
November 2008 | Volume 2 | Article 4 | www.frontiersin.org

1

Vision Egg: an open-source library for realtime visual
stimulus generation

Andrew D. Straw*

Bioengineering, California Institute of Technology, Pasadena, CA, USA

Edited by: Rolf Kötter, Radboud University Nijmegen, Netherlands Antilles

Reviewed by: Laurent Perrinet, INCM-CNRS, France
Jonathan W. Peirce, University of Nottingham, UK

Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional
sinusoidal gratings to naturalistic 3D scenes can now be specifi ed on a frame-by-frame basis in realtime. A programming library called
the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use
of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance
and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital
triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral
experiments. This software is available for free download at visionegg.org.

Keywords: visual stimulus generation, open source, Python

INTRODUCTION
A neuroscientist may need precisely defi ned spatial, temporal,
spectral, and polarization properties of light to perform a par-
ticular visual experiment. Standard computer monitors and
projectors are capable of producing a wide range of stimuli suf-
fi cient for many experiments, and special purpose displays may
be built or purchased with a standard interface. A tool which
produces precisely controlled signals from a video port (such as
VGA) is therefore of great utility. This paper outlines the Vision
Egg, a programming library developed to serve as such a tool
in combination with a standard computer and other software
libraries.

HISTORICAL CONTEXT
A brief outline of the display systems with the most impact on
the design of the Vision Egg follows.

In the 1980s and 1990s, vision scientists frequently displayed
their stimuli on a Tec-tronix 608 display, a small (∼12 cm diago-
nal) cathode ray tube with independent X,Y and luminance
inputs originally intended for use in a high-bandwidth analog
oscilloscope. However, instead of using it as an oscilloscope dis-
play, vision scientists often controlled the 608 with an Innisfree
Picasso device, a specialized function generator that creates

a raster scan of X,Y positions and modulates luminance to
 produce a variety of simple stimuli such as sinusoidal gratings
and rectangles. Many scientists found the Picasso wonderfully
easy to use, as its intuitive interface with a myriad of switches
and potentiometers allowed rapid experimentation until a suit-
able stimulus was found. Furthermore, by providing BNC con-
nections for voltage inputs, time-varying stimuli could be driven
via analog outputs from the same data acquisition system being
used to record responses, simplifying experimental design. The
main limitations of the Picasso are essential to its design as a
specialized function generator – namely that it is tied to a spe-
cifi c (and now rare) display device, and that the range of stimuli
it could produce were limited.

Computers provide the ability to produce arbitrary visual
stimuli, but with a new set of limitations. Early systems devel-
oped in the 1990s required no specialized hardware but could
only draw pre-rendered stimuli and movies (e.g., early releases
of the PsychToolbox: Brainard, 1997; Pelli, 1997) or were lim-
ited to simple stimuli and required extensive programming and
debugging in low-level C (e.g., John Maunsell’s custom LabLib).
These systems achieved frame-by-frame temporal precision by
operating within a cooperative multitasking operating system
such as Mac OS (prior to Mac OS X) and running at interrupt
time. Under such conditions, the underlying OS would not
preempt a program’s use of the CPU or other resources. With
the rise of pre-emptive multitasking operating systems such as
Windows 95, GNU/Linux, and Mac OS X, such an approach to
precise timing was no longer guaranteed. Another issue, which
persists today, is that the general-purpose nature of display
hardware meant that producing stimuli with a large dynamic
range of contrast can be diffi cult.

Custom hardware solutions, such as the Cambridge Research
Systems’ VSG 2/3F, addressed the issues of precise timing and

*Correspondence: Andrew D. Straw, Bioengineering, California Institute of Technology,
1200 E. California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA. e-mail:
astraw@caltech.edu

Received: 15 September 2008; paper pending published: 26 September 2008; accepted:
08 October 2008; published online: 04 November 2008.

Citation: Front. Neuroinform. (2008) 2: 4. doi: 10.3389/neuro.11.004.2008

Copyright © 2008 Straw. This is an open-access article subject to an exclusive license
agreement between the authors and the Frontiers Research Foundation, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
authors and source are credited.

Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

2

Straw

dynamic range through the use of special purpose processing
units and digital to analog converters isolated from the main
computer system on a PCI card. Programs would execute
onboard these cards independently from the host operating
system, bypassing the issues outlined above. Such cards were
expensive, however, often costing fi ve or more times the price
of the host computer itself, with additional RAM costing still
more. Additionally, programming the VSG 2/3F involved either
using a script language with limited performance or a low-level,
assembly-like language specifi c to the processing unit onboard
the card.

By the year 2000, OpenGL, a library to abstract standard
graphics hardware, was being used for realtime generation of
3D graphics on broadcast television without skipping frames.
I was encouraged to try a similar approach for my own experi-
ments on the visual system of fl ies, where the ability to use 3D
video acceleration hardware was appealing because it meant that
wide-fi eld stimuli could be accurate across displays subtending
very large angles. Such graphics hardware was appealing more
generally for vision research because this hardware was very fast
at mathematical operations involved in drawing scenes while
the open nature of the OpenGL specifi cation meant that solu-
tions would be portable to future hardware. The high speed
allowed new possibilities for the display of visual stimuli that
change over time. Dynamic scenes of high complexity, includ-
ing in 3D, could be rendered in realtime, only an instant before
display. This could be done at high update rates without skip-
ping frames, and these video cards could display anything from
simple shapes to naturalistic 3D scenes. The immediate benefi t
for my research was to enable drawing at 200 Hz of perspective-
corrected Gabor wavelets (Straw et al., 2006) and temporally
anti-aliased (so called motion blurred) moving natural images
(Straw et al., 2008). Both of these types of stimuli had been very
diffi cult to implement with the other systems.

OPEN SOURCE SOFTWARE AND PYTHON
Fundamental to the scientifi c process is the repeatability of
measurements. For this reason, open source software should be
preferred in scientifi c applications – this prevents software mis-
takes from becoming hidden in proprietary code, allows others
to learn from and independently reproduce work, and allows a
community approach to solve problems together. As illustrated
by the articles in this issue, Python is becoming a standard high-
level, open source language in neuroscience. Perhaps the most
exciting aspect of the confl uence of tools available in Python is
the possibility of software that incorporates components from
various sources into software with new capabilities. The suit-
ability of Python for drawing visual stimuli is well described in
Peirce (2007), and additional notes are in Section “Timing of
Visual Stimuli: Speed and Latency.” The Vision Egg also makes
use of software for which no Python interface previously existed.
These function calls are written as C extension modules to
Python included with the Vision Egg.

VISION EGG
The aim of this paper is to describe the Vision Egg, an open source
(LPGL license) computer programming library which makes
use of modern hardware accelerated graphics using OpenGL to
generate visual stimuli. One important goal for the project is
to allow non-experts to use modern computer hardware to its
maximum capability for common vision science tasks. A screen-
shot of an included demonstration script showing several of the
visual stimulus possibilities is shown in Figure 1, and source
code to a moving sinusoidal grating is shown in Figure 2.

At the initial development and release of the Vision Egg in
2001–2002, existing software for vision scientists was not able
to take advantage of the capabilities present in the emerging
hardware standards. Now, almost every personal computer
being sold is equipped with graphics hardware suitable for many

Sin Grating 2D (color) Spinning Drum

Vison Egg multi stimulus demo - Press any key to quit

A B C

D E F

put_pixels()

Dot Area 2D Sin Grating 2D (gabor) put_new_framebuffer()

Figure 1 | Screenshot of Vision Egg multi_stim.py demonstration script showing several included visual stimulus types. The dynamic stimuli are
updated in realtime without skipping frames at rates up to the fastest vertical refresh rate of the display tested (200 Hz). Stimuli, are: (A) A circularly windowed
color grating changing in space and color over time. (B) A rotating, perspective distorted drum with a natural panorama used as a texture image. (C) Arbitrary
arrays of RGB data updated on each frame generated from a uniform random distribution. (D) Random dot stimuli with 100 independently moving dots.
(E) A drifting Gaussian windowed sinusoidal grating. (F) A copy of the framebuffer recursively redrawn at smaller scale.

www.frontiersin.org

3

Vision Egg

 experiments. Although more expensive hardware, often designed
with computer games in mind, continues to push the limits of
performance, the modest graphics systems now found in laptops
and some motherboards perform fi ne for many experimental
purposes. Even the creation of artifi cially closed-loop “virtual-
reality” experiments with the Vision Egg is possible with rela-
tively inexpensive hardware (e.g., Fry et al., 2004, 2008) but the
library is also useful for a variety of simpler tasks.

The biggest challenge with such an approach is addressing
potential problems when attempting to produce precisely control-
led stimuli for visual science on hardware which was not explicitly
designed for the task. The remainder of this paper describes the
implementation of the Vision Egg, some experiments to charac-
terize its performance, a discussion of it in relation to other visual
stimulus technologies, and some potential future directions.

LOW-LEVEL HARDWARE AND SOFTWARE OVERVIEW
HARDWARE
This section presents a brief review of modern computer archi-
tecture from a hardware perspective for drawing visual stimuli.
Applications run on the CPU of the host computer, though which
they manipulate the memory, video system, and other devices
of the computer. Video cards have onboard graphics processors
(GPUs) that are faster than CPUs at pushing pixels. By shifting
the majority of the drawing work onto the video card, the role
of the CPU can be limited to directing the powerful GPU. To
render a complicated 3D scene, for example, the CPU computes
a wireframe model that is transmitted, along with rasterization
instructions such as texture images and coordinates, to the video
card. This communication is specifi ed by OpenGL, which hides
the hardware level details such as transmission of data across the
computer bus. The GPU renders this image to a framebuffer,
which is then read out either by a high-speed digital to analog
converter (RAMDAC) or a digital transmitter (e.g., DVI, HDMI,
and Display Port). Luminance and color information is limited in
typical framebuffers because they store 8 bits per color per pixel,
or 2563 values of red, green, and blue each for a total of 2563 (16.6

million) possible colors. The RAMDAC converts these digital val-
ues to an analog voltage after passing them through a color lookup
table, which can be used to correct non-linearities the display
process such as gamma (see Section “Precise Control of Color and
Luminance: Results of Luminance Calibration”). Recently, manu-
facturers have been increasing the precision of the lookup tables
in the RAMDAC, and although many 8 bit per color RAMDACs
are still available, 10 bit cards are becoming more common.
Furthermore, some higher-end cards have 10 bit framebuffers.

DRAWING IN OpenGL
The Vision Egg scripts enter a loop which draws a new frame
on each cycle. Often each frame can be drawn completely from
scratch, allowing realtime control of stimuli or simply to elimi-
nate a common brute force approach of pre-rendering several
frames and then displaying them sequentially. Furthermore,
the frame skips do not lead to cumulative error if each frame is
drawn in realtime based on an accurate clock time. In an OpenGL
system, a double buffering technique is used, meaning that new
frames are rendered to the back framebuffer while the RAMDAC
draws the contents of the front buffer to the display. Due to this
double buffering, partially completed frames are not drawn to
the screen. When fi nished rendering to the back framebuffer, the
application informs the graphics system to use the back buffer
as the source of data for the RAMDAC. Thus, the front and back
buffers are swapped (with an OpenGL flip() or Vision Egg
swap_buffers() function call) and drawing continues on the
new back buffer. In the so-called vsync (vertical sync) mode, the
buffer swap is synchronized to occur only between frame draws
by the display, and thus no “tearing” artifacts are present. With
small displacements between individual frames, however, tearing
is minimal without using vertical sync. Regardless of vsync mode,
the main loop OpenGL delays execution of the program until the
buffer swap command is sent to the video hardware.

A member of the Vision Egg community has performed exten-
sive testing on the latencies associated with drawing in OpenGL
(Sol Simpson, SR Research, personal communication), which are

A B

Figure 2 | Source code of simple Vision Egg program to draw a moving sinusoidal grating illustrating a simple but complete program. Two means of
controlling the fl ow of execution are available, as described in Section “Mid-level Software Overview: Controlling Program Flow.” (A) Program fl ow is controlled
by the Vision Egg’s Presentation class. (B) Program fl ow is explicitly specifi ed within the script.

Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

4

Straw

in agreement with my personal observations and more limited
testing. His tests show that even with vsync on, the actual call
to swap_buffers() acts in an asynchronous manner when no
buffer swaps are pending, but begins blocking when another swap
is scheduled. In other words, the fi rst call to swap_buffers()
will return immediately and the graphics card is instructed to
swap buffers during the next vertical retrace. However, if another
call to swap_buffers() is issued before the retrace occurs, this
call is blocked (does not return) until the fi rst scheduled buffer
swap happens. Thus, a program which paces itself via returning
from blocked calls to swap_buffers() will always be drawing
frames which will be drawn not on the next buffer swap, but on
the second buffer swap.

Thus, if a program calls swap_buffers() less than once per
retrace interval, then the swap_buffers() call is not blocked
and returns right away and not necessarily at the start of a
retrace. In this case, one does not see a constant 1 retrace inter-
val delay. Instead, one will see a variable delay (the time between
when swap_buffers() returns and when the display is actu-
ally updated), with a duration up to the retrace interval depend-
ing on when swap_buffers() was called.

This suggests that one cannot not rely on when swap_
 buffers() returns to determine when the fl ip actually occurs and
instead should use a combination of swap_buffers() followed
by some code that actually waits until, or determines, the start of
the next retrace. The Vision Egg currently provides such a func-
tion for Windows (see Section “Low-level Hardware and Software
Overview: Detecting Retrace Events and Refresh Rates”). The same
results are found with the Vision Egg, pure C OpenGL and with
SDL when using the DirectX backend on ATI and nVIDIA graph-
ics cards (Sol Simpson, SR Research, personal communication).

Due to the intricacies of the above latency issue when vsync is
on and the lack of a way to detect retrace events on all supported
platforms, the Vision Egg currently (up to and including 1.1.1)
simply assumes that frames are drawn when swap_buffers()
returns. This gives an accurate estimate of whether refresh inter-
vals were skipped and consequently a frame was not updated, but
results in latency increased by one refresh interval.

Recent video cards (e.g., nVIDIA GeForce 8500 GT with
the Forceware version 163.71 driver on Windows XP) support
“triple buffering.” In this mode, there are two back buffers that
are alternately drawn upon, and the most recently completed
buffer is used at the start of display of a new frame to the screen.
Although I have not tested this technique, it theoretically allows
near-minimal latencies without tearing artifacts or diffi cult pro-
gramming involving refresh detection.

OPERATING SYSTEMS
The Vision Egg runs on any platform which supports Python
and OpenGL. It is known to run on Microsoft Windows (95,
2000, and XP), GNU/Linux with kernels 2.4 and 2.6 (Ubuntu,
Redhat, Debian), Mac OS X and SGI IRIX. All of these are pre-
emptive multitasking operating systems, with important rami-
fi cations described in section “Timing of Visual Stimuli: Speed
and Latency.”

DETECTING RETRACE EVENTS AND REFRESH RATES
The Vision Egg offers some platform-dependent features. One
of these is the ability to detect or wait for a vertical retrace event.
This is implemented according to the method of Riemersma
(2000) and implemented in the Win32_vretrace.pyx fi le.
Furthermore, the refresh rate can be detected on Windows and

Mac OS X as implemented in the win32_getrefresh.c and
darwin_getrefresh.m fi les. Unfortunately, the Vision Egg
does not currently allow the user to set the refresh rate.

MAXIMUM PRIORITY MODE
Operating systems typically have means to boost the priority
of some processes above that of other processes. The details are
specifi c to each platform, but the Vision Egg includes support for
raising priority on Windows via the SetPriorityClass() and
SetThreadPriority() functions, on POSIX systems (such
as Linux) via the sched_setscheduler() and mlockall()
functions, and on Mac OS X via the thread_policy_set(),
setpriority() and pthread_setschedparam() functions.
On Mac OS X, these function calls tell the kernel’s realtime
scheduler to grant programs a periodic time slice from the CPU,
which theoretically might give hard realtime performance (guar-
anteed latency), but practically is limited by the issues described
in Section “Timing of Visual Stimuli: Speed and Latency.”

MID-LEVEL SOFTWARE OVERVIEW
DISPLAY OF STIMULI
The Vision Egg has methods to draw a wide variety of stimulus
types. These stimuli operate within defi ned guidelines so that
they only modify certain values of the OpenGL state machine,
but leave all other values unchanged. In this way, multiple stim-
uli can be combined simultaneously, as in Figure 1. Both 2D and
3D stimuli are available. 2D stimuli commonly use an ortho-
graphic projection such that coordinates are specifi ed in pixel
units. Perspective projections can be used for 3D stimuli such
that a calibrated projection will provide an accurate representa-
tion of object shapes when viewed on a fl at display (e.g., Kern
et al., 2001; Straw et al., 2006). Included with the Vision Egg are
routines for drawing luminance sinusoidal gratings (2D or 3D,
with or without contrast windows, which can be circular or ani-
sotropic Gaussian in shape), color sinusoidal gratings, random
dot stimuli, arbitrary image fi les, arbitrary numeric array data,
QuickTime movies, MPEG movies, a spinning 3D drum with a
textured image, rectangles and fi xation points.

Many features of OpenGL are supported, including realtime
resampling of the texture image data using linear interpolation
and use of mipmapped textures generated with bicubic interpo-
lation (or other means). These features allow display of slowly
moving images without quantization of other systems where
pixel-by-pixel steps must be made in integer multiples of the
inter-frame interval. Other features, such as realtime lighting
and shadows, are not currently implemented.

USER INTERACTION AND ALTERNATIVE SOURCES OF INPUT
User interaction, such as handling of keystrokes, mouse clicks,
and joysticks can occur within the main loop of a Vision Egg
program by using the pygame library. Additionally, because
the Vision Egg is written in Python and can be easily extended
with C, there are many potential sources of external input. For
example, the UDP network protocol is frequently used in online
computer games for low latency network communication and
can be used for realtime control of visual stimuli from an exter-
nal program. In this manner, a Vision Egg script may be written
which is controlled from a data acquisition environment written
in Python, Lab View, or MATLAB. The TCP network protocol,
although slower than UDP, offers built-in error checking and
correction, and has been used to provide realtime input for the
Vision Egg (Fry et al., 2004, 2008).

www.frontiersin.org

5

Vision Egg

CONTROLLING PROGRAM FLOW
The Vision Egg offers two ways of program fl ow control. The
most conceptually simple of these is to let the programmer spec-
ify what happens on every frame, as illustrated in Figure 2B.

Because the Vision Egg was originally developed for stud-
ies in which controlling motion adaptation was critical, I paid
careful attention to issues such as allowing a stimulus to con-
tinue moving while not in an experimental trial. The result is the
programmer relinquishes control by entering the go() method
of the Presentation class, as defi ned in the VisionEgg.
FlowControl module, as in Figure 2A. This is the concept of a
go loop, which usually corresponds to the experimental trial, and
the concept of refreshing stimuli between go loops. Any function
calls or stimulus updates not automatically performed by the
Vision Egg must be implemented by means of Controllers,
which are implementations of callback functions. Such a main-
loop-and-callback style of programming is common in GUI pro-
gramming. For example, the WX Widgets toolkit and the Mac
OS X Cocoa libraries operate this way.

HIGH-LEVEL SOFTWARE OVERVIEW
SPECIFYING GRAPHICS STATE
A confi guration GUI (Figure 3) can optionally be called at the
beginning of any Vision Egg script. Although all options are
available from the programmatic interface, it is often conven-
ient to see and edit these parameters through this interface.
Particularly important are the options for loading the color

lookup tables to perform gamma correction as illustrated in
Section “Precise Control of Color and Luminance: Results of
Luminance Calibration.”

AN APPLICATION FOR ELECTROPHYSIOLOGY
The Vision Egg includes two applications for integration within
an electrophysiology environment (see Figure 4). The fi rst is
ephys_server.py, which draws stimuli on its video hardware.
To minimize the possibility of frame skipping, this program may
run as the sole application on a dedicated stimulus computer.
This server program listens on a network port for a connection
from the ephys_gui.pyw program, which offers a GUI for the
experimenter to control.

THE QUEST ALGORITHM
A pure Python implementation of Watson and Pelli’s (1983)
QUEST algorithm is available from the Vision Egg website. This
well-known Bayesian adaptive method allows estimating psycho-
metric thresholds, and was translated directly from the MATLAB
code of Denis G. Pelli, who graciously allowed redistribution of
the Python version under an open-source BSD license.

QuickTime AND MPEG MOVIES
The Vision Egg includes support to decode movies and send
them to OpenGL by using Apple’s QuickTime API on Windows
and Mac OS X and py game/SDL’s Movie objects on all sup-
ported operating systems.

Figure 3 | Screenshot of the standard Vision Egg confi guration GUI. Numerous options for confi guration are available, including framebuffer size and bit
depth, color lookup tables for gamma correction and platform-dependent realtime priority, as described in Section “High-level Software Overview: Specifying
Graphics State.”

Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

6

Straw

TIMING OF VISUAL STIMULI
METHODS TO MEASURE LATENCY
This section contains the results of experiments in which the
total latency of the system, from input to output, was measured.
Because it is diffi cult to measure the precise time of events hap-
pening inside and outside a computer on the same clock (or syn-
chronized clocks), a task was chosen in which only a single time
reference was necessary. The task was to measure the duration
for a USB mouse movement to be translated into the movement
of a rectangle drawn on the screen, both of which were fi lmed
with a high speed video camera and later analyzed. The latencies
measured in this task should be comparable to the latencies of
other input–output tasks.

An LED was rigidly fi xed to each computer mouse (Logitech
MX-300 USB and Dell DEL1 Optical USB). The mouse was
connected to a USB port on the motherboard of the compu-
ter (Acer Aspire T690 with Intel ICH7 chipset including USB2
EHCI and USB UHCI controllers). A PCI-Express xl6 video card
(nVIDIA GeForce 8500 GT) was connected to a CRT monitor
(Iiyama Vision Master 450) using a VGA cable. The display was
set to a resolution of 800 × 600 at 140 Hz update rate using the
nVIDIA control panel (Forceware version 163.71) on Windows
XP Service Pack 2 and confi rmed by using the monitor’s on
screen display.

The Vision Egg version 1.1.1 was used to draw a 3 × 3 pixel
white square using the Target2D class on a Screen with a
black background color in a way that it acted as a mouse cursor.
The position of the mouse controlled the position of this small
square using a version of the mouseTarget.py demo program
that was simplifi ed to remove the code that set the orientation
of the target.

A high speed digital video camera (Photron Fastcam APX
120) was placed to record the LED and target location on the
screen in the same image frame. Images were acquired at 2000
frames per second while the mouse was rapidly moved back and
forth by hand in a roughly sinusoidal manner (e.g., Figure 5).

Digital images were analyzed to identify the “center of mass” of
the bright areas using the center_of_mass() function of the
scipy.ndimage module. For the on-screen target, this only
occurred approximately every 14th frame due to the discrete
nature of raster scan CRT displays.

SPEED AND LATENCY
Because Python is an interpreted language, programs written in
it will run more slowly than a well-written C program. However,
Python is fast enough for two primary reasons. First, the most
computation-intensive task, manipulation of large data arrays
is performed with high-performance C and FORTRAN code
via the numpy module of Python. Thus, Python code directs
computationally intensive tasks without performing them in
the slower interpreted environment. Second, computer displays
cannot be refreshed beyond their maximum vertical frequency,
which typically ranges up to 200 Hz. This therefore represents
an upper bound on the amount of computation required for
realtime rendering tasks.

In fact, the biggest timing-related concern is unrelated to the
programming language used. A pre-emptive multitasking operat-
ing system may take control of the CPU from the stimulus gen-
erating program for periods longer than an inter-frame interval,
thus leading to skipped frames. Even if the OS takes control of the
CPU from an application for much less than an inter-frame inter-
val, frames may still be skipped if the stimulus generation program
uses a strategy of waiting until the last instant to render a frame
and CPU control is taken at this critical instant. Operating systems
may have some means addressing this issue such as a realtime
scheduler that guarantees uninterrupted CPU time at specifi ed
intervals. The Vision Egg makes use of such facilities where avail-
able (see Section “Low-level Hardware and Software Overview:
Maximum Priority Mode”). Although they can certainly help
eliminate timing issues, such priority- boosting solutions can-
not provide absolute guarantees about timing because OpenGL
implementations themselves may be subject to unpredictable

A B

Figure 4 | Screenshot of electrophysiology-oriented GUI application included with the Vision Egg called ephys.gui.pyw and described in Section
“High-level Software Overview: An Application for Electrophysiology.” (A) Main window shows parameters for repeated presentations of a stimulus with
the possibility of automatically sequencing over variables. All settings can be saved and loaded from disk. (B) The loop parameters window allows control of
experiments.

www.frontiersin.org

7

Vision Egg

behavior and generally are not written to operate in a hard realtime
(in other words, with deterministic latency) manner. For example,
drawing a single additional object may cause the hardware to pass
a critical threshold for memory use and force a slow operation.
A low-level solution which operated in hard realtime would have
to bypass complex OpenGL libraries and implement routines to
draw directly to the framebuffer to guarantee performance.

It is worth noting that because of this unavoidable variable
latency listed above (pre-emptive multitasking operating sys-
tems and OpenGL implementations), the variable latency intro-
duced by use of an interpreted language with garbage collection,
such as Python, does not fundamentally worsen the situation.
In other words, use of Python introduces no fundamental prob-
lem other than that of an additional potential source of variable
latency to that already imposed by the OS and OpenGL.

MEASUREMENTS OF LATENCY
A high speed video camera was used to measure the absolute total
latency between input (a standard USB computer mouse) and
output (the position of a rectangle on the screen), as described
in the methods Section “Timing of Visual Stimuli: Methods to
Measure Latency.” Figure 5 shows that latency can be reduced
to around 15 ms, but that the vsync state plays a very signifi cant
role in total latency (Table 1). On a 140-Hz display (7.1 ms inter-
frame interval), latency jumped by 17 ms or more when vsync was
enabled. This is presumably due to the latency imposed by draw-
ing in the middle of a refresh interval and waiting for that inter-
val to be done combined with the additional latency described in
Section “Low-level Hardware and Software Overview: Drawing in
OpenGL.” Although the results would be interesting, these experi-
ments were not repeated in triple buffering mode.

ONLINE DETECTION OF FRAME SKIPPING
Frame skipping is determined by measuring the interval between
successive buffer swap commands using standard system calls to

query the computers clock. If this value exceeds the known monitor
inter-frame interval, a frame has been skipped. Stimuli generated
by the Vision Egg are routinely presented for hours without skip-
ping a frame when measured this way. The most likely occurrence
of a skipped frame is at the immediate beginning of drawing a
stimulus – presumably when some initialization occurs with the
video system. Often this can be dealt with by initializing the video
system in a non-critical task, such as drawing a black rectangle.

TRIGGER OUTPUT AND INPUT
It is often useful to trigger external hardware when a stimulus
presentation begins. There are several ways to achieve this on typi-
cal personal computers. The parallel port can be used so that a pin
goes from low to high voltage when the fi rst frame of a stimulus is
drawn. The Vision Egg has support for reading and writing to the
parallel port, but because OpenGL operates in an asynchronous
manner (see Section “Low-level Hardware and Software Overview:
Drawing in OpenGL”), the parallel port cannot be updated at the
exact instant the display begins a new frame. Instead, the parallel
port can only be updated before the swap_buffers() command
is given or after it returns. Better accuracy could be obtained by
“arming” the trigger of a data acquisition device immediately
before stimulus onset and triggering from the vertical sync pulse
of a video cable. Ultimate verifi cation can be done with a pho-
todetector on a patch of screen that changes luminance at the
onset of the experiment. This patch-of-screen is implemented in
the ephys_gui.pyw application described in Section “High-level
Software Overview: An Application for Electrophysiology.”

Some hardware used in experiments, such as fMRI machines,
has intrinsic timing requirements and thus it is advantageous for
the Vision Egg to act as a slave and to begin a stimulus upon receiv-
ing a digital pulse. Because of its realtime nature, it is straight-
forward to achieve temporal precision equivalent to the latencies
described in Section “Timing of Visual Stimuli: Measurements of
Latency,” although there might be slight differences in timing due
to use of a parallel port for input rather than a USB mouse.

PRECISE CONTROL OF COLOR AND LUMINANCE
METHODS TO MEASURE LUMINANCE
For the measurements described below, the Vision Egg version
1.0 was running on a dual Athlon 1400 Windows 2000 sys-
tem with an nVIDIA GeForce 4 Ti 4200 graphics card and an

1

1.0

0.5
–20 0 20 40

p
os

iti
on

 (n
or

m
al

iz
ed

)

co
rr

el
at

io
n

0

0

display

sample & hold
interpolate
mouse

100 200

time (msec)

time (msec)

300 400
–1

Figure 5 | Total latency of system, including input from an optical USB
mouse and display on 140 Hz CRT display, can be reduced to about
15 ms, as described in Section “Timing of Visual Stimuli: Measurements
of Latency.” The main panel shows representative data gathered from a high
speed camera of an LED fi xed to a mouse (green line) and a bright spot on
the screen controlled by the mouse (blue dots). Display positions could rea-
sonably be interpolated using a sample-and-hold function (blue solid line) or
linear interpolation (blue dashed line). Inset panel shows cross correlation of
2 s of such data when interpolated. These data were gathered with vsync off
and a Logitech MX-300 USB mouse.

Table 1 | Latency as estimated by the peak of the cross correlation
 between mouse location and displayed point location. Optimistic laten-
cies were estimated using the cross correlation with the linearly interpolated
display positions as plotted in Figure 5 and described in Section “Timing of
Visual Stimuli: Measurements of Latency.” Pessimistic latencies were also
estimated with a cross correlation, but used a sample-and-hold function rather
than linear interpolation to estimate display position.

Vsync Mouse Optimistic latency Pessimistic latency
 (ms) (ms)

Off Logitech MX-300 12.0 16.0
 Optical USB
On Logitech MX-300 35.0 38.5
 Optical USB
Off Dell DEL1 19.5 24.5
 Optical USB
On Dell DEL1 38.0 41.5
 Optical USB

Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

8

Straw

LG Electronics Flatron 915 FT + CRT monitor at a resolution
of 640 × 200 at 200 Hz. Luminance measurements were made
with a silicon photometer (OptiCal with LightScan software by
Cambridge Research Systems, Ltd).

RESULTS OF LUMINANCE CALIBRATION
An 8-bit per color framebuffer allows specifi cation of 256 lumi-
nance levels for each of the three color channels (see Section
“Low-level Hardware and Software Overview: Hardware”). Each
red, green, and blue value is used as an index into the appro-
priate color lookup table, which is used by the RAMDAC to
produce an analog signal. Low contrasts or other effects may
be achieved, even with an 8-bit per color framebuffer, by use of
a 10-bit lookup table. Non-linearities of CRT displays are well
understood (for review, see Brainard et al., 2002) with the most
famous non-linearity being display luminance gamma. The
lookup tables can compensate for this gamma property such
that color specifi ed is linearly proportional to the luminance
produced on the display, and the Vision Egg includes the ability
to calibrate and compensate automatically for this gamma prop-
erty. Finally, some computers have framebuffers with >8 bits per
color. In OpenGL and the Vision Egg, colors are specifi ed as a
fl oating point value between 0.0 and 1.0 so the same program
benefi ts immediately from the improved hardware.

Photometric luminance measurements of the display made
with full screen color values are shown in Figure 6. The most
well known of the non-linearities of video displays is character-
ized by the gamma function

L = kpγ, (1)

with L being luminance (in cd/m2), k being a scaling constant,
p being the color value specifi ed to OpenGL for each of the red,

green, and blue components of the screen, and gamma γ. In the
example shown, the uncalibrated display system had γ = 2.1. By
loading the appropriate values in the color lookup tables, a lin-
ear relation between specifi ed color value and luminance output
was achieved, with γ = 1.0.

DISCUSSION
IMPACT OF THE VISION EGG
Although usage for open source software is notoriously diffi cult
to estimate, the number of downloads of the Vision Egg from
SourceForge.net since the fi rst release (November 2001) totals
over 15,000. Another estimate is the number of papers citing use
of the Vision Egg. To date, the total listed at the website is 14. The
University of Bielefeld, Germany and the University of Adelaide,
Australia have used the Vision Egg in undergraduate courses
(Bart Geurten and David O’Carroll, personal communication).

Other software uses or incorporates the Vision Egg. For
example, in this issue, (Spacek and Swindale, 2008), describe use
of the Vision Egg as part of a system for high-throughput elec-
trophysiology. Python based extensions called BCPy2000 to the
large project BCI2000, a general-purpose system for brain–com-
puter interface (BCI) research, allow customizable experiment
design using the Python scripting language (Schreiner, 2008;
Jeremy Hill, personal communication). SR Research developed
Pylink to interface their eye tracker to Python-based software,
such as the Vision Egg, and they ship a Vision Egg based example
to demonstrate gaze contingent control of a moving gradient.

Finally, perhaps the greatest impact of software packages
such as the Vision Egg has simply been as a proof of concept that
using OpenGL and Python for creating visual stimuli is possi-
ble. Several people have told me that they looked at the Vision
Egg to see how something was done and then re-implemented it
themselves. Such a spread of ideas is one of the benefi ts of open
source, although the diversity of similar but different solutions
can also be a challenge, particularly for those attempting to pick
a solution without investing too much in an evaluation process.

COMPARISON TO SIMILAR OPEN SOURCE SOFTWARE
PsychoPy is another Python-based open source visual stimulus
system (BSD license). The author, Peirce (2007) says, “For a good
programmer, Vision Egg achieves its goals very well, provid-
ing a powerful and highly optimized system for visual stimulus
presentation and interactions with hardware (including the abil-
ity to run experiments remotely across a network). Straw does,
however, adhere very strongly to an object-oriented model of
programming which can be harder for relatively inexperienced
programmers, like most scientists, to understand. For instance,
the temporal control of experiments in Vision Egg is predomi-
nantly though the use of presentation loops, whereby the user
sets an object to run for a given length of time, attaches stimuli
to it, attaches it to a screen and then tells it to go.” I believe the
criticism is directed not so much toward object oriented pro-
gramming (which is also employed at a fundamental level within
PsychoPy) but rather Peirce’s concern is with the mainloop-
and-callback mechanism of fl ow control described in Section
“Mid-level Software Overview: Controlling Program Flow.” As
mentioned in that section, and demonstrated in Figure 2, this
is only optional, and the user may also maintain full control of
program execution. Nevertheless, in the early development of the
Vision Egg, this mainloop-and-callback style was present in all the
demonstration scripts, and was intrinsic to the electrophysiology

120
measurement after correction
fit (k = 103.2, γ = 1.0)

measurement before correction

Lu
m

in
an

ce
 (L

, c
d

/m
2)

fit (k = 102.9, γ = 2.1)
100

80

60

40

20

0

0.0 0.2 0.4

OpenGL R,G,B color values (p)

0.6 0.8 1.0

Figure 6 | Luminance output of a CRT display is made linear with respect
to commanded pixel value. Color values specifi ed in OpenGL units produce
non-linear luminance relationship on an uncorrected display (red circles), but
a corrected display has a linear relationship between specifi ed and actual
luminance (blue crosses). Lines are linear least squares fi ts to Eq. 1, Section
“Precise Control of Color and Luminance: Results of Luminance Calibration,”
with coeffi cients given in the legend.

www.frontiersin.org

9

Vision Egg

With the continued increase in power of conventional con-
sumer graphics hardware, the use of such systems for vision
science experiments will continue to become more common.
This paper described a visual stimulus generation system that
utilizes such hardware and addresses critical calibration issues
in the luminance and time domains. Of course, such calibration
also depends on the display device, which also has temporal,
spatial, spectral, and polarization properties that need to be
accounted for.

With powerful stimulus generation software and video cards
now available, the greatest challenge of producing visual stim-
uli may now be fi nding an appropriate physical display device.
CRTs are well understood (Bach et al., 1997; Brainard et al., 2002;
Cowan, 1995) and would remain a popular stimulus presentation
device, but are becoming increasingly more diffi cult to acquire as
their production stops. LCD and DLP based devices are useful
for many experiments (Packer et al., 2001). Finally, custom built
LED devices may be constructed to address many issues faced
with standard commercial technology (Lindemann et al., 2003;
Reiser and Dickinson, 2008). Regardless of display technology, if
the display device accepts standard inputs (e.g., VGA or DVI), a
modular approach to stimulus generation may be used, and stim-
ulus generation software such as the Vision Egg may be used.

CONFLICT OF INTEREST STATEMENT
The author declares that the research was conducted in the
absence of any commercial or fi nancial relationships that could
be construed as a potential confl ict of interest.

ACKNOWLEDGEMENTS
I thank David O’Carroll for many discussions about, much feed-
back on, and an environment in which to create the Vision Egg.
Many others have contributed to the Vision Egg over the years with
bug reports and code submissions. Sol Simpson of SR Research,
in particular, helped elucidate the latency issue described in
Section “Low-level Hardware and Software Overview: Drawing
in OpenGL.” Silicon Graphics, Inc. provided a loan of a high
performance workstation. Thanks to Michael Dickinson for use
of the high speed video camera. Work was partially supported
by a Predoctoral fellowship from the Howard Hughes Medial
Institute, who also graciously allowed a leave of absence to work
for a summer in private industry, where I learned enough about
realtime graphics to create the Vision Egg.

REFERENCES
Bach, M., Meigen, T., and Strasburger, H. (1997). Raster-scan cathode-ray tubes

for vision research – limits of resolution in space, time and intensity, and
some solutions. Spat. Vis. 10, 403–414.

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436.
Brainard, D. H., Pelli, D. G., and Robson, T. (2002). Display characterization. In

Encyclopedia of Imaging Science and Technology, J. Hornak, ed. (New York,
NY, Wiley), pp. 172–188.

Cowan, W. B. (1995). Displays for vision research. In Handbook of Optics, Vol. 1:
Fundamentals, Techniques, and Design, M. Bass, ed. (New York, NY, McGraw-
Hill), pp. 27.21–27.44.

Fry, S. N., Müller, P., Baumann, H. J., Straw, A. D., Bichsel, M., and Robert, D.
(2004). Context-dependent stimulus presentation to freely moving animals
in 3d. J. Neurosci. Methods 135, 149–157.

Fry, S. N., Rohrseitz, N., Straw, A. D., and Dickinson, M. H. (2008). TrackFly: vir-
tual reality for a behavioral system analysis in free-fl ying fruit fl ies. J. Neurosci.
Methods 171, 110–117.

Kern, R., Lutterklas, M., Petereit, C., Lindemann, J. P., and Egelhaaf, M. (2001).
Neuronal processing of behaviourally generated optic fl ow: experiments and
model simulations. Netw. Comput. Neural Syst. 12, 351–369.

applications envisioned, like that of Section “High-level Software
View: An Application for Electrophysiology.” Indeed, it was a
response to my own diffi culties implementing psychophysics
experiments with this style that I wrote demo scripts with their
own fl ow control and began documenting the possibility.

Apart from the differences mentioned above in the style of
programming, the most substantive differences today between
the Vision Egg and PsychoPy are that the Vision Egg offers
relatively simple perspective corrected stimuli utilizing the 3D
nature of OpenGL, while PsychoPy has an automated luminance
calibration utility and interfaces with Bits++ from Cambridge
Research Systems, Ltd. Furthermore, the primary development
platform of the Vision Egg is GNU/Linux, while it appears to be
Windows for PsychoPy.

The Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)
has evolved greatly since the situation described in Section
“Introduction: Historical Context.” There is a large overlap
between the possibilities offered by the PsychToolbox and the
Vision Egg. Although the PsychToolbox is now offi cially open
source (GNU GPL license), the main language of implementa-
tion is MATLAB, a proprietary application. Thus, its appeal as
an open source solution is limited. Nevertheless, a core devel-
oper, Mario Kleiner, tests PsychToolbox functions with Octave,
an open-source MATLAB clone, and many useful functions are
implemented in C and could be used from environments other
than MATLAB. Due to its heritage, most of the demonstration
scripts for the PsychToolbox use pre-rendered stimuli, but it is
now capable of using OpenGL and generating complex stimuli
in realtime.

For another comparison between Vision Egg, PsychoPy, and
the PsychToolbox, see Peirce (2007).

TOWARD A DATABASE OF VISUAL STIMULI
An online database of scripts to generate stimuli used in vis-
ual neuroscience would be useful for realizing the benefi ts of
open-source software described in Section “Introduction: Open
Source Software and Python.” Other databases, such as of neu-
ronal models (e.g., ModelDB and NeuronDB), biochemical
reaction networks (e.g., SBML), and so on are proving useful in
their fi elds. For visual neuroscience, Viperlib, an online visual
perception library, might be a natural host for such a database
of stimulus scripts for experiments. First, however, some serious
technical issues must be solved. Although libraries like the Vision
Egg and PsychoPy make it relatively easy to generate visual stim-
uli in a free way that is theoretically hardware independent, the
issues of framerate, display luminance and position calibration,
and synchronization with data acquisition and other hardware
would all need to be addressed. Nevertheless, the availability of
open source libraries and a number of publications based on
them means that such endeavor could already be started.

CONCLUSION
The Vision Egg is a free and open-source programming library
that allows scientists to produce arbitrary visual stimuli. Such
stimuli can be specifi ed in realtime without skipping frames,
may involve traditional stimuli such as sinusoidal gratings, or
may be more complex, 3D, and naturalistic scenes. Features
such as perspective correction and realtime interpolation of
image data for sub-pixel movement are part of OpenGL and
thus occur in realtime at little or no extra programming or
computational cost.

Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

10

Straw

Lindemann, J. P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J. H., and Egelhaaf,
M. (2003). Flimax, a novel stimulus device for panoramic and highspeed
presentation of behaviourally generated optic fl ow. Vis. Res. 43, 779–791.

Packer, O., Diller, L. C., Verweij, J., Lee, B. B., Pokorny, J., Williams, D. R., Dacey,
D. M., and Brainard, D. H. (2001). Characterization and use of a digital light
projector for vision research. Vis. Res. 41, 427–439.

Peirce, J. W. (2007). PsychoPy – psychophysics software in python. J. Neurosci.
Methods 162, 8–13.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: trans-
forming numbers into movies. Spat. Vis. 10, 437–442.

Reiser, M. B., and Dickinson, M. H. (2008). A modular display system for insect
behavioral neuroscience. J. Neurosci. Methods 167, 127–139.

Riemersma, T. (2000). Detecting vertical retrace. Windows Dev. J. 11.
Schreiner, T. (2008). Development and Application of a Python Scripting

Framework for bci2000. Thesis, Universität Tübingen.
Spacek, M., and Swindale, N. (2008). Python for high-throughput electrophysiol-

ogy. Front. Neuroinform.
Straw, A. D., Rainsford, T., and O’Carroll, D. C. (2008). Contrast sensitivity of

insect motion detectors to natural images. J. Vis. 8, 1–9.
Straw, A. D., Warrant, E. J., and O’Carroll, D. C. (2006). A bright zone in male

hoverfl y (Eristalis tenax) eyes and associated faster motion detection and
increased contrast sensitivity. J. Exp. Biol. 209, 4339–4354.

Watson, A. B., and Pelli, D. G. (1983). QUEST: a Bayesian adaptive psychometric
method. Percept. Psychophys. 33, 113–120.

