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Self-organization, a process by which the internal organization of a system changes without 
supervision, has been proposed as a possible basis for multisensory enhancement (MSE) in 
the superior colliculus (Anastasio and Patton, 2003). We simplify and extend these results by 
presenting a simulation using traditional self-organizing maps, intended to understand and 
simulate MSE as it may generally occur throughout the central nervous system. This simulation 
of MSE: (1) uses a standard unsupervised competitive learning algorithm, (2) learns from 
artifi cially generated activation levels corresponding to driven and spontaneous stimuli from 
separate and combined input channels, (3) uses a sigmoidal transfer function to generate 
quantifi able responses to separate inputs, (4) enhances the responses when those same inputs 
are combined, (5) obeys the inverse effectiveness principle of multisensory integration, and 
(6) can topographically congregate MSE in a manner similar to that seen in cortex. Thus, the 
model provides a useful method for evaluating and simulating the development of enhanced 
interactions between responses to different sensory modalities.
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 successfully generated examples of multisensory enhancement 
(MSE, Anastasio and Patton, 2003).

It is well known that multisensory convergence and processing 
occur in numerous areas outside the superior colliculus, such as 
the cerebral cortex (for review, see Ghazanfar and Schroeder, 2006). 
Therefore, this study was directed toward constructing a simpler, 
more general model of multisensory integration whose features are 
not tied to or founded upon a particular neural region. This model 
is based on the following assumptions. Donald Hebb’s observations 
that neurons can autonomously learn to associate presynaptic and 
postsynaptic behavior led to the coincidence learning category of 
learning laws in neural computing (Haykin, 1999; Hebb, 1949). 
Coincidence learning has been used for simulating multisensory 
integration within the deep layers of the superior colliculus by estab-
lishing correlation between primary inputs and outputs (Anastasio 
and Patton, 2003) and for training a multinet neural computing 
system to associate two different modalities of input in numerosity 
simulations (Ahmad et al., 2002). Unsupervised classifi cation learn-
ing is a process that clusters input data using no a priori knowledge 
about an input’s membership in a particular class. Rather, gradually 
detected characteristics and a history of training are used to assist 
in defi ning classes and possible boundaries between them (Haykin, 
1999). Coincidence and competitive learning are two types of unsu-
pervised learning paradigms. In competitive learning, the neurons of 
the neural network compete with each other during each episode of 
learning with the result that only the most active neuron (or group 
of neurons) is declared the winner for the given input stimulus 
(Hecht-Nielsen, 1990). Furthermore, only the winning neuron and 
neurons within a given neighborhood of the winner are allowed 
to change their weights. In both types of learning, the artifi cial 

INTRODUCTION
The nervous system must deal with a complex environment which 
contains events that are often simultaneously encoded by dif-
ferent sensory modalities, the detection of which can provide 
considerable adaptive signifi cance to an organism. To accom-
plish this, inputs from different sensory systems converge onto 
individual neurons, whereby information from different senses 
is integrated into signals that are different from that produced 
by either of the same senses stimulated alone. One of the most 
evident and perhaps best studied forms of multisensory integra-
tion is response enhancement, which is a signifi cant increase in 
activity in response to combined-modality stimulation (Meredith 
and Stein, 1983, 1986). How different sensory inputs converge to 
produce multisensory response enhancement is a question that 
has received considerable interest and the multisensory, or deeper, 
layers of the superior colliculus have provided a fertile site in 
which to examine this phenomenon (for review, see Stein and 
Meredith, 1993).

Because the superior colliculus is a robust locus for multi-
sensory integration, efforts to mathematically model response 
enhancement naturally have attempted to emulate the physi-
ological features and connectional architecture of the structure 
(Anastasio and Patton, 2003; Anastasio et al., 2002; Colonius and 
Diederich, 2001, 2004; Patton and Anastasio, 2003; Patton et al., 
2002; Raginsky and Anastasio, 2008). In particular, Anastasio 
and Patton (2003) have developed a hybrid neural computing 
system tuned to specifi cally simulate the deep layers of the supe-
rior colliculus. After two-stages of training using several empiri-
cal parameters and simulated unimodal and bimodal inputs 
with spontaneous and driven activity, their innovative model 
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neurons adjust their numerical weights according to the numerical 
representations of the input stimuli. However, the formulas used 
to adjust the weights are typically  different. The self-organizing 
map (SOM) is a biologically inspired competitive learning algo-
rithm (Grossberg, 1976; Kohonen, 1993; von der Malsburg, 1973; 
Willshaw and von der Malsburg, 1976). The SOM model of map 
formation was derived in an attempt “to fi nd the abstract self-
organizing processes in which maps resembling the brain maps 
are formed” (Kohonen, 2001:p. 104). In his recent review of neural 
map formation research, Goodhill notes that models such as the 
SOM “give a remarkably good fi t to experimental data on the geo-
metrical properties of maps in (primary visual cortex), including 
subtle changes in these properties following various forms of visual 
deprivation” (Goodhill, 2007). In the map, neurons are usually 
placed at the nodes of a two-dimensional lattice and become selec-
tively tuned to respond more to various classes of input patterns. 
The unsupervised tuning via training leads to the formation of a 
topographic map of the different features of the input, hence the 
synonymous name self-organizing feature map.

The present efforts, based in part on the fi rst step of the Anastasio 
and Patton (2003) model, employ the principles of self-organizing 
feature maps and have created a simulation that learns to gener-
ate MSE from artifi cially generated combinations of sensory input 
signals. Furthermore, several characteristic properties of MSE, 
including the principle of inverse effectiveness, are observed in 
the simulations. Our unsupervised model is based on the widely 
used sigmoidal transfer function and the traditional SOM, and is 
trained via competition amongst its constituent artifi cial neurons 
(Kohonen, 1990).

MATERIALS AND METHODS
SOMs used in this study were implemented in the Java™ program-
ming language (freely available for downloading from the author’s 
website). Within the SOM, each artifi cial neuron in the lattice has 
an associated weight vector w

i
 whose components correspond to 

the neuron’s inputs. When each input vector x representing m 
modalities

x x x xm= { }1 2, , , ,…

is presented to the network, each neuron i competes on the basis of 
which has its weight vector w

i
 closest to x. The proximity is meas-

ured in terms of a distance function which can be the Euclidean 
distance or the angle between the input vector and the weight vector. 
The node with the smallest Euclidean distance or angle from the 
input vector is then declared the winner and allowed to change its 
weights toward the input vector.

The standard competitive learning rule computes weight change 
as the difference between the current connection strength, or 
weight, of a neuron and its input,

w w k i xi i
new old old= + ( ) −( )η , ,wi

where η is called the neighborhood function which is a decreasing 
function of the distance between the winning neuron k and the 
neuron i currently being updated (Kohonen, 1990). This weight 
updating rule helps in damping any explosive growth of weights 

that may be encountered in coincidence learning (Haykin, 1999). 
The neighborhood function is the Gaussian

η
σ

( , ) exp
( , )

,k i
r rk i= −⎛

⎝⎜
⎞
⎠⎟α dist

2 2

where 0 < α ≤ 1is a monotonically decreasing learning-rate factor, 
σis the width of the neighborhood function, r

k
 and r

i
 correspond 

to vectors containing the map coordinates of the winning neuron k 
and the current neuron i, and dist is a function giving the distance 
between two nodes.

In this paper, we assigned a length of one between all neighbor-
ing connections on the grid of the SOM, including the diagonal 
city-block metric. Mathematically, we compute the distance between 
two neurons on the grid using

dist( , ) max ,r r r r im n mi ni= − ∀

where r
mi

 is the ith coordinate of the vector r
m,

 which corresponds 
to the position of node m in the map. In addition, the Euclidean 
distance function produced maps similar to those obtained with 
the city-block metric. Our key results appear to remain invariant 
across both distance functions.

SYSTEM DESIGN
Learning algorithm
The simulations in this paper were based on competitive learning 
with the traditional SOM paradigm, as described. Artifi cially gener-
ated input vectors whose components corresponded to stimulus 
levels of different stimulus modalities were used to train the SOMs. 
The 10 by 10 SOM comprised weighted connections between the 
simulated modality inputs and the neurons on the map. The 
weighted connections for each neuron on the map were initialized 
with weights picked uniformly at random from the range 0 to 1. 
Furthermore, the weights for every SOM neuron were normal-
ized initially and after every step of training. The learning rate (α) 
started at 1.0 and was monotonically decreased linearly over the 
entire learning period (5,000 iterations) to 0.01. Unless indicated 
otherwise, the neighborhood width (σ) was kept constant at 1.0. 
The rectangular distance on the map was always used for the dis-
tance function between neurons.

Artifi cial input data
Following Anastasio and Patton (2003), the SOM was trained and 
tested using an m component random vector, where m represents 
the number of modalities. Each component of the m component 
vector was a randomly chosen integer between 0 and 20 (inclusive) 
that refl ected the degree to which the corresponding simulated 
sensory modality input was driven or spontaneous. In each itera-
tion of training, the driven and spontaneous characteristics of 
simulated activation levels for each modality were determined 
according to a modality combination string which was chosen ran-
domly over all possible strings of 0’s and 1’s with length m (e.g., 
100, 111 for m = 3).

Each particular modality combination string defi ned which 
modalities were driven and which were spontaneous. Spontaneous 
activation was denoted with a 0 and driven activation with a 1. 
For example, the string 111 corresponds to all driven modalities, 
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and the string 010 corresponds to a driven second modality and 
spontaneous fi rst and third modalities.

During the simulation, the probability of selecting each modality 
combination string was equal (see Table 1). For constructing the 
simulated input combination to the map, there were conceptually 
m groups of 20 sensory input neurons, one group for each of the 
m modalities. The behavior of each sensory input neuron within 
a modality under spontaneous and driven activations were mod-
eled using probability thresholds p

s
 and p

d
, respectively, where p

s
 

is less than p
d
. Typical values can be p

d
 = 0.6 and p

s
 = 0.1, which 

respectively correspond to a 60 or 10% chance of one of the 20 
neurons in each modality fi ring under a driven or spontaneous 
signal activation level. Once a particular modality combination 
of spontaneous and driven modalities was chosen, the number of 
spikes generated from each modality was chosen according to the 
probability mass function of the binomial distribution,

Pr # .Spikes =( ) =
⎛
⎝⎜

⎞
⎠⎟

−( ) −
r

r
p pr n r20

1μ μ

The binomial distribution was sampled for each modality with 
the corresponding driven or spontaneous probability to generate 
a number that represented the number of neurons which fi red 
within that particular modality. Here, 20 was the total number 

of neurons within each modality, r corresponded to the number 
of spikes, Pr(#Spikes = r) corresponded to the probability that r 
neurons out of 20 spiked given the probability p

µ
, and µ∈{d, s} 

represents driven or spontaneous respectively. A sample from the 
binomial distribution corresponded to a random number between 
0 and 20 which represented a random sum of activations from the 
20 sensory input neurons in a particular modality. The random 
sums for each modality were then combined into an m component 
vector which was presented to the network for training.

The expected number of sensory input neurons active in a given 
modality is essentially determined by the spontaneous and driven 
activations. Shrinking the distance between the driven and spon-
taneous distributions causes the driven and spontaneous binomial 
samples to approach the same expected value (see Table 2). The 
expectations can be calculated by multiplying the corresponding 
probability by the number of neurons per modality (n = 20).

Outputs
In artifi cial neural networks, the output of a neuron can be com-
puted using an activation function that simulates the threshold and 
saturation properties of a biological neuron (Hopfi eld, 1984). The 
activation function is a function of the weighted sum of the inputs 
( )Σ j ij jw x . Weighted summations of neuronal inputs and sigmoidal 
activation functions have been successfully used to model the physi-
ological behavior of the fi ring rates of neurons in the mammalian 
brain (Poirazi et al., 2003a,b). In our simulation, the output z

i
 of a 

SOM neuron i was computed using a non-linear sigmoid activation 
function based on the exponential function,

z
w xi

ij jj

=
+ − ∑

1

1 exp[ ( )]
.

γ φ

Above, γ is a sigmoid sensitivity parameter that controls the slope 
of the sigmoid and φ is a constant bias parameter which determines 
the amount of input ( )Σ j ij jw x  required to output the value 1

2 .

Parameter sensitivity analysis
One advantage to using a traditional and popular learning algo-
rithm like the SOM is that many studies are readily available con-
cerning the parameter sensitivity of the functions used in SOMs 
(Flanagan, 2001; Kohonen, 2001; Sadeghi, 1998). The setting of 

Table 1 | Probabilities of sensory stimuli combinations being chosen 

during training in our model.

Type Stimuli  Probability Cumulative

 combination  probability

None 0 0 0 1
8
 1

8

Unimodal 0 0 1 1
8
 3

8
 0 1 0 1

8
 

 1 0 0 1
8
 

Multimodal 0 1 1 1
8
 1

2
 1 0 1 1

8
 

 1 1 0 1
8
 

 1 1 1 1
8
 

Table 2 | Comparison of expected spontaneous and driven input values as the driven probability approaches the spontaneous probability (0.1) for 

every modality combination in a three modality model.

Stimuli p
d
 = 0.9 p

d
 = 0.6 p

d
 = 0.4 p

d
 = 0.1

000 2 2 2 2 2 2 2 2 2 2 2 2

001 2 2 18 2 2 12 2 2 8 2 2 2

010 2 18 2 2 12 2 2 8 2 2 2 2

100 18 2 2 12 2 2 8 2 2 2 2 2

011 2 18 18 2 12 12 2 8 8 2 2 2

101 18 2 18 12 2 12 8 2 8 2 2 2

110 18 18 2 12 12 2 8 8 2 2 2 2

111 18 18 18 12 12 12 8 8 8 2 2 2

Driven inputs are displayed in bold.
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the sigmoid function is crucial to obtain meaningful results. For 
example, if the parameter φ is set too high, then the sigmoid can be 
shifted so far horizontally that all amounts of inputs will register a 
low value. Likewise, if the parameter φ is set too low, the sigmoid can 
be shifted to the left so that all inputs give a near maximum output. 
Therefore, as is standard in modeling papers (Hopfi eld, 1984), the 
sigmoid was tuned according to the input ranges.

In general, our sigmoid activation function was confi gured to 
output 1

2  when stimulated by one modality. The parameter φ was 
chosen by computing the maximum weighted value of a unimodal 
stimulus with no spontaneous input from the other modalities,

φ = n

m
,

where n = 20 is the number of neurons per modality and m is the 
number of modalities. For example, the constant bias parameter 
for a three modality model with each modality containing n = 20 
neurons is 20

3
11 547≈ . , which is the maximum sigmoid output of a 

single driven weighted input, because the weights are kept normal-
ized. The slope (γ) of the activation function was set to 1

2 .
The results were analyzed using the set of sigmoid values over 

1,000 presentations of a particular modality combination.

Weight updating
Instead of using the Euclidean distance or angle, we equivalently 
declared the SOM neuron with the highest sigmoid activation func-
tion for a given input as the winner and allowed it to initiate weight 
changes in its neighborhood. After each iteration of training, the 
weights of the winner and its neighbors were aligned more toward 
the given input according to the standard competitive learning rule. 
After a neuron’s weights were updated, they were subsequently 
normalized to have Euclidean length 1.

Edge Effects
Edge effects are a SOM phenomenon that can cause a concentration 
of weight vectors around the edges of the SOM. One solution to 
the problem of edge effects is to use a modifi ed learning rule, or 
an edgeless topology, including toroidal and spherical SOM’s (Wu 
and Takatsuka, 2006). However, such modifi ed SOMs typically do 
not have the wealth of existing theoretical research behind them in 
comparison with the traditional SOM. In order to keep the model 
and presentation simple, closer to Anastasio and Patton (2003), 
and to retain the theoretical backing of previous SOM research, 
we decided not to compensate for edge effects.

TESTING
Sigmoid activation maps
Each SOM was trained using 5,000 randomly selected modality 
combinations. Once trained, an activation map plot was generated 
by averaging the sigmoid output of each neuron in the SOM over 
1,000 random targets of a specifi c modality combination. The ith 
row and jth column of the activation map corresponded to the 
average sigmoid activation of the neuron at that particular location 
on the trained map for that specifi c modality combination. Areas 
colored red corresponded to the maximum sigmoid activation 
level (1.0) and those colored black corresponded to the minimum 

Table 3 | Parameter values used for training.

Parameter Symbol Value

Modalities m 2 or 3

Neurons per modality n 20

Spontaneous probability ps 10%

Driven probability pd 60%

Constant bias φ 
n
m

Sigmoid sensitivity γ 1
2

Learning rate α 1.0 → 0.01

Neighborhood width σ 1.0

FIGURE 1 | A sigmoidal enhancement example. This curve simulates the 
physiological relationship between level of input to an artifi cial neuron (dot 
product) and its hypothetical output (sigmoid). By selecting points along this 
input–output relationship, a value for sigmoid enhancement can be calculated. 
In this example, SM 1 and SM 2 correspond to unimodal responses, CM to 
the bimodal response, and the dot product corresponds to the value of the 
weighted sum of inputs. The sigmoidal enhancement in this example is 
(0.9 − 0.3)/0.3 = 200%.

sigmoid activation level (0.0). The parameters used for training 
are listed in Table 3.

Sigmoidal simulation of multisensory enhancement
Following Meredith and Stein (1986), the level of “MSE” of each 
neuron was calculated for each combination of multimodal stimuli 
(011, 101, 110, 111),

% ,max

max

MSE
CM SM

SM
=

−( ) ×100

where CM corresponds to the average combined-modality 
response and SM

max
 represents the maximum average response 

under a single-modality stimulus (001, 010, 100). The average 
CM and SM responses for a SOM neuron were obtained by 
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averaging its sigmoid output over 1,000 presentations of each 
particular modality combination.

Figure 1 shows an example of the calculation of MSE using 
the sigmoid function. Traditionally, MSE is calculated using an 
 aggregate value of action potential counts derived in response to 
different single-modality and combined-modality stimuli over sev-
eral trials. In contrast, our measurement is based on the output 
of a sigmoid activation function. Perhaps a better term to use in 
reference to the model is sigmoidal enhancement, since the model 
compares the sigmoid outputs of an artifi cial neuron and not actual 
spike counts. Nevertheless, artifi cial neurons with high activation 
levels can be interpreted to fi re more often than those that do not 
receive that level of input and may conceptually correlate with 
increased spike activity of real neurons. Therefore, the terms sig-
moidal enhancement and MSE are used synonymously here.

RESULTS
ACTIVATION MAPS GENERATED BY THE SOM ALGORITHM
After training, the different unimodal input combinations (001, 
010, 100) each activated a distinct (yellow) region of the trained 
map (Figure 2). Bimodal inputs (011, 101, 110) involving combi-
nations of the driven stimuli, also activated specifi c parts of the 
map (red-orange). However, in this case, bimodal stimuli did not 
only preferentially activate the two areas represented by their con-
stituent unimodal stimuli, but instead triggered a single focus of 
activity in the region between the two. This effect was observed for 
all bimodal stimulus combinations (see Figure 2) and was made 
even more evident when the levels of MSE were plotted. As seen 
in Figure 2 (row 2), maximal levels of MSE occurred in narrow 
bands restricted to the general regions between the constituent 
unimodal representations. Similarly, although trimodal stimuli 
(111) activated most of the map (see Figure 2, row 4), the highest 
levels of MSE for trimodal stimulation were focused central to the 
different unimodal representations. The completely spontaneous 
stimulus (000) prompted little activation over the entire map. The 
ontogenesis of the map in Figure 2 was portrayed in a movie that is 
available in the supplementary materials (or http://www.youtube.
com/watch?v=uFU_G8gkNCU). The movie is an animation of the 
development of activation and MSE patterns on the SOM according 
to stimulus combination over 5,000 iterations of training.

As can be seen in the different bimodal activation maps (Figure 2, 
row 2), levels of activation, and resulting multisensory integration 
changed with different stimulus combinations and different loca-
tions within the map. To quantify which conditions most directly 
infl uenced multisensory integration, these features (modality com-
bination, spatial location in map) were compared in an experiment 
using a two modality model (Figure 3). Row 1 of Figure 3 shows 
activation maps for unimodal (01, 10) and bimodal (11) conditions. 
The graphs in row 2 illustrate the quantifi ed level of activity evoked 
in each condition for artifi cial neurons located on the diagonal from 
positions 1,1 to 10,10 of the SOM grid. The experiments in rows 
1 and 2 of Figure 3 confi rm that unimodal inputs preferentially 
activated a unique area of the map, while the combination of the 
same (i.e., bimodal) inputs created a higher focus of activity in the 
area between their constituent unimodal parts. In row 3, selected 
points (1,1; 5,5; 10,10) on the SOM are quantifi ed and compared 
(bar graph) for each stimulus condition (spontaneous, unimodal, 

and bimodal). From these graphs it is clear that the top left (neuron 
1,1) and bottom right (neuron 10,10) of the map have come to 
represent the different unimodal inputs and respectively responded 
the most to the 01 and 10 modality combinations. In contrast, 
the middle of the map (neuron 5,5) preferentially represented and 
exhibited a larger response for the bimodal stimuli (11) over the 
unimodal stimuli combinations (01 or 10). Furthermore, the bimo-
dal increase in simulated activity was greater than that evoked by 
either of the component stimuli presented alone as well as greater 
than the sum of their activity (superadditive).

These fi ndings were confi rmed for 100 randomly initialized and 
trained SOMs, for which the average minimum, maximum, aver-
age, and standard deviation of the percentage enhancement for 
each multimodal combination are shown in Table 4. The average 
minima, maxima, and standard deviations indicate a wide vari-
ability in the MSE of the trained map.

INVERSE EFFECTIVENESS
Being an artifi cial neuron within the two modality representation of 
the SOM shown in Figure 3 did not, by default, always result in signif-
icant enhancement. In fact, the degree of enhancement in the model 
was affected by the level (strength) of the driven input stimulation. 
Some driven levels of stimulation produced little enhancement while 
other combinations achieved far higher levels. The driven stimula-
tion level for the trained map shown in Figure 3 was systematically 
altered from ∼0.4 to 1.0 (all other factors remained the same) and the 
resulting levels of MSE were plotted in Figure 4 according to their 
map position (neuron 1,1 thru 10,10). Here, enhancement was most 
evident in the bimodal areas activated by low-level driven stimula-
tions (e.g., ∼0.4–0.5) but was essentially lost if higher-level driven 
stimulations (e.g., 0.8–0.9) were used. Thus, the model indicated an 
inverse relationship between stimulation effectiveness and MSE.

The inverse relationship between driven value (stimulus strength 
or effectiveness) and MSE is similar to that observed for biological 
multisensory neurons. However, in our experiments with bimodal 
neurons (11), driven stimulation values less than ∼0.4 produced 
progressively lower values of MSE as driving strength approached 
spontaneous values (0.1). At present, it is not known if these near-
spontaneous values appropriately represent the biology of sub-
threshold levels of activation of bimodal neurons or not. However, 
additional experiments (not shown) that manipulated the sigmoid 
threshold function, (for example z w xi ij j= φ/( )2exp( )−4 Σ j ), affected 
the results in a manner that was consistent with inverse effective-
ness along the entire range of driven stimulation (from 0.9 to 0.1). 
This manipulation illustrates that the sigmoid function may need 
to be adjusted in order to accurately simulate the biology. As men-
tioned previously, choosing a proper threshold function is a com-
mon trend of effort in many mathematically modeled biological 
systems (Hopfi eld, 1984).

DISCUSSION
The artifi cial training regimen presented in this paper was based, 
in part, on the work of Anastasio and Patton (2003). These authors 
used a two-stage algorithm, involving a novel hybrid of coincidence 
and competitive learning for simulating MSE in the deep layers 
of the superior colliculus. Such an approach, however, required 
the use of a large number of empirical parameters and structure 

http://www.youtube.com/watch?v=uFU_G8gkNCU)


Frontiers in Computational Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 8 | 6

Martin et al. SOM model of multisensory enhancement

FIGURE 2 | Activation and multisensory enhancement (MSE) levels for a 

three modality model on a 10 × 10 sized SOM after 5,000 iterations of 

training; throughout which, the neighborhood width was kept constant 

at 1. Activation maps in the top row (labeled “unimodal”) show distinct 
activation areas (yellow) for single-modality stimulation of the different 
modalities (001, 010, 100). The second row shows activation levels for combined-
modality stimulation (011, resulting from combined inputs from 001 and 010; 101 
resulting from combining 001 and 100; and 110 resulting from combining 010 
and 100). Here, the highest levels of activity (red, dark red) occurred in a single 

region between the representations of the constituent unimodal inputs. In row 
three, the level of multisensory enhancement is determined for the 011, 101, 
and 110 stimulus combinations (see Section “Materials and Methods”), and 
reveals a sharper focus of multisensory enhancement levels at the locus 
between the unimodal representations. The bottom row illustrates an activation 
map for stimulation in all three modalities (111) and the resulting levels of 
multisensory enhancement (MSE 111). The map in the box depicts the result of 
spontaneous activity (000) without driving, wherein only low levels of activity 
resulted across the map. Scale bars on right indicate activation and MSE levels.
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to emulate the organization and connectivity of the superior 
colliculus. We have shown that a standard competitive learning 
algorithm is  capable of producing viable results without invok-
ing these  additional parameters, stages, and connections; thereby 
demonstrating that MSE can be simulated with traditional SOMs 
without specifi cally modeling the superior colliculus.

TOPOGRAPHY PRESERVATION
Our results confi rm that a traditional SOM can segregate itself 
into areas of activity (and inactivity) refl ective of its input. Each 

 unimodal input revealed a distinct, active area of the trained 
map, indicating that separate groups of neurons in the map had 
organized themselves to recognize certain stimuli (see Figure 2). 
However, when the trained SOM was given bimodal inputs, it 
generated not two separate foci of activity, but a single, new and 
even more vigorous level of activity at the intersection between 
the representations of the different inputs involved. This behav-
ior was true for all effective bimodal stimulus combinations 
(Figure 2). Similarly, trimodal stimuli mostly activated the areas 
in the center of the map at the intersection of the  representations 

FIGURE 3 | Quantifi cation of multisensory enhancement for a two 

modality model. Activation maps in the top row show unimodal activation 
areas (01, 10) and the result of bimodal stimulation (11), from which the data in 
the middle row are derived. For a given map, representative levels of activity 
was measured from neurons lying on a diagonal line from the top left to bottom 
right and these response values are depicted by the blue, curved line (second 
row). Note that unimodal responses (01, 10) were distributed toward the edges 

of the map, while bimodal responses (11) were centered between them. In 
each condition, bimodal responses exceeded that produced by unimodal 
stimulation (histograms, bottom row), but the greatest levels of activation, 
representing multisensory enhancement, were achieved at the position (5,5) 
between the unimodal areas of the map (third row). Weight vectors for the 
trained SOM neurons at positions (1,1), (5,5), and (10,10) are depicted in the last 
row of the fi gure.
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of the three different unimodal stimuli involved (Figure 2). 
Spontaneous inputs without driving exhibited a small amount of 
activity at the central location (Figure 2). Spontaneous activity 
is an  important  component of successful visual map formation 
(Eglen, 1999; Raginsky and Anastasio, 2008). Although different 
topographical patterns might occur on separate runs, similar 
results were obtained for maps initialized with different random 
weights and trained with different patterns of modality combi-
nations. Furthermore, even though different structures could be 
produced by varying neighborhood widths or other parameters 

(not shown), simulated MSE and inverse effectiveness occurred 
predominantly on the borders between modalities.

These bimodal (and trimodal) effects can be explained by the 
neighborhood preservation property of SOMs (Bauer and Pawelzik, 
1992; Haykin, 1999). For example, because the inputs in the two 
modality model are close to the topological forms {(0,n), (n,n), 
(n,0): 0 ≤ n ≤ 20}, the weights of neurons in the SOM become 
organized through training to preserve this spatial arrangement. 
For example, in our experiments, the topology of the input pat-
terns was preserved after training because regions stimulated, for 
example, by 11 appeared precisely between the areas activated 
independently by 01 and 10. This effect is due to the fact that a 
bimodal input (11) is a linear combination of the basis vectors of 
the constituent unimodal inputs (01,10). Artifi cial neurons which 
respond to similar topological forms will organize to lie in close 
proximity to one another within the map. Because inputs of the 
form (n,n) are a combination of inputs of the form (0,n) and (n,0), 
they come to lie between the two on the trained map. Accordingly, 
bimodal responses will predominantly reside between the areas 
representing the constituent unimodal inputs. As such, it may be 
helpful to think of an SOM not so much as representing a spatial 
map of a neural region, but as the simplifi ed dendrites of a sin-
gle neuron. In this manner, inputs via synaptic boutons from one 
modality are physically segregated from those of another (as in the 
SOM) by distance along the dendrite, but combinations of different 
inputs achieve their maximal effect at an intermediary point along 
the same membrane (as in the SOM).

SIMULATED MULTISENSORY ENHANCEMENT
When compared with the results elicited by unimodal inputs, 
not only did bimodal stimulation cause a spatial shift in the 
focus of activity within the SOM, but also the level of activity 
increased. Although bimodal stimulation generally produced 
increased activity levels across the SOM, the largest increments 
were always observed at the intersection between the representa-
tions of the different unimodal inputs. Quantifi ed as a measure 
of MSE, these values were signifi cantly (p < 0.02) elevated above 
those produced by the same artifi cial neurons under unimodal 
conditions.

Note that the SOM algorithm has (a) learned weights that could 
generate the MSE, and (b) organized all weights topographically on 
the map. However, the sigmoidal transfer function allowed certain 
weighted input combinations to produce MSE and inverse effective-
ness. The magnitude of the simulated MSE was controlled by the 
slope of the sigmoid function and the location of the steep part 
of the sigmoid curve relative to the magnitudes of the driven and 
spontaneous input combinations. Specifi cally, each SOM neuron’s 
output was computed by passing a simple weighted linear combina-
tion of inputs through a non-linear sigmoid function. The sigmoi-
dal enhancement was generated in certain neurons due to the way 
in which the sigmoid function was constructed. The sigmoid was 
constructed so that the expected magnitude of a unimodal input 
combination would generate an output that corresponded to an 
area in the middle of the sigmoid curve (see Section “Materials and 
Methods”). Artifi cial neurons whose weights combined unimodal 
signals more equally were more likely to produce an enhanced 
response because unimodal stimulus levels could combine to 

Table 4 | Comparison of percentage multisensory enhancement 

between different stimuli for trained self-organizing maps using driven 

probability of 0.6. The entries correspond to the average over 100 differently 

initialized and trained SOMs.

Stimuli  Algorithm  Minimum Average Maximum SD

011 SOM 17 87 241 55

101 SOM 17 87 244 55

110 SOM 17 87 238 55

111 SOM 35 118 246 51

FIGURE 4 | A two modality SOM showing inverse effectiveness. This 3D 
graph plots the position of artifi cial neurons in the trained SOM (location 
1,1-10,10; x-axis) against the driven value of the inputs (0.4–1.0; y-axis) and the 
level of multisensory enhancement (MSE; z-axis). Note that the same 
positions (e.g., neuron 6,6) on the SOM had different levels of MSE depending 
on the driven value of the input. If the driven value was low (0.4–0.5), the 
maximal level of MSE generated was high (>400%); but if the driven value 
was high (0.9–1.0), the maximal MSE level was low (<60%). This inverse 
relationship between driven value (stimulus strength or effectiveness) and 
MSE is similar to that observed for biological multisensory neurons.
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Eglen, S. J. (1999). The role of retinal 
waves and synaptic normalization in 
retinogeniculate development. Philos. 
Trans. R. Soc. Lond., B, Biol. Sci. 354, 
497–506.

Flanagan, J. A. (2001). Self-organization 
in the one-dimensional SOM with 
a decreasing neighborhood. Neural 
Netw. 14, 1405–1417.

Ghazanfar, A. A., Maier, J. X., 
Hoffman, K. L., and Logothetis, N. K. 
(2005). Multisensory integration of 
dynamic faces and voices in rhesus 
monkey auditory cortex. J. Neurosci. 
25, 5004–5012.

traverse the steep section of its non-linear sigmoid function. We 
chose the sigmoid and input distribution parameters to produce 
similar enhancement values to those observed in laboratory set-
tings (up to around 350%; see Wallace et al., 1992). However, 
these parameters can be adjusted according to empirically meas-
ured integrative levels and subsequently modeled directly within 
a  framework such as the one we have described.

SOMs AND BIOLOGICAL MULTISENSORY ENHANCEMENT
In summary, the choice of the input vectors and the sigmoid activa-
tion function had an infl uence on the results we have obtained. First, 
the design of the input vectors and the SOM algorithm ensured 
that the bimodal (11) neurons were organized to lie on the borders 
between the unimodal (01) neurons and unimodal (10) neurons. 
Second, the choice of the sigmoid activation function helped the 
bimodal (11) neurons to contribute more to the simulated MSE 
than the unimodal (01 or 10) neurons. Together, these two choices 
provided quantitative predictions about the topographical organi-
zation and magnitude of MSE according to various levels of driven 
and spontaneous inputs.

The simulated MSE observed in bimodal and trimodal SOMs 
bears a striking resemblance to the phenomenon of MSE in cen-
tral nervous system (CNS) neurons, such as those found in the 
superior colliculus as well as other brain areas (e.g., Barraclough 
et al., 2005; Clemo et al., 2007; King and Palmer, 1985; Meredith 
and Stein, 1983, 1986; Sugihara et al., 2006; Wallace et al., 1992). 
The SOMs, like multisensory neurons of the classic, bimodal 
type, are independently activated by inputs from different sen-
sory modalities. In addition, when presented combined-modal-
ity stimulation, both SOM and CNS bimodal neurons have the 
potential to respond with activity levels which exceed that gener-
ated by either of the component inputs presented alone. In fact, 
parts of SOMs that reveal multisensory response enhancement 
that, when quantifi ed [see, for example, bar graph for neuron at 
position (5,5) in Figure 3], show a striking resemblance to super-
additive responses in some CNS neurons (see Figure 2, Meredith 
and Stein, 1986; Figure 7, Perrault et al., 2005). Also like biologi-
cal neurons, SOMs presented different levels of driven activity 
 generated different  levels of  multisensory response enhancement 
when the stimuli were  combined. Furthermore, like biological 
neurons, there was a specifi c stimulus–response relationship 
such that SOMs presented with low-level driven stimuli achieved 

proportionately higher levels of enhancement than those given 
more effective driven stimuli. In CNS neurons, this phenom-
enon has been described as “inverse effectiveness,” where higher 
levels of enhancement occur in response to weak stimuli when 
compared to that elicited by combinations of highly effective 
stimuli (Ghazanfar et al., 2005; Kayser et al., 2005; Lakatos et al., 
2007; Meredith and Stein, 1986). Thus, a distinctive property of 
multisensory neurons, that of inverse effectiveness, also emerges 
from trained SOMs. Although inverse effectiveness has been 
observed biologically (and thus expected by those familiar with 
multisensory research literature), it has rarely been modeled. Our 
work represents a computational demonstration of multisensory 
inverse-effectiveness and, as such, provides insights into the phe-
nomenon that are diffi cult to test experimentally. Specifi cally, it 
is experimentally quite diffi cult to assess the lower limits of this 
effect, since the biological distinctions between subthreshold and 
spontaneous activity are quite small and labile in living neurons. 
Although the sigmoidal SOM model we used was very simple, 
it interpreted a wide range of observations, and made defi nite 
predictions that can be tested, and possibly falsifi ed by further 
biological experiment.

In summary, the present study sought to identify a simple, 
unsupervised neural computing system that can learn to simu-
late multisensory processing. To this end we employed a widely 
used, biologically inspired unsupervised competitive learning 
algorithm to simulate how artifi cial neurons can behave and 
become topologically organized following training with artifi cial 
multimodal stimulation. These biologically inspired procedures 
and assumptions were able to simulate defi nitive properties of 
MSE, and may represent such effects wherever in the CNS they 
may occur.
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