and movement (Tourette’s syn-
rome), obsessive-compulsive disorder, euphoria, overexcitement, mania
nd psychosis in the context of schizophrenic behavior (Bell, 1973; Grace,
991; Weinberger, 1987; Weiner and Joel, 2002).

Things get even more complex and controversial when one tries to link
hese observation with precise computational models. Hypotheses con-
erning phasic dopamine’s potential role in learning have flourished in the
ast ten years. Schultz and colleagues have conducted a series of record-
ng of midbrain dopamine neurons firing patterns in awake monkeys under
arious behavioral conditions which suggested that dopamine neurons fire
n response to unpredicted reward (see Schultz, 1998 for a review). Based
n these observations, they develop the hypothesis that phasic dopamine
esponses drive learning by signalling an error that labels some events as
‘better than expected’’. This type of signalling has been interpreted in the
ramework of computational reinforcement learning as analogous to the
rediction error signal of the temporal difference (TD) learning algorithm
Sutton, 1988). In this scheme, a phasic dopamine signal interpreted as
D-error plays a double role (Baldassarre, 2002; Barto, 1995; Doya, 2002;
ouk et al., 1995; Khamassi et al., 2005; Montague et al., 1996; Schultz
t al., 1997; Suri and Schultz, 2001). First, this error is used as a classical
raining signal to improve future prediction. Second, it is used for finding
he actions that maximize reward. This so-called actor-critic reinforce-
ent learning architecture have been presented as a relevant model to

ccount for both functional and anatomical subdivisions in the midbrain
opamine system. However, most of the simple mappings that were first
uggested, in particular the association of the actor to matrisome and the
ritic to the striosome part of the striatum are now seriously argued to be
nconsistent with known anatomy of these nuclei (Joel et al., 2002).

Computational models of phasic dopamine activity based on the error
ignal hypothesis have also raised controversy for other reasons. One
f them, central to our discussion, is that several stimuli that are not
ssociated with reward prediction are known to activate the dopamine
ystem in various manner. This is in particular the case for novel, unex-
ected ‘‘never-rewarded’’ stimuli (Fiorillo, 2004; Hooks and Kalivas, 1994;
orvitz, 2000, 2002; Ikemoto and Panksepp, 1999). The classic TD-error
odel does account for novelty responses. As a consequence, Kakade and
ayan suggested to extend the framework including for instance ‘‘nov-
lty bonuses’’ (Kakade and Dayan, 2002) that distort the structure of the
eward to include novelty effects (in a similar manner that ‘èxploration
onuses’’ permit to ensure continued exploration in theoretical machine

earning models (Dayan and Sejnowski, 1996)). More recently, Smith et al.
2006) presented another TD-error model model in which phasic dopamine
ctivation is modeled by the combination of ‘‘Surprise’’ and ‘‘Significance’’

easures. These attempts to reintegrate novelty and surprise components

nto a model elaborated in a framework based on extrinsic reward seeking
ay successfully account for a larger number of experimental observa-

ions. However, this is done in the expense of a complexification of a model
hat was not meant to deal with such type of behavior.

Some authors developed an alternative hypothesis to the reward pre-
iction error interpretation, namely that dopamine promotes behavioral
witching (Oades, 1985; Redgrave et al., 1999). In this interpretation,
opaminergic-neuron firing would be an essential component for direct-

ng attentional processes to unexpected, behaviorally important stimuli
related or unrelated to rewards). This hypothesis is supported by sub-
tantial evidence but stays at a very general explanation level. Actually,
akade and Dayan (2002) argued that this interpretation is not incom-
atible with reward error-signaling hypothesis provided that the model is
odified to account for novelty effect.
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The incentive salience hypotheses, despite their psychological foun-
dations, are not yet supported by many computational models. But they
are some progress in this direction. In 2003, McClure et al. (2003) argued
that incentive salience interpretation is not incompatible with the error
signal hypothesis and presented a model where incentive salience is
assimilated to expected future reward. Another recent interesting inves-
tigation can be found in (Niv et al., 2006) concerning an interpretation
of tonic responses. In this model, tonic levels of dopamine is mod-
eled as encoding ‘àverage rate of reward’’ and used to drive response
vigor (slower or faster responding) into a reinforcement learning frame-
work. With this dual model, the authors claim that their theory ‘‘dovetails
neatly with both computational theories which suggest that the phasic
activity of dopamine neurons reports appetitive prediction errors and
psychological theories about dopamine’s role in energizing responses’’
(Niv et al., 2006).

In summary, despite many controversies, converging evidence seems
to suggest that (1) dopamine plays a crucial role in exploratory and
investigation behavior, (2) the meso-accumbens dopamine system is
an important brain component to rapidly orient attentional resources to
novel events. Moreover, current hypotheses may favor a dual interpre-
tation of dopamine’s functions where phasic dopamine is linked with
prediction error and tonic dopamine involved in processes of energizing
responses.

Machine learning
In reviewing the neuroscience literature, we have already discussed some
examples of machine learning models that have lead to interesting new
interpretations of neurophysiologic data. Unfortunately (but not unsur-
prisingly), more recent research in this field are not well known by
psychologists and neuroscientists. During the last 10 years, the machine
learning community has begun to investigate architectures that permit
incremental and active learning (see for instance Thrun and Pratt (1998)
as well as Belue et al. (1997), Cohn et al. (1996)). Interestingly, the mecha-
nisms developed in these papers have strong similarities with mechanisms
developed in the field of statistics, where it is called ‘òptimal experiment
design’’ (Fedorov, 1972). Active learners (or machines that perform optimal
experiments) are machines that ask, search and select specific training
examples in order to learn efficiently.

More specifically, a few researchers have started to address the
problem of designing motivation systems to drive active learning. The
idea is that a robot controlled by such systems would be able to
autonomously explore its environment not to fulfill predefined tasks but
driven by some form of intrinsic motivation that pushes it to search
for situations where learning happens efficiently (Barto et al., 2004;
Huang and Weng, 2002, Kaplan and Oudeyer, 2004; Marshall et al.,
2004; Oudeyer et al., 2007; Oudeyer and Kaplan, 2006; Schmidhuber,
1991; Steels, 2004). Technically, most of these control systems can be
viewed as particular types of reinforcement learning architectures (Sutton
and Barto, 1998), where ‘‘rewards’’ are not provided externally by the
experimenter but self-generated by the machine itself. The term ‘ìntrin-

sically motivated reinforcement learning’’ has been used in this context
(Barto et al., 2004).

Most of the research has largely ignored the history of the intrinsic
motivation construct as it was elaborated in psychology during the last 50
years and sometimes reinvented concepts that existed several decades
before (basically, different forms of optimal incongruity). Nevertheless,
it could be argued that they introduced a novel type of understanding
that could potentially permit to bridge the gap between the psychological
conceptions of intrinsic motivation and the neuroscience observations. Let
us examine how.

Most machine learning systems deal with the issue of building a pre-
dictive model of a given environment. They make errors and through
some kind of feedback process manage to progress in their predictions.
Prediction errors are also central to most of the models and con-
cepts we have discussed in psychology and neuroscience. The concepts
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f novelty, surprise, uncertainty and incongruity correspond approxi-
ately to unexpected prediction, or in other words, significant errors

n prediction. Symmetrically, the concepts of competence, effectance,
elf-determination, and personal causation characterize situations where
rediction is accurate, which means there are small errors in prediction.

n an implicit or explicit manner, error in prediction is, therefore, crucial to
ost of these models.

Moreover, in the neuroscience and psychological models we have
iscussed, the implicit idea is that the animal or person selects actions
ased on the prediction error. However, models differ in how this error

s used. Some argue that the animal acts in order to maximize error in
rder to look for novel and surprising situations, others argue that it should
inimize error looking for situations of mastery and a last group argue

or balanced situations where incongruity is ‘òptimal’’ and novelty at an
ìntermediate’’ level.

Researchers conducting experiments with artificial intrinsic motivation
ystems have been experiencing with this design issue. From a machine
earning point of view, it is relatively easy to criticize the ‘‘maximize’’ and
‘minimize’’ incentives. The first one pushes the animal to focus exclu-
ively on the most unpredictable noisy parts of its environment, where
earning is basically impossible. The second leads to strategies where
he organism is basically immobile, avoiding novel stimulus as much as
ossible, which seems also a bad strategy for learning in the long term.
ventually, maintaining error at intermediary values is a too imprecise
otion to permit a coherent and scalable optimization strategy.

A more interesting hypothesis would be that, in certain cases, animals
nd humans act in order to optimize learning progress, that is to maxi-
ize error reduction. This would mean that they avoid both predictable and

npredictable situations in order to focus on the ones that are expected
o maximize the decrease in prediction error. In that sense, the kind of
òptimal incongruity’’ discussed in most models can be traced back to a
imple principle: the search for activities where error reduction is maximal.
oreover, this model permits to articulate a direct link between a puta-

ive prediction error signal and behavioral switching patterns. Figure 1
llustrates how a progress-driven control system operates on an idealized
roblem. Confronted with four sensorimotor contexts characterized by dif-
erent learning profiles, the motivation for maximizing learning progress
esults in avoiding situations that are already predictable (context 4) or too
ificult to predict (context 1), in order to focus first on the context with the
astest learning curve (context 3) and eventually, when the latter starts to
each a ‘‘plateau,’’ to switch the second most promising learning situation
context 2).

We call ‘‘progress niches’’ situations of maximal progress. Progress
iches are not intrinsic properties of the environment. They result from a
elationship between a particular environment, a particular embodiment
nd a particular time in the developmental history of the animal. Once
iscovered, progress niches progressively disappear as they become more
redictable.

Such type of progress-driven machine learning architectures are good
andidates to shed new lights on neurophysiology of intrinsic motiva-

ion. Several researchers have described models for computing learning
rogress. One of the first theoretical machine learning architecture imple-
enting the principle of maximizing error reduction was described by
chmidhuber (1991), but no experiment in complex environments were
onducted at that time. We have recently presented a critical discussion
f the similarities and differences of these models (Oudeyer et al., 2007)
nd described a novel architecture capable to evaluate learning progress

n complex noisy continuous environments such as the one encountered
n robotic experiments. The next section presents this architecture.

OMPUTING AND OPTIMIZING
ROGRESS IN PREDICTION
e have designed an architecture that permits to compute and optimize

rogress in prediction. This architecture is described in full details in
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Figure 1. How a progress-driven control system operates on an idealized
problem. Confronted with four sensorimotor contexts characterized by differ-
ent learning profiles. The motivation for maximizing learning progress results
in avoiding situations already predictable (context 4) or too difficult to predict
(context 1), in order to focus first on the context with the fastest learning
curve (context 3) and eventually, when the latter starts to reach a “plateau”
to switch to the second most promising learning situation (context 2). This
intrinsic motivation system allows the creation of an organized exploratory
strategy necessary to engage in open-ended development.

(Oudeyer et al., 2007). In this section, we will just give a general overview of
its functioning and present some robotic experiments we have performed
to test its behavior. Our intent is to show two things: first, that it is possible
(though not trivial) to implement an intrinsic motivation system to progress
in learning and second, that such a system permits not only to optimize
learning but also to produce an organized exploration strategy and at a
more general level to produce structured developmental patterns.
The challenges of learning progress measurement
Building an intrinsically motivated machine searching for learning progress
implies complicated and deep issues. The idealized problem illustrated on
Figure 1 allowed us to make more concrete the intuition that focusing
on activities where prediction errors decrease most can generate orga-
nized developmental sequences. Nevertheless, the reality is in fact not
as simple. Indeed, in this idealized problem, four different sensorimotor
situations/activities were predefined. Thus it was assumed that when the
idealized machine would produce an action and make a prediction about
it, it would be automatically associated with one of the predefined kinds
of activities. Learning progress would then be simply computed by, for
example, comparing the difference between the mean of errors in pre-
diction at time t and at time t − θ. In contrast, infants do not come to
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he world with an organized predefined set of possible kinds of activities.
t would in fact be contradictory, since they are capable of open-ended
evelopment, and most of what they will learn is impossible to know in
dvance. It also occurs for a developmental robot, for which the world

s initially a fuzzy blooming flow of unorganized sensorimotor values. In
his case, how can we define learning progress? What meaning can we
ttribute to ‘‘maximizing the decrease of prediction errors?’’

A first possibility would be just to compute learning progress at time t

s the difference between the mean prediction errors at time t and at time
− θ. But implementing this on a robot quickly shows that it is in fact
onsense. For example, the behavior of a robot motivated to maximize
uch a progress would be typically an alternation between jumping ran-
omly against walls and periods of complete immobility. Indeed, passing
rom the first behavior (highly unpredictable) to the second (highly pre-
ictable) corresponds to a large decrease in prediction errors, and so to a

arge internal reward. So, we see that there is a need to compute learning
rogress by comparing prediction errors in sensorimotor contexts that are
imilar, which leads us to a second possible approach.

In order to describe this second possibility, we need to introduce a few
ormal notations and precisions about the computational architecture that
ill embed intrinsic motivation. Let us denote a sensorimotor situation with

he state vector x(t) (e.g., a given action performed in a given context), and
ts outcome with y(t) (e.g., the perceptual consequence of this action). Let
s call M a prediction system trying to model this function, producing for
ny x(t) a prediction y′(t). Once the actual evolution y′(t) is known, the
rror ex (t) = | y(t) − y′(t) in prediction can be computed and used as a
eedback to improve the performances of M. At this stage, no assumption
s made regarding the kind of prediction system used in M. It could be for
nstance a linear predictor, a neural network or any other prediction method
urrently used in machine learning. Within this framework, it is possible
o imagine a first manner to compute a meaningful measure of learning
rogress. Indeed, one could compute a measure of learning progress
x (t) for every single sensorimotor situation x through the monitoring of

ts associated prediction errors in the past, for example with the formula:

x(t) = 〈ex(t − θ)〉 − 〈ex(t)〉 (1)

here 〈ex (t )〉 is the mean of ex values in the last τ predictions. Thus,
e here compare prediction errors in exactly the same situation X, and

o we compare only identical sensorimotor contexts. The problem is that,
hereas this is an imaginable solution in small symbolic sensorimotor

paces, this is inapplicable to the real world for two reasons. The first
eason is that, because the world is very large, continuous and noisy,
t never happens to an organism to experience twice exactly the same
ensorimotor state. There are always slight differences. A possible solution
o this limit would be to introduce a distance function d( xm , xn ) and to
efine learning progress locally in a point x as the decrease in prediction
rrors concerning sensorimotor contexts that are close under this distance
unction:

x(t) = 〈eδ
x(t − θ)〉 − 〈eδ

x(t)〉 (2)
here 〈eδ
x(t)〉 denotes the mean of all {ex1 |d(x, x1) < δ} values in the

ast τ predictions, and where δ is a small fixed threshold. Using this
easure would typically allow the machine to manage to repeatedly try

oughly the same action in roughly the same context and identify all
he resulting prediction errors as characterizing the same sensorimotor
ituation (and thus overcoming the noise). Now, there is a second problem
hich this solution does not solve. Many learning machineries, and in
articular the one used by infants, are fast and characterized by ‘òne-shot

earning.’’ In practice, this means that typically, an infant who observes
he consequence of a given action in a given context will readily be able
o predict very well what happens if exactly the same action happens
n the same context again. Learning machines such as memory-based
lgorithms also show this feature. As a consequence, if learning progress

s defined locally as explained above, a given sensorimotor situation will
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be typically interesting only for a very brief amount of time, and will hardly
direct further exploration. For example, using this approach, a robot playing
with a plastic toy might try to squash it on the ground to see the noise it
produces, experiencing learning progress in the first few times it tries, but
would quickly stop playing with it and typically would not try to squash it
for example on the sofa or on a wall to hear the result. This is because its
measure of potential learning progress is still too local.

Iterative regional measure of learning progress
Thus, we conclude that there really is a need to build broad categories
of activities (e.g., squashing plastic toys on surfaces or shooting with the
foot in small objects) as those pre-given in the initial idealized problem.
The computation of learning progress will only become both meaning-
ful and efficient if an automatic mechanism allows for the distinction
of these categories of activities, typically corresponding to not-so-small
regions in the sensorimotor space. We have presented a possible solution,
based on the iterative splitting of the sensorimotor space into regions Rn.
Initially, the sensorimotor space is considered as one big region, and pro-
gressively regions split into sub-regions containing more homogeneous
kinds of actions and sensorimotor contexts (the mechanisms of splitting
are detailed in [Oudeyer et al., 2007]). In each region Rn, the history of
prediction errors {e} is memorized and used to compute a measure of
learning progress that characterizes this region:

pR(t) = 〈eR(t − θ)〉 − 〈eR(t)〉 (3)

where 〈eR(t)〉 is the mean of {eX|X ∈Rn} values in the last τ predictions.
Given this iterative region-based operationalization of learning

progress, there are two general ways of building a neural architecture
that uses it to implement intrinsic motivation. A first kind of architecture,
called monolithic, includes two loosely coupled main modules. The first
module would be the neural circuitry implementing the prediction machine
M presented earlier, and learning to predict the x → y mapping. The sec-
ond module would be a neural circuitry meta M organizing the space into
different regions Rn and modelling the learning progress of M in each
of these regions, based on the inputs (x(t), ex(t) provided by M. This
architecture makes no assumption at all on the mechanisms and repre-
sentations used by the learning machine M. In particular, the splitting of
the space into regions is not informed by the internal structure of M. This
makes this version of the architecture general, but makes the scalability
problematic in real-world structured inhomogeneous spaces where typi-
cally specific neural resources will be recruited/built for different kinds of
activities.

This is why we have developed a second architecture, in which the
machines M and meta M are tightly coupled. In this version, each region
Rn is associated with a circuit MR, called an expert, as well as with a
regional meta machine meta MR. A given expert MR is responsible for
the prediction of y given x when x is a situation which is covered by Rn

Also, each expert MR is only trained on inputs (x, y) where x belongs to
its associated region Rn. This leads to a structure in which a single expert

circuit is assigned for each non-overlapping partition of the space. The
meta-machine meta MR associated to each expert circuit can then com-
pute the local learning progress of this region of the sensorimotor space
(See Figure 2(b) for a symbolic illustration of this splitting/assignment
process). The idea of using multiple experts has been already explored
in several works including for instance (Doya et al., 2002; Baldassarre,
2002; Jordan and Jacobs, 1994; Kawato, 1999; Khamassi et al., 2005;
Tani and Nolfi, 1999)

Action selection circuit
The basic circuits we just described permit to compute an internal reward
r(t) = pR(t), each time an action is performed in a given sensorimotor
context, depending on how much learning progress has been achieved in
a particular region Rn. An intrinsic motivation to progress corresponds to
the maximization of the amount of this internal reward. Mathematically,
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his can be formulated as the maximization of future expected rewards
i.e., maximization of the return), that is

{r(t + 1)} = E

{∑
t≥tn

γt−tn r(t)}
}

here �(0 ≤ γ ≤ 1) is the discount factor, which assigns less weight on
he reward expected in the far future. We can note that at this stage, it
s theoretically easy to combine this intrinsic reward for learning progress
ith the sum of other extrinsic rewards re(t) coming from other sources, for

nstance in a linear manner with the formula r(t) = α.pR(t) + (1 − α)re(t)
the parameter α measuring the relative weight between intrinsic and
xtrinsic rewards).

This formulation corresponds to a reinforcement learning problem
Sutton and Barto, 1998) and thus the techniques developed in this field
an be used to implement an action selection mechanism which will
llow the system to maximize future expected rewards efficiently (e.g.,
-learning (Walkins and Dayan, 1992), TD-learning (Sutton, 1988), etc.).
owever, predicting prediction error reduction is, by definition, a highly
on-stationary problem (progress niches appear and disappear in time).
s a consequence, traditional ‘‘slow’’ reinforcement learning techniques
re not well adapted in this context. In (Oudeyer et al., 2007), we describe a
ery simple action-selection circuit that avoids problems related to delayed
ewards and makes it possible to use a simple prediction system which can
redict r(t + 1) and so evaluate E{r(t + 1)} Let us consider the problem of
valuating E{r(t + 1)} given a sensory context S(t) and a candidate action

(t), constituting a candidate sensorimotor context SM(t) = x(t) covered
y region Rn. In our architecture, we approximate E{r(t + 1)} with the

earning progress that was achieved inRn with the acquisition of its recent
xemplars, i.e. E{r(t + 1)} ≈ pR(t − θR) where t − θR is the time cor-
esponding to the last time region Rn and the associated expert circuit
rocessed a new exemplar. The action–selection loop goes as follows:

in a given sensory S(t) context, the robot makes a list of the possible
values of its motor channels M(t) which it can set; If this list is infinite,
which is often the case since we work in continuous sensorimotor
spaces, a sample of candidate values is generated;
each of these candidate motor vectors M(t) associated with the sen-
sory context S(t) makes a candidate SM(t) vector for which the
robot finds out the corresponding region Rn; then the formula we
just described is used to evaluate the expected learning progress
E{r(t + 1)} that might be the result of executing the candidate action
M(t) in the current context;
the action for which the system expects the maximal learning progress
is chosen with a probability 1 − ∈ and executed, but sometimes a
random action is selected (with a probability ∈, typically 0.35 in the
following experiments).
after the action has been executed and the consequences measured,
the system is updated.
More sophisticated action-selection circuits could certainly be envi-
ioned (see, for example, (Sutton and Barto, 1998)). However, this one
evealed to be surprisingly efficient in the real-world experiments we
onducted.

xperiments
e have performed a series of robotic experiments using this architecture.

n these experiments, the robot actively seeks out sensorimotor contexts
n which it can experience learning progress given its morphological and
ognitive constraints. Whereas a passive strategy would lead to very ineffi-
ient learning, an active strategy allows the learner to discover and exploit
earning situations fitted to its biases. In one experiment, the four-legged
obot is placed on a play mat (for more details, see (Oudeyer and Kaplan,
006; Oudeyer et al., 2007)). The robot can move its arms, its neck and
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mouth and can produce sounds. Various toys are placed near the robot,
as well as a pre-programed ‘àdult’’ robot which can respond vocally to
the other robot in certain conditions. At the beginning of an experiment,
the robot does not know anything about the structure of its continuous
sensorimotor space (which actions cause which effects). Given the size of
the space, exhaustive exploration would take a very long time and random
exploration would be inefficient.

During each robotic experiment, which lasts approximately half a day,
the flow of values of the sensorimotor channels are stored, as well as
a number of features which help us to characterize the dynamics of the
robot’s development. The evolution of the relative frequency of the use of

the different actuators is measured: the head pan/tilt, the arm, the mouth
and the sound speakers (used for vocalizing), as well as the direction in
which the robot is turning its head. Figure 3 shows data obtained during
a typical run of the experiment.

At the beginning of the experiment, the robot has a short initial phase
of random exploration and body babbling. During this stage, the robot’s
behavior is equivalent to the one we would obtain using random action
selection: we clearly observe that in the vast majority of cases, the robot
does not even look at or act on objects; it essentially does not interact
with the environment.

Then there is a phase during which the robot begins to focus suc-
cessively on playing with individual actuators, but without knowing the
appropriate affordances: first there is a period where it focuses on trying
to bite in all directions (and stops bashing or producing sounds), then it
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Figure 2. (a) An intrinsic motivation system is based on a population of regional
consequence y of a given sensorimotor context x belonging to its associated reg
progress of MR in the close past. The learning progress defines the interestingne
to reach maximally interesting situations. Once the actual consequence is known, M
with this context and computes an updated measure of the learning progress (l
based on self-organized classification system capable of structuring an infinite co
of situations. An expert predictor/metapredictor circuit is assigned to each region.
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ocuses on just looking around, then it focuses on trying to bark/vocalize
oward all directions (and stops biting and bashing), then on biting, and
inally on bashing in all directions (and stops biting and vocalizing).

Then, the robot comes to a phase in which it discovers the precise
ffordances between certain action types and certain particular objects.

t is at this point focusing either on trying to bite the bitable object (the
lephant ear), or on trying to bash the bashable object (the suspended
oy).

Eventually, it focuses on vocalizing towards the ‘àdult’’ robot and listens
o the vocal imitations that it triggers. This interest for vocal interactions
as not pre-programed, and results from exactly the same mechanism

hich allowed the robot to discover the affordances between certain
hysical actions and certain objects.

The developmental trajectories produced by these experiments can be
nterpreted as assimilation and accommodation phases if we retain the
iagetian’s terminology (Piaget, 1952). For instance, the robot ‘‘discovers’’
he biting and bashing schema by producing repeated sequences of these
inds of behavior, but initially these actions are not systematically oriented
owards the bitable or the bashable object. This stage corresponds to
àssimilation.’’ It is only later that ‘àccommodation’’ occurs as biting and
ashing starts to be associated with their respective appropriate context
f use.

Our experiments show that functional organization can emerge even in
he absence of explicit internal schema structures and that developmental
atterns can spontaneously self-organize, driven by the intrinsic motiva-

units, each comprising an expert predictor MR that learns to anticipate the
ion of expertise Rn, and a metapredictor metaMRn

modelling the learning
ss of situations belonging to a given context, and actions are chosen in order

R and metaMR get updated. metaMR re-evaluates the error curve linked
ocal derivative of curve). (b) Illustration of the splitting/assignment process
ntinuous space of particular situations into higher-level categories (or kinds)
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Figure 3. Typical experimental run. The robot, placed on a play mat, can mo
the robot, as well as a pre-programed “adult” robot which can respond vocall
experiment are shown. Top curves: relative frequency of the use of the use o
frequency of looking toward each object and in particular toward pre-program

tion system. We have discussed elsewhere how these type of patterns are

relevant to interpret some results from the developmental psychology and
language acquisition literature (Kaplan and Oudeyer, 2007a,b).

SPECULATIONS ABOUT THE NEURAL
CIRCUITS OF INTRINSIC MOTIVATION
The central hypothesis of this paper is that intrinsically motivating activities
corresponds to expected prediction error decrease. Through a computer
model and robotic experiments, we have shown how such situations could
be recognized, memorized, and anticipated. We have also illustrated how
such a progress-based reinforcement signal could permit to self-organize
structured exploration patterns. This section will now investigate several
speculative hypotheses about the neural circuits that could perform a
similar function in the brain: how expected prediction error decrease could
be signaled and measured.
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arms, its neck and mouth and produce sounds. Various toys are placed near
he other robot in certain conditions. Results obtained after a typical run of the
ferent actuators (head pan/tilt, arm, mouth, sound speaker). Bottom curves:
obot.

ypothesis 1: Tonic dopamine as a signal of expected prediction

rror decrease
e have already reviewed several elements of the current complex debate

n the role and function of dopamine in action selection and learning.
ased on our investigations with artificial intrinsic motivation systems,
e would like to introduce yet another interpretation of the potential role
f dopamine by formulating the hypothesis that tonic dopamine acts as
signal of ‘‘progress niches,’’ i.e. states where prediction error of some

nternal model is expected to decrease. As experimental researches in
euroscience have not really studied intrinsically motivated activities per
e, it is not easy at this stage to assess whether this hypothesis is compat-
ble or incompatible with the other interpretations of dopamine we have
eviewed. Nevertheless, we can discuss how this interpretation fits with
xisting hypotheses and observations of the dopamine’s functions.

We have previously discussed the interpretation of tonic dopamine
s a ‘wanting’ motivational signal (incentive salience hypothesis). In the
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context of intrinsically motivated behavior, we believe this view is com-
patible with the hypothesis of dopamine as a signal of ‘‘progress niches.’’
Dopamine acts as an invitation to investigate these ‘‘promising’’ states.
This interpretation is also coherent with investigations that were con-
ducted concerning human affective experience during stimulation of the
dopamine circuits. When the lateral hypothalamus dopamine system is
stimulated (part of the SEEKING system previously discussed), people
report a feeling that ‘‘something very interesting and exciting is going on’’
(Panksepp (1998), p. 149 based on experiments reported in Heath (1963),
Quaade et al. (1974)). This corresponds to subjective affective states linked
with intrinsically motivating activities (Csikszenthmihalyi, 1991).

In addition, Berridge articulates the proposition that ‘‘dopamine neu-
rons code an informational consequence of learning signals, reflecting
learning, and prediction that is generated elsewhere the brain but do not
cause any new learning themselves’’ (Berridge (2007), p. 405]). In this
view, dopamine signals are a consequence and not a cause of learning
phenomena happening elsewhere in the brain. This is consistent with the
fact that dopamine neurons originating in the midbrain are recognized to
have only sparse direct access to the signals information that needs to be
integrated by an associative learning mechanism. All the signals that they
receive are likely to be ‘‘highly processed already by forebrain structures
before dopamine cells get much learning-relevant information’’ (Berridge
(2007), p. 406, see also Dommett et al. (2005)).

In our model, this progress signal is used as a reinforcement to drive
action-selection and behavioral switching. This aspect of our architecture
could lead to a similar interpretation of the role of dopamine in several
previous (and now often criticized) actor-critic models of action-selection
occurring in the basal ganglia (Baldassarre, 2002; Barto, 1995; Doya,
2002; Houk et al., 1995; Khamassi et al., 2005; Montague et al., 1996;
Schultz et al., 1997; Suri and Schultz, 2001). Let us recall that the dorsal
striatum receives glutamate inputs from almost all regions of the cere-
bral cortex. Striatal neurons fire in relation to movement of a particular
body part but also to preparation of movement, desired outcome of a
movement, to visual and auditory stimuli and to visual saccades toward
a particular direction. In most actor-critic computational models of the
basal ganglia, dopamine responses originating the substantia nigra is
interpreted as increasing the synaptic strength, between currently active
striatal input and output elements (thus shaping the policy of the actor
in an actor-critic interpretation). With this mechanism, if the striatal out-
puts corresponds to motor responses and that dopamine cells become
active in the presence of an unexpected reward, the same pattern of
inputs should elicit the same pattern of motor outputs in the future. One
of the criticism to this interpretation is that ‘ìf DA neurons respond to
surprise/arousing events, regardless of appetitive or aversive values, one
would postulate that DA activation does not serve to increase the like-
lihood that a given behavioral response is repeated under similar input
conditions’’ (Horvitz (2002) p. 70). Progress niches can be extrinsically
rewarding (i.e., progress in playing poker sometimes result in gaining
some money) or aversive (i.e., risk-taking behavior in extreme sports).
Therefore, we believe our hypothesis is compatible with interpretations of

the basal-ganglia based action-selection circuits that control the choice
of actions during cortico-striato-thalamo-cortical loops.

However, the precise architecture of this reinforcement learning archi-
tecture remains at this stage very open. A seducing hypothesis would
be that the much studied reinforcement learning architectures based on
short prediction error phasic signals could be just reused with an internal
self-generated reward, namely expected progress. This should lead to a
complementary interpretation of the role of phasic and tonic dopamine in
intrinsically motivated behavior in reinforcement. An alternative hypoth-
esis is that tonic dopamine is directly used as a reinforcement signal.
As previously discussed, Niv and colleagues assimilated the role of tonic
dopamine to an average reward signal in a recent computational model
(Niv et al., 2006), a view which seems to contradict the hypothesis artic-
ulated a few years ago that tonic dopamine signal reports a long-run
average punishment rate (Daw et al., 2002). Our hypothesis is based
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n the difference of two long-run average prediction error rate (Equation
). We will now discuss how and where this progress signal could me
easured.

ypothesis 2: Cortical microcircuits as both prediction and
etaprediction systems

ollowing our hypothesis that tonic dopamine acts as signal of prediction
rogress, we must now guess where learning progress could be com-
uted. For this part, our hypothesis will be that cortical microcircuits act
s both prediction and metaprediction systems and therefore can directly
ompute regional learning progress, through an unsupervised regional
ssignment as this is done in our computational model.

However, before considering this hypothesis let us briefly explore some
lternative ones. The simpler one would be that progress is evaluated in
ome way or another in the limbic system itself. If indeed, as many authors
uggests, phasic responses of dopamine neurons report prediction error
n certain contexts, their integration over time could be easily performed
ust through the slow accumulation of dopamine in certain part of neural
ircuitry (hypothesis discussed in (Niv et al., 2006)). By comparing two
unning average of the phasic signals one could get an approximation
f Equation 1. However, as we discussed in the previous section, to be
ppropriately measured, progress must be evaluated in regional manner,
y local ‘èxpert’’ circuits. Although it is not impossible to imagine an archi-
ecture that would maintain such type of regional specialized circuitry in
he basal ganglia (see for instance the multiple expert actor-critic archi-
ectures described by (Khamassi et al., 2005)), we believe this is not the
ost likely hypothesis.

As we argued, scalability considerations in real-world structured inho-
ogeneous spaces favor architectures in which neural resources can be

asily recruited or built for different kinds of initially unknown activities.
his still leaves many possibilities. Kawato argues that, from a computa-
ional point of view, ‘ìt is conceivable that internal models are located in
ll brain regions having synaptic plasticity, provided that they receive and
end out relevant information for their input and output’’ (Kawato, 1999).
oya (1999) suggested broad computational distinction between the cor-

ex, the basal ganglia, and the cerebellum, each of those associated with a
articular type of learning problems, unsupervised learning, reinforcement

earning and supervised learning, respectively. Another potential candidate
ocation, the hippocampus has often been described as a comparator
f predicted and actual events (Gray, 1982) and fMRI studies revealed
hat its activity was correlated with the occurrence of unexpected events
Ploghaus et al., 2000). Among all these possibilities, we believe the most
romising direction of exploration is the cortical one, essentially because
he cortex offers the type of open-ended unsupervised‘èxpert circuits’’
ecruitment that we believe are crucial for the computation of learning
rogress.

A single neural microcircuit forms an immensely complicated net-
ork with multiple recurrent loops and highly heterogeneous components

Douglas and Martin, 1998; Mountcastle, 1978; Shepherd, 1988). Finding

hat type of computation could be performed with such a high dimensional
ynamical system is a major challenge for computational neuroscience.
o explore our hypothesis, we must investigate whether the computational
ower and evolutionary advantage of columns can be unveiled if these
omplex networks are considered not only as predictors but performing
oth prediction and metaprediction functions (by not only anticipating
uture sensorimotor events but also its own errors in prediction and
earning progress).

In recent years, several computational models explored how cortical
ircuits could be used as prediction devices. Maas and Markram suggested
o view a column as a liquid state machine (LSM) (Maas et al., 2002) (which
s somewhat similar to Echo State Networks described by Jaeger (Jaeger,
001; Jaeger and Haas, 2004)). Like the Turing machine, the model of
LSM is based on a rigorous mathematical framework that guarantees,

nder idealized conditions, universal computing power for time series
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problems. More recently, Deneve et al. (2007) presented a model of a
Kalman filter based on recurrent basis function networks, a kind of model
that can be easily mapped onto cortical circuits. Kalman filters share some
similarity with the kind of metaprediction machinery we have discussed
in this article, as they also deal with modeling errors made by prediction
of internal models. However, we must admit that there is not currently any
definitive experimental evidence or computational model that supports
precisely the idea that cortical circuit actually compute their own learning
progress.

If indeed we could show that cortical microcircuits can signal this
information to other parts of the brain, the mapping with our model
would be easy. Lateral inhibition mechanisms, specialization dynamics
and other self-organizing processes that are typical of cortical plastic-
ity should permit without problems to perform the type of regionalization
of the sensorimotor space that our architecture features. As previously
argued, action-selection could then be realized by some form of subcorti-
cal actor-critic architecture, similar to the one involved in the optimization
of extrinsic forms of rewards.

Finally, we believe our hypothesis is consistent from an evolutionary
perspective, or at least that an ‘èvolutionary story’’ can be articulated
around it. The relatively ‘‘recent’’ invention of the cortical column circuits
correlates roughly with the fact that only mammals seems to display intrin-
sically motivated behavior. Once discovered by evolution, cortical columns
have multiplied themselves leading to the highly expanded human cortex
(largest number of cortical neurons (1010) among all animals, closely fol-
lowed by large cetaceans and elephants (Roth and Dicke, 2005), over 1000
fold expansion from mouse to man to provide 80% of the human brain).
What can make them so advantageous from an evolutionary point of view?
It is reasonable to suppose that intrinsic motivation systems appeared after
(or on top of) an existing machinery dedicated to the optimization of extrin-
sic motivation. For an extrinsically motivated animal, value is linked with
specific stimuli, particular visual patterns, movement, loud sounds, or any
bodily sensations that signal that basic homeostatic physiological needs
like food or physical integrity are (not) being fulfilled. These animals can
develop behavioral strategies to experience the corresponding situations
as often as possible. However, when an efficient strategy is found, noth-
ing pushes them further toward new activities. Their development stops
there.

The apparition of a basic cortical circuit that could not only acts as
predictor but also as metapredictor capable of evaluating its own learn-
ing progress can be seen as a major evolutionary transition. The brain
manages now to produce its own reward, a progress signal, internal to
the central nervous system with no significant biological effects on non-
nervous-system tissues. This is the basis of an adaptive internal value
system for which sensorimotor experiences that produce positive value
evolve with time. This is what drives the acquisition of novel skills, with
increasing structure and complexity. This is a revolution, yet it is essen-
tially based on the old brain circuitry that evolved for the optimization of
specific extrinsic needs. If we follow our hypothesis, the unique human
cortical expansion has to be understood as a coevolutionary dynamical

process linking larger ‘‘space’’ for learning and more things to learn. In
some way, it is human culture, as a huge reservoir of progress niches,
that has put pressure in having more of these basic processing units.

PERSPECTIVES
We are aware that it is always hazardous to make too simple mappings
between machine models and biological systems. However, since cyber-
netics pioneers (Rosenblueth et al., 1943), computational models clearly
had a fundamental influence of our views of brain processes and we have
already mentioned several very successful outcomes that resulted of wise
comparison between an artificial model and neurophysiologic observa-
tions (Cordeschi, 2002). We believe that to successfully test hypotheses
suggested by computational models, we need to engage in a truly interdis-
ciplinary program. First, we must start to really study intrinsic motivation

a
p

R
B

B

B

B

B

B

rom an neuroscience point of view, which means getting data of what is
oing on in the brain during such type of exploratory behavior. In addition,
e must find a way of comparing the experiments conducted with human

ubjects with the behavior of artificial models, which in such a context is
ot an easy problem.

For the adult and infant studies, experiments could consist in observing
nfant and adults’ behavior during their exploration of virtual environment,

onitoring in real-time their neural dynamics using brain imagery tech-
iques (for instance using a similar experimental set up than the one used

n (Koepp et al., 1998)). Conducting experiments in virtual world offers a
umber of interesting advantages compared to experiments in real phys-

cal environment. In virtual worlds, learning opportunities can be easily
ontrolled and designed. One could for instance create a virtual envi-
onment designed so that the degree of learning opportunities becomes
n experimental variable, permitting easy shifts from rich and stimulating
nvironments to boring and predictive worlds. Moreover, virtual worlds can
e made suffciently simple, abstract and novel in order to feature learning
pportunities that do not depend too much on previously acquired skills.
mbodiment plays a crucial role in shaping developmental trajectories
nd sequences of skills acquisition (see also Lakoff and Johnson (1998)

n that respect). Paradoxically, this means that in order to identify novel
xploration patterns and compare human trajectories with the ones of an
rtificial agent, we must create situations where the embodiment is radi-
ally different from natural human embodiment. In such a case, the human
nd the artificial agent would have to master an (equally) unknown body
n an (equally) unknown world. To some extent this proposed approach is
elated to Galantucci’s experiments on dynamics of convention formation
n an novel, previously unknown medium (Galantucci, 2005). The expected
utcome of this kind of experiment is to obtain a first characterization of
he types of cortical neural assemblies involved in intrinsically motivated
ehavior, a kind of data which currently lacks to progress.

Research in psychology and neuroscience provides important
lements supporting the existence of intrinsic motivation systems. Com-
utational models permit to investigate possible circuits necessary for
ifferent elements of an intrinsic motivation system and to explore their
tructuring effect on behavioral and developmental patterns. It is likely
hat many diverse lines of experimental data can potentially be explained
n common terms if we consider children as active seekers of progress
iches, who learn how to focus on what is learnable in the situations
hey encounter and on what can be effciently grasped at a given stage of
heir cognitive and physiological development. But to progress in such an
nderstanding, we need to define a novel research program combining

nfant studies, analysis of realistic computational model and experiments
ith robots and virtual agents. We believe that if such a research agenda
an be conducted, we are about to reach a stage where it will be for the
irst time possible to study the cascading consequences in development
hat small changes in motivation systems can provoke.
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