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Neuroimaging studies of the developing brain have found that 
activity in specifi c regions differs between children and adults (Casey 
et al., 1997; Thomas et al., 2001; Bunge et al., 2002). However, as 
the brain matures, many regions undergo structural changes (Reiss 
et al., 1996; Gogtay et al., 2004), and cognitive maturation likely 
occurs as a result of distributed changes in the brain. Indeed, recent 
studies employing network analysis methods have found that the 
confi guration of brain networks also changes over the course of 
development (Fair et al., 2009; Supekar et al., 2009), suggesting that 
studying development in terms of changing distributed patterns of 
structure or activity could be more sensitive than studying changes 
in individual regions.

Furthermore, an important challenge in pediatric clinical neu-
roimaging is identifying patterns of brain activity or structure that 
reliably predict disease onset (Koutsouleris et al., 2009), or can dis-
tinguish treatment responders from non-responders. Multivariate 
methods have particular relevance for research problems related 
to prediction of clinical outcomes from neuroimaging data, as 
they may afford greater sensitivity to widespread changes in the 
brain (Davatzikos et al., 2008; Koutsouleris et al., 2009; Misra et al., 
2009), or differences in local information coding (Kriegeskorte 
et al., 2006).

Several excellent reviews have discussed the application of 
multivariate pattern classifi cation to fMRI data, with a focus on 
decoding of subjective states (Haynes and Rees, 2006; O’Toole 
et al., 2007; Pereira et al., 2009). There is also a growing literature 
on classifying group differences, which is of particular interest 
for clinical investigations. While few studies to date have applied 

INTRODUCTION
The human brain is a distributed processing machine, with even 
the most basic tasks requiring the cooperation of neurons in 
multiple brain regions. It has long been recognized that impor-
tant information about brain function is encoded in distributed 
patterns of brain activity (Mesulam, 1981; Vaadia et al., 1995; 
McIntosh et al., 1996; Fox et al., 2005). Nonetheless, univariate 
analysis methods, which treat each spatial location in the brain 
independently, have predominated in both functional and struc-
tural magnetic resonance imaging (fMRI and sMRI) research 
(Cox, 1996; Worsley et al., 1996; Ashburner and Friston, 2000; 
Smith et al., 2004).

In recent years, multivariate pattern analysis (MVPA) 
approaches to studying the brain have been gaining momentum 
(e.g., Kay et al., 2008; Mitchell et al., 2008). These methods are 
designed to identify spatial and/or temporal patterns in the data 
that differentiate between cognitive tasks or subject groups. The 
excitement about these methods has been borne out by several 
studies showing that patterns of brain activity carry information 
that reliably predicts what the subject is seeing (Eger et al., 2008), 
attending to (Kamitani and Tong, 2005), or planning to do (Bode 
and Haynes, 2009). In addition, by quantifying distributed neural 
representations for specifi c components of visual images or seman-
tic concepts, it is possible to construct a general visual decoder 
(Kay et al., 2008), reconstruct a subjects’ perceptual experience, 
even for novel stimuli (Miyawaki et al., 2008), and make quantita-
tive predictions about how the brain will respond to new stimuli 
(Mitchell et al., 2008).
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MVPA in pediatric neuroimaging (Hoeft et al., 2007; Hoeft et al., 
2008; Zhu et al., 2008), there are many promising applications in 
this fi eld. Here we review relevant literature on studies in adult 
healthy and clinical populations, including functional, structural, 
and  multimodal studies, and provide an outlook for future stud-
ies in pediatric neuroimaging. We will begin with a brief overview 
and motivation for using MVPA, followed by an introduction to 
methods and choices to be made when implementing MVPA. Next, 
we will discuss applications in the literature with an emphasis on 
those relevant to pediatric neuroimaging in healthy and clinical 
populations. Finally, we discuss some specifi c challenges and limita-
tions of MVPA methods.

CONCEPTUAL OVERVIEW AND MOTIVATION
fMRI studies generate on the order of 100,000 time series from 
voxel locations throughout the brain. These time series, especially 
from proximal locations, are not independent, and yet mass uni-
variate analysis methods, which treat each voxel independently, 
are the most widely used in the neuroimaging literature [general 
linear model (GLM); Friston et al., 1995a; Worsley et al., 2002]. 
These methods allow the researcher to specifi cally model the 
expected neural response over time, and are useful for testing 
detailed hypotheses about the involvement of specifi c regions 
in task performance. However, brain activity, i.e., neuronal fi r-
ing, is in itself just a means of communicating with other neu-
rons, and it is clear that even the simplest cognitive tasks are 
not accomplished solely by the neurons contained in individual 
voxels. This suggests that analysis techniques designed to learn 
distributed spatial patterns that best distinguish one condition 
from another (Kriegeskorte et al., 2006; De Martino et al., 2008; 
Pereira et al., 2009) may be more sensitive than univariate tech-
niques. MVPA can be applied to any multivariate data, including 
fMRI and sMRI.

MVPA methods are sensitive to spatially covarying patterns of 
activity, and are therefore intrinsically linked to functional connec-
tivity analyses (McIntosh et al., 1994; McIntosh et al., 1996; Friston 
et al., 1997; Calhoun et al., 2001; Friston et al., 2003), which seek 
to uncover functional networks in the brain. As such, depending 
on the spatial scale on which a particular analysis is performed, 
one might interpret a pattern of activity as representing a spatially 
distributed network of brain regions. MVPA techniques are also 
frequently used at a fi ner spatial scale to uncover how informa-
tion is encoded within a particular region (Kamitani and Tong, 
2005; Kriegeskorte et al., 2006; Kay et al., 2008). By far, the most 
popular application in the functional imaging literature has been 
to study object representation and visual consciousness (Haxby 
et al., 2001; Carlson et al., 2003; Cox and Savoy, 2003; Hanson et al., 
2004; Polyn et al., 2005; De Martino et al., 2008; Eger et al., 2008; 
Kay et al., 2008).

Demonstrating that fMRI data contains enough information 
to distinguish between a restricted set of stimulus conditions 
may seem like merely a validation that fMRI is robust and repeat-
able (Bandettini, 2009). However, with the right experimental 
design, MVPA studies can provide detailed insight into informa-
tion representation and functional organization in the brain. For 
example, studies which map neural responses to the building 
blocks of visual objects or semantic concepts (Kay et al., 2008; 

Mitchell et al., 2008; Miyawaki et al., 2008) lead us to a better 
understanding of the brain’s responses to more complex stimuli. 
In the clinical domain, mapping gross differences in structure or 
brain activity may be relatively straightforward, but developing 
tasks that elucidate how these differences in distributed process-
ing affect behavior will be a greater challenge.

DEVELOPMENTAL AND CLINICAL NEUROIMAGING
Widespread structural changes in the brain occur as a function 
of development in childhood (Reiss et al., 1996). While many 
studies have successfully identifi ed local changes in brain activ-
ity (Casey et al., 1997; Bunge et al., 2002), a complementary 
approach is to study how networks of regions change as the brain 
develops (e.g., Fair et al., 2009; Supekar et al., 2009); see Stevens 
(2009) for a review. For studying the evolution of distributed 
activity patterns, MVPA may be more sensitive than univariate 
methods and could be applied to distinguish individuals at dif-
ferent stages of cognitive development, as they have similarly 
been applied to distinguish different stages of cognitive decline 
(Fan et al., 2008a).

In clinical populations, MVPA techniques are of  particular 
interest for studying the development of brain disorders, as 
 studies in adults have shown that these disorders rarely affect sin-
gle brain structures (e.g., Harrison, 1999; Lee et al., 2007), and 
may be  better understood using an approach designed to capture 
 network  behavior (Greicius and Menon, 2004; Celone et al., 2006; 
Garrity et al., 2007). As many psychiatric diagnoses are based on 
 behavioral symptoms that overlap between disorders and have 
poorly understood etiology, the promise of MVPA methods for 
 uncovering biomarkers (endophenotypes) is extremely attractive 
[e.g., in psychosis or Alzheimer’s (AZ), Koutsouleris et al., 2009; 
Misra et al., 2009]. An important challenge in pediatric clinical 
neuroimaging is identifying patterns of brain activity or structure 
that reliably precede disease onset (Koutsouleris et al., 2009), or can 
distinguish treatment responders from non-responders.

METHODS
UNIVARIATE VERSUS MULTIVARIATE
Analysis of both fMRI and sMRI data has traditionally been per-
formed in a univariate sense. That is, the time series of each voxel 
in the brain is separately modeled and statistically tested for a con-
dition of interest, usually in the framework of the GLM (Friston 
et al., 1995b; Worsley et al., 2002). Thus, questions regarding how 
blood oxygen level dependent (BOLD) signal activity relates to a 
continuous outcome measure (e.g., developmental stage), or dif-
fers across populations (e.g., in patients with distinct neurological 
diseases), are addressed using information from each region of the 
brain separately.

In contrast, MVPA of neuroimaging data simultaneously 
considers the BOLD signal measured across a number of spatial 
locations. Rather than asking to what degree each voxel responds 
to one experimental condition versus another, MVPA turns the 
question around, asking instead whether – and which – patterns 
of brain activity across many voxels are characteristic of the 
brain during one experimental condition versus another, or of 
one clinical population versus another. In addition, many MVPA 
approaches do not require the specifi cation of a hemodynamic 
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model, which may differ considerably across subject populations 
(Handwerker et al., 2004; Thomason et al., 2005; Handwerker 
et al., 2007). Combining information from multiple spatial 
locations yields a descriptive power beyond that of single vox-
els, potentially allowing for greater sensitivity in differentiating 
between individuals and conditions.

PROBLEM SPECIFICATION
For neuroimaging studies, MVPA has been employed primarily in 
two ways. The fi rst aims to infer the mental state of a subject (i.e., 
what the subject is perceiving, feeling, or thinking) or the stimulus 
or experimental condition presented at a particular time, based on 
information from the BOLD fMRI volumes acquired at that time 
(see Haynes and Rees, 2006 for a review, and “‘Brain reading’ with 
fMRI” below for further discussion).

The second major application, which is perhaps more relevant to 
clinical studies, is to predict the state of an individual given his/her 
functional or structural imaging data. For example, Zhang et al. 
(2005) were able to differentiate between the brains of subjects 
with and without drug addictions; Zhu et al. (2008) applied clas-
sifi cation to discriminate between children with attention- defi cit/
hyperactivity disorder and normal controls. Applying MVPA in 
such contexts can yield insight into the neural signatures or deter-
minants of various diseases, as well as guide the identifi cation of 
biomarkers and courses of treatment or intervention. A general 
pipeline for applying MVPA is shown in Figure 1.

APPROACHES
Supervised learning
Supervised learning is based on determining a mapping between 
particular attributes, or features, of the data (e.g., the BOLD signal 
activation levels from multiple voxels observed in a subject) and 
the associated value of a target label of interest (e.g., the subject’s 
cognitive or developmental state, or class of psychiatric disorder). 
A set of data points (the training set) is used to estimate (learn) the 
parameters of a model relating the features to the target labels. Once 
the parameters are learned, the model can be applied to predict 
the target label of a previously unseen data point. The supervised 
learning problem is referred to as classifi cation when the target labels 
comprise a set of discrete classes (e.g., different clinical populations), 
and as regression when the target labels assume continuous values 
(e.g., behavioral performance or the severity of a disorder).

Classifi cation. There are a number of different classifi cation meth-
ods, each of which makes a different set of assumptions about the 
data and posits a particular type of model relating the features 
to the target labels, as well as a means of learning its parameters. 
Linear classifi ers (Figure 2) predict the target label of an exam-
ple based on a linear combination of its features, and are widely 
used in fMRI studies due to their simplicity, interpretability, and 
generally good performance.

As an example of linear classifi cation, suppose the features 
(x

1
,…,x

N
) of an fMRI dataset are defi ned to be the average BOLD 

signal percent change in each of N regions during a task per-
formed by subjects from two different clinical populations (“A” 
an “B”). Given the values of (x

1
,…,x

N
) from a subject, the linear 

classifi er might predict that he/she belonged to group “A” if the 

Pre-processing

Regression of noise
signals

Extraction of feature
vectors

Supervised/unsupervised learning
algorithm 

A

B

C

FIGURE 1 | Example workfl ow for pattern classifi cation analysis. 

(A) Preprocessing of fMRI data can follow that used for conventional GLM 
analyses, consisting of slice-timing correction, realignment, and optional 
spatial normalization and smoothing steps. However, while the GLM can 
reduce potential noise sources by including signals such as motion 
parameters and physiological noise models as covariates in the GLM design 
matrix, MVPA does not typically have a framework for modeling confounds. 
Thus, when applying MVPA to the raw time-series, expected confounds 
should be removed from the data prior to performing MVPA, such as by 
obtaining the residuals from a regression over the nuisance variables. In 
addition, if the features are activation patterns (parameter estimates for a 
particular model), one may wish to fi rst run a GLM analysis on the fMRI data 
and extract the relevant contrast estimates. (B) Next, the pre-processed data 
should be transformed into “feature vectors”. This involves creating, for each 
data point (e.g., subject) a vector in which the ith entry corresponds to the 
value of the ith feature for that data point. Feature selection may be applied to 
reduce the number of entries in the feature vectors. (C) At this stage, one may 
choose to run an unsupervised learning algorithm to characterize patterns in 
the data, or to run a supervised learning algorithm in conjunction with cross-
validation. The parameters of the trained model can be examined for further 
insight, and the model may also be applied to make predictions on additional 
datasets so as to further explore its generalization ability.

x1 x2 … xN

w1 w2 … w
N

+

×

<0? >0?

FIGURE 2 | Schematic of linear classifi cation. Each feature (xi) of the data 
point (x1,…,xN) is multiplied by its respective weight (wi), and the summation 
of the resulting terms (ŷ x wi i i= ∑ ⋅ ) is evaluated. The classifi er predicts that 
the data point is in “class A” if ŷ < 0, and “class B” if ŷ > 0.

linear  combination w
0
 + w

1
x

1
 + … + w

N
x

N
 is <0, and “B” if the lin-

ear combination is >0 (see Figure 2). The weights (w
0
,…,w

N
) are 

the parameters of the model, which are learned during training. 
After the training process, the weights can be examined for the 
specifi c patterns of brain activity related to each clinical condi-
tion. For instance, the relative magnitudes of the individual weights 
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et al., 1996). Here, the target labels (as well as the features) are 
multi-dimensional, comprising for instance a variety of clini-
cal outcome measures or fMRI task design parameters. PLS will 
return a set of spatiotemporal components in the imaging data that 
explain joint variation between the imaging data and target labels. 
Clinical applications of PLS have included identifying large-scale 
brain networks that mediate genetic risk for obsessive–compulsive 
disorder (Menzies et al., 2007) and predicting the behavioral effects 
of nicotine use (Giessing et al., 2007).

Unsupervised Learning
Supervised learning requires the user to specify both the features 
and target label of each example in the training set. In contrast, 
unsupervised learning requires only the features (no labels), and 
attempts to learn patterns and structure in the data.

Clustering is one form of unsupervised learning, which identi-
fi es groups within the data based on the similarity of their features. 
K-means clustering assigns each data point to one of k groups, and 
has been applied to discover relationships among the time series 
of voxels in fMRI data (Golland et al., 2008; Mezer et al., 2009). 
Hierarchical clustering methods build a succession of clusters: data-
points are fi rst grouped into clusters, and the clusters themselves are 
merged into groups at a second level according to their similarity, 
and so forth, building a tree depicting the hierarchical dependence 
structure across data points (Cordes et al., 2002; Liao et al., 2008). 
Thus, while k-means clustering is informative of major subdivi-
sions in the data, hierarchical clustering provides a more complete 
characterization of relationships between data points and may be 
used to identify more subtle patterns. However, some of the rela-
tionships discovered by hierarchical clustering may be driven by 
attributes specifi c to the dataset to which it is applied, and may not 
generalize across other datasets. Thus, one must take care not to 
“overfi t” to a given dataset, and may wish to employ methods such 
as those used in Talavera (1999).

Independent component analysis (ICA) is another popular form 
of unsupervised learning. ICA can be applied to decompose a set 
of fMRI time courses into a set of spatially distinct “networks”. ICA 
has provided insight into the functional organization of the brain 
(McKeown et al., 1998; Beckmann et al., 2005) and suggested key 
functional differences across clinical populations (Greicius et al., 
2004; Calhoun et al., 2008; Rombouts et al., 2009). In addition to 
exploring the spatiotemporal structure of brain activity within indi-
viduals and groups, the spatial networks and time courses derived 
using ICA can also be used to derive features within the framework 
of supervised learning (De Martino et al., 2007; Calhoun et al., 
2008). For example, Calhoun et al. (2008) applied ICA to the data of 
bipolar and schizophrenic patients, extracting two networks from 
each subject (“default-mode” and “temporal lobe”). The networks 
were then used as input to a classifi cation algorithm, which demon-
strated high accuracy in classifying between the patient groups.

VALIDATION
As described above, an MVPA model can yield useful information 
about the properties and structure of the dataset it is trained on. 
However, for MVPA to be applicable for drawing general conclu-
sions relating brain activity patterns and clinical variables, it is 
important to know how well the model applies to subjects and 

can reveal the  relative  importance of each of the features in the 
classifi cation process (a higher magnitude of w

i
, compared to w

j
, 

indicates that feature x
i
 is weighted more heavily in determining 

the output than is x
j
), and the relative signs of the weights w

i
 and 

w
j
 can reveal whether features x

i
 and x

j
 are indicative of the same 

class (which would be the case if the signs of w
i
 and w

j
 were the 

same) or different classes.
Several commonly used linear classifi ers in neuroimaging 

include the linear support vector machine (SVM) (e.g., Kamitani 
and Tong, 2005; LaConte et al., 2005; Mourao-Miranda et al., 2005), 
linear discriminant analysis (LDA) (e.g., Haynes and Rees, 2005; 
O’Toole et al., 2005), and logistic regression (LR) (e.g., Knutson 
et al., 2007; Yamashita et al., 2008). There is no clearly “correct” 
choice of classifi er for a given problem. Studies comparing different 
classifi ers for fMRI data have shown that SVM outperforms LDA 
for particular fMRI data sets and feature selection methods (Cox 
and Savoy, 2003; Mourao-Miranda et al., 2005; Bergstrand et al., 
2009). LR and SVM are reported to have comparable performance 
(Pereira et al., 2009), though SVMs can more effi ciently handle 
high-dimensional feature spaces (Vapnik, 1996). Classifi ers that use 
nonlinear functions of the features (nonlinear classifi ers) also exist, 
though they do not always outperform linear classifi ers in practice 
(Cox and Savoy, 2003), and the parameters of a nonlinear model are 
more diffi cult to interpret than the weights of a linear classifi er.

Regression. For problems in which the target labels assume con-
tinuous values, linear regression models the target label as a linear 
combination of the features: the prediction (ŷ ) of the actual target 
label (y) is given byŷ w w x w xN N= + + +0 1 1 … .There are a variety of 
linear regression algorithms, differing from one another primarily 
according to the criterion for selecting the parameters [weights 
(w

0
,…,w

N
)]. In standard least-squares regression, the weights are 

chosen to minimize the squared error between the prediction and 
the actual target label, summed over each of the M data points in 
the training set. This function (J yn

M
n n= ∑ −=

∧
1

2( )y ) is known as the 
cost function.

In ridge regression, the weights are chosen to minimize a slightly 
different cost function, which contains both the squared error and 
the amplitude of the weights: J y y wn

M
n n i

N
i= ∑ − + ∑=

∧
=1

2
0

2( ) λ , where 
λ is an additional parameter that controls their relative importance. 
Including the amplitude term tends to improve the performance of 
the regression algorithm on data that were not used in the training 
process, as it reduces the likelihood that the solution (w) overfi ts to 
the training set (Hastie et al., 2001). Other types of objective func-
tions may produce solutions in which many of the w

i
 are equal to 

0, effectively reducing the number of features used in the model; 
this will be described further in Dimensionality reduction and 
feature selection. For clinical studies, regression may be applied 
toward mapping patterns of brain activity onto continuous out-
come measures, such as the progression or severity of a disorder. 
For example, Hoeft et al. (2007) combined behavioral, functional, 
and structural neuroimaging data in a regression analysis to predict 
phonological processing abilities of 8- to 11-year-old poor readers 
one school-year later.

Partial least squares (PLS) is a regression approach that can 
identify multivariate patterns within neuroimaging data that cov-
ary with experimental condition (McIntosh et al., 1994; McIntosh 
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scans beyond those in the training set. One method for  estimating 
the generalization ability of a supervised learning model is via 
cross- validation. In hold-out cross-validation, a subset of the data 
(training set) is used for learning the model parameters, and the 
remainder (test set) is used for validation. In validation, the trained 
model is applied to predict the target label of each data point, and 
the prediction accuracy across the test set is summarized using 
metrics such as the percentage of correctly classifi ed data points 
(for classifi cation) or mean-squared error (for regression). A cross-
 validation method that makes more effi cient use of the data is 
known as k-fold cross-validation. Here, the N data points com-
prising the entire dataset are randomly partitioned into k subsets; 
k iterations are then performed, whereupon one of the subsets is 
designated as the test set, and the remaining N–k data points are 
designated as the training set. The prediction accuracy is fi nally 
summarized as the average of the error over each of the k iterations. 
When the number of available data points is small, as is often the 
case with fMRI subject populations, one might choose to set k = 1 
(leave-one-out cross-validation), though the computational expense 
will increase since (N − 1) iterations of training are then required. 
Permutation testing can be used to determine whether the classifi -
cation accuracy is statistically signifi cant (signifi cantly better than 
chance) (e.g., see Golland and Fischl, 2003; Pereira et al., 2009).

In addition to accuracy (the fraction of correctly classifi ed data 
points in the test set), the performance of a classifi er can be quantifi ed 
using sensitivity [TP/(TP + TN)] and specifi city [TN/(TN + FP)], 
where TP is the number of true positives, TN is the number of true 
negatives, and FP is the number of false positives.

DIMENSIONALITY REDUCTION AND FEATURE SELECTION
Suppose, as in the example in the “Unsupervised learning” section, 
that one wishes to apply a classifi er to differentiate between two 
clinical populations on the basis of BOLD signal activity across 
many voxels during a task. How many voxels should be used as 
features? If every voxel in the brain is used, computation time may 
increase prohibitively. In addition, when the number of features 
greatly exceeds the number of data points in the training set, the 
performance of classifi cation and regression algorithms will suffer 
and the model will become less interpretable (Hastie et al., 2001).

It is usually the case that only a subset of voxels will actually 
provide useful information for classifying between populations. 
Reducing the set of all possible features to those of likely impor-
tance is a problem known as feature selection (Figure 1B). Feature 
selection can be performed manually – for example, we may know 
based on previous studies or complementary functional and 
structural analyses that only a few particular anatomic regions are 
hypothesized to differ between the two clinical populations, and 
can therefore choose to include only voxels contained within those 
structures. There are also methods for automatic feature selection. 
Examples include (1) recursive feature elimination, which is based 
on iteratively eliminating features having smallest SVM weights 
(De Martino et al., 2008); and (2) “sparse” methods, which are clas-
sifi cation and regression algorithms that implicitly select a subset 
of all input features to use in the model (Grosenick et al., 2008; 
Yamashita et al., 2008; Carroll et al., 2009). Automatic feature selec-
tion methods are also useful in revealing which aspects of the data 
are critical for a given classifi cation problem.

Another approach for reducing the dimensionality of a  dataset 
is to apply principal component analysis either in lieu of, or in 
conjunction with, feature selection methods. A data point in a 
high-dimensional feature space (e.g., the set of all voxels in a sub-
ject’s brain) is reduced to a smaller number of features, resulting 
from the projection of that data point onto a set of axes (principal 
components) that express the greatest directions of variability in 
the dataset.

APPLICATIONS
“BRAIN READING” WITH FMRI
Typical functional imaging studies compare brain activity during 
different experimental conditions to discover what brain regions 
are activated by particular tasks. In contrast, the classic application 
of MVPA to functional imaging data is for so-called “brain read-
ing”, that is, using patterns of brain activity to perform a reverse 
inference and decide what subjects are looking at or thinking about 
(Cox and Savoy, 2003).

This technique has grown in popularity, and has successfully been 
applied to a variety of paradigms, including discriminating between 
object categories (Haxby et al., 2001; Carlson et al., 2003; Hanson 
et al., 2004), visually presented and attended stimuli (Kamitani and 
Tong, 2005), remembered stimuli (Polyn et al., 2005), intention to 
engage in a task (Haynes et al., 2007), and deception (Davatzikos 
et al., 2005).

As the fi eld progresses, experimenters are designing tasks for 
which classifi ers can shed new light on how information is repre-
sented in the brain. In the domain of object/concept representa-
tion, three recent studies have shown that by training classifi ers to 
represent meaningful aspects of the stimuli (e.g., visual properties 
or semantic content), one can decode from a large set of novel 
images (Kay et al., 2008), accurately reconstruct novel stimuli that 
subjects have never seen (Miyawaki et al., 2008), and make quan-
titative predictions about what responses to novel stimuli should 
look like (Mitchell et al., 2008).

By interrogating the patterns of activity that classifi ers rely on 
to make inferences, we can gain information about which voxels 
in the brain are the most informative. Also, by applying classifi ers 
trained in one domain to stimuli in a different domain, we can test 
hypotheses regarding the functional overlap of neural circuitry. For 
example, in a recent study Knops et al. (2009) trained a classifi er 
to discriminate between left and right saccades, based on posterior 
parietal activity during a spatial attention task. In order to test the 
hypothesis that mental arithmetic uses circuitry involved in spatial 
coding, the same classifi er was used to decode addition or subtrac-
tion operations. Interestingly the classifi er identifi ed signifi cantly 
more addition operations as rightward saccades, compared to sub-
traction, indicating that mental arithmetic engages spatial coding 
circuitry in the parietal cortex.

Several groups have applied MVPA to detect neural repre-
sentations related to behavioral variability, taking advantage of 
the fact that MVPA can be sensitive to information coded by dif-
ferent sub-populations within a specifi c region. Li et al. (2009) 
demonstrated that as subjects learn to categorize identical stimuli 
using different rules, patterns of neural activity in specifi c brain 
regions refl ect the categorical decision, rather than the stimulus 
features. Raizada et al. (2009) have also shown that in individuals 
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with  differential ability to discriminate/ra/and/la/phonemes (e.g., 
native English and Japanese speakers), the amount to which a 
subject distinguishes between two stimuli behaviorally is related 
to the statistical separability of activity patterns in auditory cortex. 
This approach may be useful for understanding behavioral differ-
ences in a wide range of paradigms, including understanding how 
behavioral impairments in children relate to differential stimulus 
coding in the brain.

Decoding subjective experience can also contribute to our 
understanding of functional differences in brain disorders. Yoon 
et al. (2008) demonstrated that multivariate techniques may be 
more sensitive to differences between patients and controls by 
qualitatively comparing the performance of a neural-network 
classifi er to a GLM-based analysis. They trained a classifi er to 
distinguish between categories of visually presented objects dur-
ing a 1-back memory task. Classifi cation was signifi cantly more 
accurate in controls compared to patients; however, the GLM 
did not show any signifi cant differences between the groups. 
Note that in this study the classifi er did not explicitly distinguish 
between patients and controls, but rather showed that spatial 
response patterns were less consistent in the patient group rela-
tive to controls.

CLASSIFYING BRAIN DISORDERS
Applying pattern classifi cation to study clinical disorders is attrac-
tive for several reasons. One reason is that many brain disorders 
affect networks of brain regions, and therefore analysis techniques 
designed to extract distributed spatial patterns may be more sensi-
tive than more traditional mass univariate techniques. Following 
similar reasoning, MVPA techniques applied to longitudinal data 
may be useful for extracting patterns of activity or structural 
abnormalities that are predictive of abnormal cognitive develop-
ment. Finally, as many psychiatric disorders are diagnosed based on 
behavioral criteria, MVPA techniques may be useful for identifying 
endophenotypes associated with disease, and ultimately could be 
used for biologically based diagnoses.

Functional imaging
Clinical populations often show defi cits on specifi c cognitive tasks, 
which may provide clues about the underlying etiology of the dis-
ease. For example, schizophrenia patients often show a signifi cant 
difference in the amplitude of the event-related potential related to 
target detection (P300). Functional tasks, such as auditory target 
detection, may serve as good starting points for examining how 
distributed patterns of brain activity are different in patient popu-
lations. Studies using univariate analyses of this task have shown 
that schizophrenia patients show hypoactivition in several cortical 
and subcortical regions during target detection, relative to healthy 
controls (Kiehl et al., 2005). Multivariate techniques have extended 
this work by identifying networks of regions that vary together, 
suggesting abnormal auditory and executive function networks in 
schizophrenia (Kim et al., 2009).

MVPA techniques are proving useful for studying the neu-
ropathology of AZ disease. Celone et al. (2006) performed ICA 
on memory related fMRI activity in AZ and mild cognitive impair-
ment (MCI) patients, as well as age-matched healthy controls. They 
found distributed networks involved in memory activity, including 

hippocampal activation accompanied by parietal deactivation, and 
moreover found a nonlinear trajectory in fMRI network activation 
across the continuum of impairment.

As in the above examples, functional data used for pattern clas-
sifi cation may come from tasks in which different subject popula-
tions show known behavioral differences. Another approach is to 
use fMRI collected while subjects are at rest, not performing any 
explicit task. Resting state BOLD signal fl uctuations are thought 
to refl ect internalized thought processes, and have been shown 
to exhibit consistent patterns across individuals (Damoiseaux 
et al., 2006). Multivariate techniques have been applied to resting 
state data to identify regions whose activity varies together over 
time. Many studies have examined differences in resting state data 
between patient populations and controls. Differences in the default 
mode have been identifi ed in AZ (Greicius et al., 2004; Wang et al., 
2006), depression (Greicius et al., 2007), schizophrenia (Garrity 
et al., 2007), and ADHD (Zhu et al., 2005).

In pattern classifi cation analyses, one can also combine data 
from more than one source. Calhoun et al. (2008) trained a clas-
sifi er to discriminate between schizophrenic and bipolar patients 
using both task-related and resting-state (default mode) activity. 
Bipolar and schizophrenic patients share overlapping symptoms, 
motivating the need for reliable brain-based classifi ers for assisting 
in diagnosis. Given that the subjects identifi ed as bipolar or schizo-
phrenic in the study by Calhoun et al. (2008) were triaged based on 
behavioral criteria, it would be interesting to see how unsupervised 
approaches would group the subjects, and whether the resulting 
patterns would resemble those resulting from the supervised classi-
fi cation of behaviorally labeled patient data. Unsupervised methods 
are designed to uncover structure present in the data without any 
user-provided labels, and in the future could be used to inform 
diagnostic criteria for disease (Hrdlicka et al., 2005).

Structural imaging
Brain structure has been found to refl ect life experience (Bengtsson 
et al., 2005), correlate with personality traits (Cohen et al., 2009), 
and relate to psychiatric diagnosis (Lawrie and Abukmeil, 1998). 
Multivariate techniques are also relevant for analyses of structural 
data, as they may be more sensitive to distributed patterns of struc-
tural change.

Multivariate methods have identifi ed supra-regional fronto-tem-
poral abnormalities in schizophrenia (Wright et al., 1999), in addition 
to global changes. MVPA has also shown high accuracy at diagnosing 
AZ disease, and in fact the spatial patterns were robust enough that 
a classifi er trained on one scanner could accurately diagnose based 
on scans collected at another center (Kloppel et al., 2008).

MVPA techniques may be a useful for predicting disease suscep-
tibility and progression. Studies using pattern classifi cation on AZ 
patients and MCI patients have found that some MCI patients show 
greater structural similarities to the AZ patients, while others were 
more similar to healthy controls (Fan et al., 2008a; Misra et al., 2009). 
Interestingly, similarities to the AZ group patterns were predictive 
of subsequent cognitive decline (Misra et al., 2009), indicating that 
structural brain scans could play a role in treatment decisions.

The onset of psychosis is often preceded by what is referred to as 
an at risk mental state (ARMS), during which patients show the fi rst 
symptoms of disorder. However, as symptoms are  heterogeneous 
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and not 100% predictive of future psychosis, the discovery of bio-
logical markers for disease onset would greatly help with early 
intervention. To this end, Koutsouleris et al. (2009) trained a clas-
sifi er to recognize structural scans belonging to healthy controls 
compared to ARMS patients. They then followed up with these 
patients 4 years later, and trained a second classifi er on the original 
scan data, labeling the scans based on whether the patient did or did 
not transition to disease. They were able to distinguish with 82% 
accuracy those who would transition to disease based on abnormal 
structural patterns present before the onset of psychosis. This study 
could have important implications for deciding treatment course 
in individuals who present with ARMS, and suggests that other 
disorders may also benefi t from similar research into functional 
or structural patterns in individuals at risk. In general, the ability 
to correlate patterns with future outcomes is very interesting, and 
can be facilitated by the assembly of longitudinal databases [e.g., 
ADNI1  and the NIH Study of Normal Brain Development2].

Unsupervised learning techniques may also be a powerful 
method for defi ning subtypes within heterogeneous spectrum 
disorders such as autism. For example, Hrdlicka et al. (2005) used 
a clustering algorithm on MRIs from 64 subjects with autism. In 
this study, experienced neuroradiologists manually traced brain 
structures on the MRI scans, such as the corpus callosum, amygdala, 
hippocampus and caudate. Surface areas for these structures, along 
with a measure of gray matter thickness, were entered into a hierar-
chical clustering algorithm. On the basis of this fairly course spatial 
information, they identifi ed several clusters within the subjects 
that correlated with factors such as age of pregnancy and scores 
on the Childhood Autism Rating Scale (CARS) autism diagnostic 
tool. While all individuals in the study were diagnosed as “autistic” 
based on the CARS, individual symptoms and brain structure were 
nonetheless heterogeneous. This study provides hope that with 
fi ner spatial measures, and a larger sample size, some biologically 
based subtypes of autism may be identifi ed.

Multimodal
MVPA does not require a model of the expected response, making 
it easy to combine data across modalities. For instance, Fan et al. 
(2008b) combined functional PET data and anatomical MRI data 
from patients with MCI and healthy aging, demonstrating that very 
high classifi cation rates can be achieved by combining information 
from different sources.

There is growing interest in using biomarkers from brain imag-
ing to identify disease-relevant genes or patterns of genes. One 
method for interrogating genetic effects on functional brain activity 
is to group subjects based on a specifi c genetic polymorphism of 
interest. Tura et al. (2008) examined schizophrenic patients with 
different genotypes for the dopamine receptor DRD1. They found 
that thought behavior did not differ between the groups, multi-
variate patterns of activity on a working memory task signifi cantly 
differentiated between the genotypes.

Another method involves detecting covarying patterns across 
modalities. Liu et al. (2009) used parallel ICA to uncover cova-
rying patterns of activity in fMRI and genetic data. The authors 

identifi ed a genetic component – an array of single nucleotide 
 polymorphisms – that signifi cantly correlated with a pattern of 
brain activity in schizophrenics. Hardoon et al. (2009) applied a 
conceptually similar method, kernel correlation analysis, to show 
genetic infl uence on gray matter structure in healthy controls. This 
type of study may help the search for disease relevant genes, but 
results will need to be validated in larger populations.

PEDIATRIC POPULATIONS
While most neuroimaging MVPA studies have involved young and 
older adults, MVPA techniques have several potential applications 
in pediatric developmental and clinical studies. Here we discuss 
possibilities and challenges for studies in pediatric populations.

Healthy development
An interesting application of MVPA for developmental studies is 
identifying functional and structural patterns that are predictive of 
development of cognitive skills, such as reading and mathematics. 
Hoeft et al. (2007) used multiple regression to show that sMRI, 
fMRI and behavioral measures taken at the beginning of the school 
year could be combined to predict reading ability at the end of 
the school year, in 8- to 11-year-old poor readers, with greater 
accuracy than brain or behavioral data alone. Information from 
this type of study could be useful to inform educational practice 
(Meltzoff et al., 2009).

There are many challenges specifi c to neuroimaging in pediatric 
populations (Berl et al., 2006; Kotsoni et al., 2006; O’Shaughnessy 
et al., 2008). Children, compared to adults, are likely to exhibit 
more variability in both brain structure and activity. Individuals 
mature at different rates, and therefore a sample of children in a 
given age range will likely be more heterogeneous than a sample 
of healthy adults.

One model of brain development suggests that regional activa-
tions are more diffuse in childhood and become more focal with 
development (Durston et al., 2006). However, there is increasing 
evidence suggesting that functional maturation may proceed dif-
ferently in different brain regions, and a model of focalization with 
development is likely not suffi cient to explain the full range of 
developmental changes (Blakemore and Choudhury, 2006; Brown 
et al., 2006; Durston and Casey, 2006; Durston et al., 2006). In fact, 
some evidence suggests that brain networks come to rely less on 
spatial proximity and more on functional importance, becoming 
less “local” and more “distributed” with development (Fair et al., 
2009). MVPA is agnostic with regard to models of development, 
and may be more sensitive to distributed patterns that differentiate 
adults and children.

Developmental disorders
A major focus in the study of developmental brain disorders is 
the early identifi cation of individuals at risk (Koutsouleris et al., 
2009). Indeed, one of the NIMH strategic objectives is to “Chart 
mental illness trajectories to determine when, where, and how to 
intervene”3. Longitudinal studies, in which outcomes can be related 
to patterns of activation or structure, are one very  promising 

1http://www.loni.ucla.edu/ADNI/
2http://www.bic.mni.mcgill.ca/nihpd/info/ 3http://nimh.nih.gov/about/strategic-planning-reports/index.shtml
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 application of this technique. As mentioned above, this tech-
nique is already beginning to be applied for predicting transition 
to disease in adult populations (Fan et al., 2008a; Koutsouleris 
et al., 2009).

While there are few studies using this technique in pediatric 
populations to date, Hoeft et al. (2008) showed that fi ne structural 
features of the brain can be used to distinguish healthy children 
from patients with genetic disorders such as fragile X syndrome 
(FXS) with greater than 90% accuracy, even in children aged 1–3 
years (Figure 3). It is well known that individuals with FXS have 
enlarged caudates relative to the general population (Reiss et al., 
1995), suggesting that classifi er performance could hinge on cau-
date volume alone. However, even when the caudate was removed 
from the training data, the classifi er was still able to signifi cantly 
distinguish FXS from both typically developing and developmen-
tally delayed controls with an accuracy of ∼89%, implying that 
information about abnormal brain structure in this disorder is 
distributed in voxels throughout the brain.

FXS is a genetically defi ned clinical group with a well character-
ized infl uence on brain development, which is strong enough to 
be uncovered using voxelwise analyses (Reiss et al., 1995; Lee et al., 
2007; Hoeft et al., 2008). However, MVPA methods may be most 
fruitful for studying patient groups with more subtle distributed 
pathology (Zhu et al., 2008). In particular, we foresee interesting 
applications in (1) predicting the onset of brain disorders based 
on structural or functional patterns, (2) predicting individual 
response to treatment, and (3) identifi cation of disease-relevant 
endophenotypes/biomarkers.

CHALLENGES AND LIMITATIONS FOR MVPA IN 
PEDIATRIC POPULATIONS
The challenges of neuroimaging in pediatric populations are well 
known (Berl et al., 2006; Kotsoni et al., 2006; O’Shaughnessy et al., 
2008). In this section we will discuss some of the challenges in 
applying MVPA to pediatric populations.

MOTION
Subject motion makes brain imaging studies in pediatric clinical 
populations very diffi cult. Preprocessing can be used to mitigate 
this problem; however since motion affects the signal globally, task-
 correlated motion may have a strong impact on pattern classifi ca-
tion techniques that draw power from integrating over many voxels. 
Therefore, special care should be taken to ensure that patterns are 
representative of neural, rather than motion-induced, changes in 
BOLD signal.

REGISTRATION WITH STANDARD TEMPLATES
Standard templates used to align MR images into a common 
space are built using adult brains (Talairach and Tournoux, 1988). 
It has been found that the normalization procedure can cause 
 signifi cant distortions in brains of children 6 and under (Muzik 
et al., 2000), while for older children this is less of an issue (Muzik 
et al., 2000; Burgund et al., 2002; Wilke et al., 2002; Kang et al., 
2003). However, if similar distortions are applied to one group of 
subjects in a classifi er, it may affect MVPA results. It is therefore 
worth taking precautions to ensure that classifi ers are not relying 
on image distortion.

Weight
6.0e-2

0

–6.0e–2

Significant 
Voxels
positive

negative
Posterior 
Vermis Fusiform Gyrus

Amygdala

Hippocampus Thalamus

CaudateAnterior Insula
Inferior Frontal Gyrus

left

Hypothalamus

-2

FIGURE 3 | Pattern classifi cation results for FXS versus TD/DD; 

classifi cation rates above 90% were achieved in this analysis. Whole-brain 
representation of pattern classifi cation results from FXS versus TD or DD using 
all gray matter voxels. Axial brain images of weight vectors from leave-one-out 

support vector machine analysis for all voxels (top) and spatial patterns of the 
most signifi cant voxels when thresholded at P = 0.05 (according to 2000 
permutations) (bottom) are shown. Reprinted with permission from Hoeft et al. 
(2008). Copyright © 2008 American Medical Association. All rights reserved.
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in neurocognition. Neuroimage 30, 
679–691.

Blakemore, S. J., and Choudhury, S. (2006). 
Brain development during puberty: 
state of the science. Dev. Sci. 9, 11–14.

Bode, S., and Haynes, J. D. (2009). 
Decoding sequential stages of task 
preparation in the human brain. 
Neuroimage 45, 606–613.

Brown, T. T., Petersen, S. E., and 
Schlaggar, B. L. (2006). Does human 
functional brain organization shift 
from diffuse to focal with develop-
ment? Dev. Sci. 9, 9–11.

Bunge, S. A., Dudukovic, N. M., 
Thomason, M. E., Vaidya, C. J., and 
Gabrieli, J. D. E. (2002). Immature 
frontal lobe contributions to cogni-
tive control in children: evidence from 
fMRI. Neuron 33, 301–311.

Burgund, E. D., Kang, H. C., Kelly, J. E., 
Buckner, R. L., Snyder, A. Z., 
Petersen, S. E., and Schlaggar, B. L. 
(2002). The feasibility of a com-
mon stereotactic space for chil-
dren and adults in fMRI studies 
of  development. Neuroimage 17, 
184–200.

Calhoun, V. D., Adali, T., McGinty, V. B., 
Pekar, J. J., Watson, T. D., and 
Pearlson, G. D. (2001). fMRI acti-
vation in a visual-perception task: 
network of areas detected using the 
general linear model and independ-
ent components analysis. Neuroimage 
14, 1080–1088.

model the shape of the neural response, univariate GLM models 
may be more appropriate for testing whether fMRI time courses 
correlate with specifi c signals of interest, (e.g., prediction error 
signals in reward learning or other model derived phasic signals 
O’Doherty et al., 2003), or for testing for responses within a particu-
lar region that vary in a graded manner with task parameters.

It is also worth noting that pattern classifi cation is a research 
fi eld in and of itself, and methods are continually being improved. 
Therefore, not every tool should be expected to provide great results 
“straight out of the box”, and a good understanding of analysis 
methods is always important for interpreting the results.

MVPA is a promising tool for neuroimaging of brain develop-
ment, with potential to yield novel insights into both healthy brain 
development and the pathology of developmental brain disorders. 
While these methods are still relatively new, the rapid acceleration of 
applications in both structural and functional neuroimaging indi-
cates that MVPA is poised to become a standard analysis tool that 
can complement GLM-based analyses (e.g., Dux et al., 2009).
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OTHER LIMITATIONS
With the relatively small sample sizes that are the norm in 
 neuroimaging studies, overfi tting is a concern, and results must 
be interpreted with caution. Before these methods can be deployed 
in a clinical setting, studies with larger cohorts must be undertaken 
(Koutsouleris et al., 2009).

In addition, MVPA methods are not ideal for testing hypotheses 
regarding the involvement of a specifi c brain region in a given 
task. The results of an MVPA analysis can tell you only the rela-
tive amount of information given by a particular voxel. Moreover, 
patterns of weights are likely to be more diffi cult to interpret than 
a signifi cant result at a specifi ed region of interest.

CONCLUSION
MVPA is useful for answering questions about functional and struc-
tural organization in the brain, and can have greater sensitivity 
and descriptive power than mass univariate methods. While MVPA 
techniques have yet to be widely adopted in pediatric neuroimaging, 
we expect to see applications in several domains in coming years. 
These include both predicting normal cognitive development and 
detecting patterns related to brain disorders that may be used for 
diagnosis or treatment.

While MVPA methods are attractive in a variety of situations, 
they are likely not appropriate to answer any and all questions about 
brain function. In particular, because MVPA does not explicitly 
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