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Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional 
sinusoidal gratings to naturalistic 3D scenes can now be specifi ed on a frame-by-frame basis in realtime. A programming library called 
the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use 
of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance 
and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital 
triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral 
experiments. This software is available for free download at visionegg.org.
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INTRODUCTION
A neuroscientist may need precisely defi ned spatial, temporal, 
spectral, and polarization properties of light to perform a par-
ticular visual experiment. Standard computer monitors and 
projectors are capable of producing a wide range of stimuli suf-
fi cient for many experiments, and special purpose displays may 
be built or purchased with a standard interface. A tool which 
produces precisely controlled signals from a video port (such as 
VGA) is therefore of great utility. This paper outlines the Vision 
Egg, a programming library developed to serve as such a tool 
in combination with a standard computer and other software 
libraries.

HISTORICAL CONTEXT
A brief outline of the display systems with the most impact on 
the design of the Vision Egg follows.

In the 1980s and 1990s, vision scientists frequently displayed 
their stimuli on a Tec-tronix 608 display, a small (∼12 cm diago-
nal) cathode ray tube with independent X,Y and luminance 
inputs originally intended for use in a high-bandwidth analog 
oscilloscope. However, instead of using it as an oscilloscope dis-
play, vision scientists often controlled the 608 with an Innisfree 
Picasso device, a specialized function generator that creates 

a raster scan of X,Y positions and modulates luminance to 
 produce a variety of simple stimuli such as sinusoidal gratings 
and rectangles. Many scientists found the Picasso wonderfully 
easy to use, as its intuitive interface with a myriad of switches 
and potentiometers allowed rapid experimentation until a suit-
able stimulus was found. Furthermore, by providing BNC con-
nections for voltage inputs, time-varying stimuli could be driven 
via analog outputs from the same data acquisition system being 
used to record responses, simplifying experimental design. The 
main limitations of the Picasso are essential to its design as a 
specialized function generator – namely that it is tied to a spe-
cifi c (and now rare) display device, and that the range of stimuli 
it could produce were limited.

Computers provide the ability to produce arbitrary visual 
stimuli, but with a new set of limitations. Early systems devel-
oped in the 1990s required no specialized hardware but could 
only draw pre-rendered stimuli and movies (e.g., early releases 
of the PsychToolbox: Brainard, 1997; Pelli, 1997) or were lim-
ited to simple stimuli and required extensive programming and 
debugging in low-level C (e.g., John Maunsell’s custom LabLib). 
These systems achieved frame-by-frame temporal precision by 
operating within a cooperative multitasking operating system 
such as Mac OS (prior to Mac OS X) and running at interrupt 
time. Under such conditions, the underlying OS would not 
preempt a program’s use of the CPU or other resources. With 
the rise of pre-emptive multitasking operating systems such as 
Windows 95, GNU/Linux, and Mac OS X, such an approach to 
precise timing was no longer guaranteed. Another issue, which 
persists today, is that the general-purpose nature of display 
hardware meant that producing stimuli with a large dynamic 
range of contrast can be diffi cult.

Custom hardware solutions, such as the Cambridge Research 
Systems’ VSG 2/3F, addressed the issues of precise timing and 
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dynamic range through the use of special purpose processing 
units and digital to analog converters isolated from the main 
computer system on a PCI card. Programs would execute 
onboard these cards independently from the host operating 
system, bypassing the issues outlined above. Such cards were 
expensive, however, often costing fi ve or more times the price 
of the host computer itself, with additional RAM costing still 
more. Additionally, programming the VSG 2/3F involved either 
using a script language with limited performance or a low-level, 
assembly-like language specifi c to the processing unit onboard 
the card.

By the year 2000, OpenGL, a library to abstract standard 
graphics hardware, was being used for realtime generation of 
3D graphics on broadcast television without skipping frames. 
I was encouraged to try a similar approach for my own experi-
ments on the visual system of fl ies, where the ability to use 3D 
video acceleration hardware was appealing because it meant that 
wide-fi eld stimuli could be accurate across displays subtending 
very large angles. Such graphics hardware was appealing more 
generally for vision research because this hardware was very fast 
at mathematical operations involved in drawing scenes while 
the open nature of the OpenGL specifi cation meant that solu-
tions would be portable to future hardware. The high speed 
allowed new possibilities for the display of visual stimuli that 
change over time. Dynamic scenes of high complexity, includ-
ing in 3D, could be rendered in realtime, only an instant before 
display. This could be done at high update rates without skip-
ping frames, and these video cards could display anything from 
simple shapes to naturalistic 3D scenes. The immediate benefi t 
for my research was to enable drawing at 200 Hz of perspective-
corrected Gabor wavelets (Straw et al., 2006) and temporally 
anti-aliased (so called motion blurred) moving natural images 
(Straw et al., 2008). Both of these types of stimuli had been very 
diffi cult to implement with the other systems.

OPEN SOURCE SOFTWARE AND PYTHON
Fundamental to the scientifi c process is the repeatability of 
measurements. For this reason, open source software should be 
preferred in scientifi c applications – this prevents software mis-
takes from becoming hidden in proprietary code, allows others 
to learn from and independently reproduce work, and allows a 
community approach to solve problems together. As illustrated 
by the articles in this issue, Python is becoming a standard high-
level, open source language in neuroscience. Perhaps the most 
exciting aspect of the confl uence of tools available in Python is 
the possibility of software that incorporates components from 
various sources into software with new capabilities. The suit-
ability of Python for drawing visual stimuli is well described in 
Peirce (2007), and additional notes are in Section “Timing of 
Visual Stimuli: Speed and Latency.” The Vision Egg also makes 
use of software for which no Python interface previously existed. 
These function calls are written as C extension modules to 
Python included with the Vision Egg.

VISION EGG
The aim of this paper is to describe the Vision Egg, an open source 
(LPGL license) computer programming library which makes 
use of modern hardware accelerated graphics using OpenGL to 
generate visual stimuli. One important goal for the project is 
to allow non-experts to use modern computer hardware to its 
maximum capability for common vision science tasks. A screen-
shot of an included demonstration script showing several of the 
visual stimulus possibilities is shown in Figure 1, and source 
code to a moving sinusoidal grating is shown in Figure 2.

At the initial development and release of the Vision Egg in 
2001–2002, existing software for vision scientists was not able 
to take advantage of the capabilities present in the emerging 
hardware standards. Now, almost every personal computer 
being sold is equipped with graphics hardware suitable for many 

Sin Grating 2D (color) Spinning Drum

Vison Egg multi stimulus demo - Press any key to quit

A B C

D E F

put_pixels()

Dot Area 2D Sin Grating 2D (gabor) put_new_framebuffer()

Figure 1 | Screenshot of Vision Egg multi_stim.py demonstration script showing several included visual stimulus types. The dynamic stimuli are 
updated in realtime without skipping frames at rates up to the fastest vertical refresh rate of the display tested (200 Hz). Stimuli, are: (A) A circularly windowed 
color grating changing in space and color over time. (B) A rotating, perspective distorted drum with a natural panorama used as a texture image. (C) Arbitrary 
arrays of RGB data updated on each frame generated from a uniform random distribution. (D) Random dot stimuli with 100 independently moving dots. 
(E) A drifting Gaussian windowed sinusoidal grating. (F) A copy of the framebuffer recursively redrawn at smaller scale. 
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 experiments. Although more expensive hardware, often designed 
with computer games in mind, continues to push the limits of 
performance, the modest graphics systems now found in laptops 
and some motherboards perform fi ne for many experimental 
purposes. Even the creation of artifi cially closed-loop “virtual-
reality” experiments with the Vision Egg is possible with rela-
tively inexpensive hardware (e.g., Fry et al., 2004, 2008) but the 
library is also useful for a variety of simpler tasks.

The biggest challenge with such an approach is addressing 
potential problems when attempting to produce precisely control-
led stimuli for visual science on hardware which was not explicitly 
designed for the task. The remainder of this paper describes the 
implementation of the Vision Egg, some experiments to charac-
terize its performance, a discussion of it in relation to other visual 
stimulus technologies, and some potential future directions.

LOW-LEVEL HARDWARE AND SOFTWARE OVERVIEW
HARDWARE
This section presents a brief review of modern computer archi-
tecture from a hardware perspective for drawing visual stimuli. 
Applications run on the CPU of the host computer, though which 
they manipulate the memory, video system, and other devices 
of the computer. Video cards have onboard graphics processors 
(GPUs) that are faster than CPUs at pushing pixels. By shifting 
the majority of the drawing work onto the video card, the role 
of the CPU can be limited to directing the powerful GPU. To 
render a complicated 3D scene, for example, the CPU computes 
a wireframe model that is transmitted, along with rasterization 
instructions such as texture images and coordinates, to the video 
card. This communication is specifi ed by OpenGL, which hides 
the hardware level details such as transmission of data across the 
computer bus. The GPU renders this image to a framebuffer, 
which is then read out either by a high-speed digital to analog 
converter (RAMDAC) or a digital transmitter (e.g., DVI, HDMI, 
and Display Port). Luminance and color information is limited in 
typical framebuffers because they store 8 bits per color per pixel, 
or 2563 values of red, green, and blue each for a total of 2563 (16.6 

million) possible colors. The RAMDAC converts these digital val-
ues to an analog voltage after passing them through a color lookup 
table, which can be used to correct non-linearities the display 
process such as gamma (see Section “Precise Control of Color and 
Luminance: Results of Luminance Calibration”). Recently, manu-
facturers have been increasing the precision of the lookup tables 
in the RAMDAC, and although many 8 bit per color RAMDACs 
are still available, 10 bit cards are becoming more common. 
Furthermore, some higher-end cards have 10 bit framebuffers.

DRAWING IN OpenGL
The Vision Egg scripts enter a loop which draws a new frame 
on each cycle. Often each frame can be drawn completely from 
scratch, allowing realtime control of stimuli or simply to elimi-
nate a common brute force approach of pre-rendering several 
frames and then displaying them sequentially. Furthermore, 
the frame skips do not lead to cumulative error if each frame is 
drawn in realtime based on an accurate clock time. In an OpenGL 
system, a double buffering technique is used, meaning that new 
frames are rendered to the back framebuffer while the RAMDAC 
draws the contents of the front buffer to the display. Due to this 
double buffering, partially completed frames are not drawn to 
the screen. When fi nished rendering to the back framebuffer, the 
application informs the graphics system to use the back buffer 
as the source of data for the RAMDAC. Thus, the front and back 
buffers are swapped (with an OpenGL flip() or Vision Egg 
swap_buffers() function call) and drawing continues on the 
new back buffer. In the so-called vsync (vertical sync) mode, the 
buffer swap is synchronized to occur only between frame draws 
by the display, and thus no “tearing” artifacts are present. With 
small displacements between individual frames, however, tearing 
is minimal without using vertical sync. Regardless of vsync mode, 
the main loop OpenGL delays execution of the program until the 
buffer swap command is sent to the video hardware.

A member of the Vision Egg community has performed exten-
sive testing on the latencies associated with drawing in OpenGL 
(Sol Simpson, SR Research, personal communication), which are 

A B

Figure 2 | Source code of simple Vision Egg program to draw a moving sinusoidal grating illustrating a simple but complete program. Two means of 
controlling the fl ow of execution are available, as described in Section “Mid-level Software Overview: Controlling Program Flow.” (A) Program fl ow is controlled 
by the Vision Egg’s Presentation class. (B) Program fl ow is explicitly specifi ed within the script.
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in agreement with my personal observations and more limited 
testing. His tests show that even with vsync on, the actual call 
to swap_buffers() acts in an asynchronous manner when no 
buffer swaps are pending, but begins blocking when another swap 
is scheduled. In other words, the fi rst call to swap_buffers() 
will return immediately and the graphics card is instructed to 
swap buffers during the next vertical retrace. However, if another 
call to swap_buffers() is issued before the retrace occurs, this 
call is blocked (does not return) until the fi rst scheduled buffer 
swap happens. Thus, a program which paces itself via returning 
from blocked calls to swap_buffers() will always be drawing 
frames which will be drawn not on the next buffer swap, but on 
the second buffer swap.

Thus, if a program calls swap_buffers() less than once per 
retrace interval, then the swap_buffers() call is not blocked 
and returns right away and not necessarily at the start of a 
retrace. In this case, one does not see a constant 1 retrace inter-
val delay. Instead, one will see a variable delay (the time between 
when swap_buffers() returns and when the display is actu-
ally updated), with a duration up to the retrace interval depend-
ing on when swap_buffers() was called.

This suggests that one cannot not rely on when  swap_
 buffers() returns to determine when the fl ip actually occurs and 
instead should use a combination of swap_buffers() followed 
by some code that actually waits until, or determines, the start of 
the next retrace. The Vision Egg currently provides such a func-
tion for Windows (see Section “Low-level Hardware and Software 
Overview: Detecting Retrace Events and Refresh Rates”). The same 
results are found with the Vision Egg, pure C OpenGL and with 
SDL when using the DirectX backend on ATI and nVIDIA graph-
ics cards (Sol Simpson, SR Research, personal communication).

Due to the intricacies of the above latency issue when vsync is 
on and the lack of a way to detect retrace events on all supported 
platforms, the Vision Egg currently (up to and including 1.1.1) 
simply assumes that frames are drawn when swap_buffers() 
returns. This gives an accurate estimate of whether refresh inter-
vals were skipped and consequently a frame was not updated, but 
results in latency increased by one refresh interval.

Recent video cards (e.g., nVIDIA GeForce 8500 GT with 
the Forceware version 163.71 driver on Windows XP) support 
“triple buffering.” In this mode, there are two back buffers that 
are alternately drawn upon, and the most recently completed 
buffer is used at the start of display of a new frame to the screen. 
Although I have not tested this technique, it theoretically allows 
near-minimal latencies without tearing artifacts or diffi cult pro-
gramming involving refresh detection.

OPERATING SYSTEMS
The Vision Egg runs on any platform which supports Python 
and OpenGL. It is known to run on Microsoft Windows (95, 
2000, and XP), GNU/Linux with kernels 2.4 and 2.6 (Ubuntu, 
Redhat, Debian), Mac OS X and SGI IRIX. All of these are pre-
emptive multitasking operating systems, with important rami-
fi cations described in section “Timing of Visual Stimuli: Speed 
and Latency.”

DETECTING RETRACE EVENTS AND REFRESH RATES
The Vision Egg offers some platform-dependent features. One 
of these is the ability to detect or wait for a vertical retrace event. 
This is implemented according to the method of Riemersma 
(2000) and implemented in the Win32_vretrace.pyx fi le. 
Furthermore, the refresh rate can be detected on Windows and 

Mac OS X as implemented in the win32_getrefresh.c and 
darwin_getrefresh.m fi les. Unfortunately, the Vision Egg 
does not currently allow the user to set the refresh rate.

MAXIMUM PRIORITY MODE
Operating systems typically have means to boost the priority 
of some processes above that of other processes. The details are 
specifi c to each platform, but the Vision Egg includes support for 
raising priority on Windows via the SetPriorityClass() and 
SetThreadPriority() functions, on POSIX systems (such 
as Linux) via the sched_setscheduler() and mlockall() 
functions, and on Mac OS X via the thread_policy_set(), 
setpriority() and pthread_setschedparam() functions. 
On Mac OS X, these function calls tell the kernel’s realtime 
scheduler to grant programs a periodic time slice from the CPU, 
which theoretically might give hard realtime performance (guar-
anteed latency), but practically is limited by the issues described 
in Section “Timing of Visual Stimuli: Speed and Latency.”

MID-LEVEL SOFTWARE OVERVIEW
DISPLAY OF STIMULI
The Vision Egg has methods to draw a wide variety of stimulus 
types. These stimuli operate within defi ned guidelines so that 
they only modify certain values of the OpenGL state machine, 
but leave all other values unchanged. In this way, multiple stim-
uli can be combined simultaneously, as in Figure 1. Both 2D and 
3D stimuli are available. 2D stimuli commonly use an ortho-
graphic projection such that coordinates are specifi ed in pixel 
units. Perspective projections can be used for 3D stimuli such 
that a calibrated projection will provide an accurate representa-
tion of object shapes when viewed on a fl at display (e.g., Kern 
et al., 2001; Straw et al., 2006). Included with the Vision Egg are 
routines for drawing luminance sinusoidal gratings (2D or 3D, 
with or without contrast windows, which can be circular or ani-
sotropic Gaussian in shape), color sinusoidal gratings, random 
dot stimuli, arbitrary image fi les, arbitrary numeric array data, 
QuickTime movies, MPEG movies, a spinning 3D drum with a 
textured image, rectangles and fi xation points.

Many features of OpenGL are supported, including realtime 
resampling of the texture image data using linear interpolation 
and use of mipmapped textures generated with bicubic interpo-
lation (or other means). These features allow display of slowly 
moving images without quantization of other systems where 
pixel-by-pixel steps must be made in integer multiples of the 
inter-frame interval. Other features, such as realtime lighting 
and shadows, are not currently implemented.

USER INTERACTION AND ALTERNATIVE SOURCES OF INPUT
User interaction, such as handling of keystrokes, mouse clicks, 
and joysticks can occur within the main loop of a Vision Egg 
program by using the pygame library. Additionally, because 
the Vision Egg is written in Python and can be easily extended 
with C, there are many potential sources of external input. For 
example, the UDP network protocol is frequently used in online 
computer games for low latency network communication and 
can be used for realtime control of visual stimuli from an exter-
nal program. In this manner, a Vision Egg script may be written 
which is controlled from a data acquisition environment written 
in Python, Lab View, or MATLAB. The TCP network protocol, 
although slower than UDP, offers built-in error checking and 
correction, and has been used to provide realtime input for the 
Vision Egg (Fry et al., 2004, 2008).
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CONTROLLING PROGRAM FLOW
The Vision Egg offers two ways of program fl ow control. The 
most conceptually simple of these is to let the programmer spec-
ify what happens on every frame, as illustrated in Figure 2B.

Because the Vision Egg was originally developed for stud-
ies in which controlling motion adaptation was critical, I paid 
careful attention to issues such as allowing a stimulus to con-
tinue moving while not in an experimental trial. The result is the 
programmer relinquishes control by entering the go() method 
of the Presentation class, as defi ned in the VisionEgg.
FlowControl module, as in Figure 2A. This is the concept of a 
go loop, which usually corresponds to the experimental trial, and 
the concept of refreshing stimuli between go loops. Any function 
calls or stimulus updates not automatically performed by the 
Vision Egg must be implemented by means of Controllers, 
which are implementations of callback functions. Such a main-
loop-and-callback style of programming is common in GUI pro-
gramming. For example, the WX Widgets toolkit and the Mac 
OS X Cocoa libraries operate this way.

HIGH-LEVEL SOFTWARE OVERVIEW
SPECIFYING GRAPHICS STATE
A confi guration GUI (Figure 3) can optionally be called at the 
beginning of any Vision Egg script. Although all options are 
available from the programmatic interface, it is often conven-
ient to see and edit these parameters through this interface. 
Particularly important are the options for loading the color 

lookup tables to perform gamma correction as illustrated in 
Section “Precise Control of Color and Luminance: Results of 
Luminance Calibration.”

AN APPLICATION FOR ELECTROPHYSIOLOGY
The Vision Egg includes two applications for integration within 
an electrophysiology environment (see Figure 4). The fi rst is 
ephys_server.py, which draws stimuli on its video hardware. 
To minimize the possibility of frame skipping, this program may 
run as the sole application on a dedicated stimulus computer. 
This server program listens on a network port for a connection 
from the ephys_gui.pyw program, which offers a GUI for the 
experimenter to control.

THE QUEST ALGORITHM
A pure Python implementation of Watson and Pelli’s (1983) 
QUEST algorithm is available from the Vision Egg website. This 
well-known Bayesian adaptive method allows estimating psycho-
metric thresholds, and was translated directly from the MATLAB 
code of Denis G. Pelli, who graciously allowed redistribution of 
the Python version under an open-source BSD license.

QuickTime AND MPEG MOVIES
The Vision Egg includes support to decode movies and send 
them to OpenGL by using Apple’s QuickTime API on Windows 
and Mac OS X and py game/SDL’s Movie objects on all sup-
ported operating systems.

Figure 3 | Screenshot of the standard Vision Egg confi guration GUI. Numerous options for confi guration are available, including framebuffer size and bit 
depth, color lookup tables for gamma correction and platform-dependent realtime priority, as described in Section “High-level Software Overview: Specifying 
Graphics State.”



Frontiers in Neuroinformatics | November 2008 | Volume 2 | Article 4

6

Straw

TIMING OF VISUAL STIMULI
METHODS TO MEASURE LATENCY
This section contains the results of experiments in which the 
total latency of the system, from input to output, was measured. 
Because it is diffi cult to measure the precise time of events hap-
pening inside and outside a computer on the same clock (or syn-
chronized clocks), a task was chosen in which only a single time 
reference was necessary. The task was to measure the duration 
for a USB mouse movement to be translated into the movement 
of a rectangle drawn on the screen, both of which were fi lmed 
with a high speed video camera and later analyzed. The latencies 
measured in this task should be comparable to the latencies of 
other input–output tasks.

An LED was rigidly fi xed to each computer mouse (Logitech 
MX-300 USB and Dell DEL1 Optical USB). The mouse was 
connected to a USB port on the motherboard of the compu-
ter (Acer Aspire T690 with Intel ICH7 chipset including USB2 
EHCI and USB UHCI controllers). A PCI-Express xl6 video card 
(nVIDIA GeForce 8500 GT) was connected to a CRT monitor 
(Iiyama Vision Master 450) using a VGA cable. The display was 
set to a resolution of 800 × 600 at 140 Hz update rate using the 
nVIDIA control panel (Forceware version 163.71) on Windows 
XP Service Pack 2 and confi rmed by using the monitor’s on 
screen display.

The Vision Egg version 1.1.1 was used to draw a 3 × 3 pixel 
white square using the Target2D class on a Screen with a 
black background color in a way that it acted as a mouse cursor. 
The position of the mouse controlled the position of this small 
square using a version of the mouseTarget.py demo program 
that was simplifi ed to remove the code that set the orientation 
of the target.

A high speed digital video camera (Photron Fastcam APX 
120) was placed to record the LED and target location on the 
screen in the same image frame. Images were acquired at 2000 
frames per second while the mouse was rapidly moved back and 
forth by hand in a roughly sinusoidal manner (e.g., Figure 5). 

Digital images were analyzed to identify the “center of mass” of 
the bright areas using the center_of_mass() function of the 
scipy.ndimage module. For the on-screen target, this only 
occurred approximately every 14th frame due to the discrete 
nature of raster scan CRT displays.

SPEED AND LATENCY
Because Python is an interpreted language, programs written in 
it will run more slowly than a well-written C program. However, 
Python is fast enough for two primary reasons. First, the most 
computation-intensive task, manipulation of large data arrays 
is performed with high-performance C and FORTRAN code 
via the numpy module of Python. Thus, Python code directs 
computationally intensive tasks without performing them in 
the slower interpreted environment. Second, computer displays 
cannot be refreshed beyond their maximum vertical frequency, 
which typically ranges up to 200 Hz. This therefore represents 
an upper bound on the amount of computation required for 
realtime rendering tasks.

In fact, the biggest timing-related concern is unrelated to the 
programming language used. A pre-emptive multitasking operat-
ing system may take control of the CPU from the stimulus gen-
erating program for periods longer than an inter-frame interval, 
thus leading to skipped frames. Even if the OS takes control of the 
CPU from an application for much less than an inter-frame inter-
val, frames may still be skipped if the stimulus generation program 
uses a strategy of waiting until the last instant to render a frame 
and CPU control is taken at this critical instant. Operating systems 
may have some means addressing this issue such as a realtime 
scheduler that guarantees uninterrupted CPU time at specifi ed 
intervals. The Vision Egg makes use of such facilities where avail-
able (see Section “Low-level Hardware and Software Overview: 
Maximum Priority Mode”). Although they can certainly help 
eliminate timing issues, such priority- boosting solutions can-
not provide absolute guarantees about timing because OpenGL 
implementations themselves may be subject to unpredictable 

A B

Figure 4 | Screenshot of electrophysiology-oriented GUI application included with the Vision Egg called ephys.gui.pyw and described in Section 
“High-level Software Overview: An Application for Electrophysiology.” (A) Main window shows parameters for repeated presentations of a stimulus with 
the possibility of automatically sequencing over variables. All settings can be saved and loaded from disk. (B) The loop parameters window allows control of 
experiments.
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behavior and generally are not written to operate in a hard realtime 
(in other words, with deterministic latency) manner. For example, 
drawing a single additional object may cause the hardware to pass 
a critical threshold for memory use and force a slow operation. 
A low-level solution which operated in hard realtime would have 
to bypass complex OpenGL libraries and implement routines to 
draw directly to the framebuffer to guarantee performance.

It is worth noting that because of this unavoidable variable 
latency listed above (pre-emptive multitasking operating sys-
tems and OpenGL implementations), the variable latency intro-
duced by use of an interpreted language with garbage collection, 
such as Python, does not fundamentally worsen the situation. 
In other words, use of Python introduces no fundamental prob-
lem other than that of an additional potential source of variable 
latency to that already imposed by the OS and OpenGL.

MEASUREMENTS OF LATENCY
A high speed video camera was used to measure the absolute total 
latency between input (a standard USB computer mouse) and 
output (the position of a rectangle on the screen), as described 
in the methods Section “Timing of Visual Stimuli: Methods to 
Measure Latency.” Figure 5 shows that latency can be reduced 
to around 15 ms, but that the vsync state plays a very signifi cant 
role in total latency (Table 1). On a 140-Hz display (7.1 ms inter-
frame interval), latency jumped by 17 ms or more when vsync was 
enabled. This is presumably due to the latency imposed by draw-
ing in the middle of a refresh interval and waiting for that inter-
val to be done combined with the additional latency described in 
Section “Low-level Hardware and Software Overview: Drawing in 
OpenGL.” Although the results would be interesting, these experi-
ments were not repeated in triple buffering mode.

ONLINE DETECTION OF FRAME SKIPPING
Frame skipping is determined by measuring the interval between 
successive buffer swap commands using standard system calls to 

query the computers clock. If this value exceeds the known  monitor 
inter-frame interval, a frame has been skipped. Stimuli generated 
by the Vision Egg are routinely presented for hours without skip-
ping a frame when measured this way. The most likely occurrence 
of a skipped frame is at the immediate beginning of drawing a 
stimulus – presumably when some initialization occurs with the 
video system. Often this can be dealt with by initializing the video 
system in a non-critical task, such as drawing a black rectangle.

TRIGGER OUTPUT AND INPUT
It is often useful to trigger external hardware when a stimulus 
presentation begins. There are several ways to achieve this on typi-
cal personal computers. The parallel port can be used so that a pin 
goes from low to high voltage when the fi rst frame of a stimulus is 
drawn. The Vision Egg has support for reading and writing to the 
parallel port, but because OpenGL operates in an asynchronous 
manner (see Section “Low-level Hardware and Software Overview: 
Drawing in OpenGL”), the parallel port cannot be updated at the 
exact instant the display begins a new frame. Instead, the parallel 
port can only be updated before the swap_buffers() command 
is given or after it returns. Better accuracy could be obtained by 
“arming” the trigger of a data acquisition device immediately 
before stimulus onset and triggering from the vertical sync pulse 
of a video cable. Ultimate verifi cation can be done with a pho-
todetector on a patch of screen that changes luminance at the 
onset of the experiment. This patch-of-screen is implemented in 
the ephys_gui.pyw application described in Section “High-level 
Software Overview: An Application for Electrophysiology.”

Some hardware used in experiments, such as fMRI machines, 
has intrinsic timing requirements and thus it is advantageous for 
the Vision Egg to act as a slave and to begin a stimulus upon receiv-
ing a digital pulse. Because of its realtime nature, it is straight-
forward to achieve temporal precision equivalent to the latencies 
described in Section “Timing of Visual Stimuli: Measurements of 
Latency,” although there might be slight differences in timing due 
to use of a parallel port for input rather than a USB mouse.

PRECISE CONTROL OF COLOR AND LUMINANCE
METHODS TO MEASURE LUMINANCE
For the measurements described below, the Vision Egg version 
1.0 was running on a dual Athlon 1400 Windows 2000 sys-
tem with an nVIDIA GeForce 4 Ti 4200 graphics card and an 
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Figure 5 | Total latency of system, including input from an optical USB 
mouse and display on 140 Hz CRT display, can be reduced to about 
15 ms, as described in Section “Timing of Visual Stimuli: Measurements 
of Latency.” The main panel shows representative data gathered from a high 
speed camera of an LED fi xed to a mouse (green line) and a bright spot on 
the screen controlled by the mouse (blue dots). Display positions could rea-
sonably be interpolated using a sample-and-hold function (blue solid line) or 
linear interpolation (blue dashed line). Inset panel shows cross correlation of 
2 s of such data when interpolated. These data were gathered with vsync off 
and a Logitech MX-300 USB mouse.

Table 1 | Latency as estimated by the peak of the cross correlation 
 between mouse location and displayed point location. Optimistic laten-
cies were estimated using the cross correlation with the linearly interpolated 
display positions as plotted in Figure 5 and described in Section “Timing of 
Visual Stimuli:  Measurements of Latency.” Pessimistic latencies were also 
estimated with a cross correlation, but used a sample-and-hold function rather 
than linear interpolation to estimate display position.

Vsync Mouse Optimistic latency Pessimistic latency
  (ms) (ms)

Off Logitech MX-300 12.0 16.0
 Optical USB  
On Logitech MX-300 35.0 38.5
 Optical USB  
Off Dell DEL1 19.5 24.5
 Optical USB  
On Dell DEL1 38.0 41.5
 Optical USB  
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LG Electronics Flatron 915 FT + CRT monitor at a resolution 
of 640 × 200 at 200 Hz. Luminance measurements were made 
with a silicon photometer (OptiCal with LightScan software by 
Cambridge Research Systems, Ltd).

RESULTS OF LUMINANCE CALIBRATION
An 8-bit per color framebuffer allows specifi cation of 256 lumi-
nance levels for each of the three color channels (see Section 
“Low-level Hardware and Software Overview: Hardware”). Each 
red, green, and blue value is used as an index into the appro-
priate color lookup table, which is used by the RAMDAC to 
produce an analog signal. Low contrasts or other effects may 
be achieved, even with an 8-bit per color framebuffer, by use of 
a 10-bit lookup table. Non-linearities of CRT displays are well 
understood (for review, see Brainard et al., 2002) with the most 
famous non-linearity being display luminance gamma. The 
lookup tables can compensate for this gamma property such 
that color specifi ed is linearly proportional to the luminance 
produced on the display, and the Vision Egg includes the ability 
to calibrate and compensate automatically for this gamma prop-
erty. Finally, some computers have framebuffers with >8 bits per 
color. In OpenGL and the Vision Egg, colors are specifi ed as a 
fl oating point value between 0.0 and 1.0 so the same program 
benefi ts immediately from the improved hardware.

Photometric luminance measurements of the display made 
with full screen color values are shown in Figure 6. The most 
well known of the non-linearities of video displays is character-
ized by the gamma function

L = kpγ, (1)

with L being luminance (in cd/m2), k being a scaling constant, 
p being the color value specifi ed to OpenGL for each of the red, 

green, and blue components of the screen, and gamma γ. In the 
example shown, the uncalibrated display system had γ = 2.1. By 
loading the appropriate values in the color lookup tables, a lin-
ear relation between specifi ed color value and luminance output 
was achieved, with γ = 1.0.

DISCUSSION
IMPACT OF THE VISION EGG
Although usage for open source software is notoriously diffi cult 
to estimate, the number of downloads of the Vision Egg from 
SourceForge.net since the fi rst release (November 2001) totals 
over 15,000. Another estimate is the number of papers citing use 
of the Vision Egg. To date, the total listed at the website is 14. The 
University of Bielefeld, Germany and the University of Adelaide, 
Australia have used the Vision Egg in undergraduate courses 
(Bart Geurten and David O’Carroll, personal communication).

Other software uses or incorporates the Vision Egg. For 
example, in this issue, (Spacek and Swindale, 2008), describe use 
of the Vision Egg as part of a system for high-throughput elec-
trophysiology. Python based extensions called BCPy2000 to the 
large project BCI2000, a general-purpose system for brain–com-
puter interface (BCI) research, allow customizable experiment 
design using the Python scripting language (Schreiner, 2008; 
Jeremy Hill, personal communication). SR Research developed 
Pylink to interface their eye tracker to Python-based software, 
such as the Vision Egg, and they ship a Vision Egg based example 
to demonstrate gaze contingent control of a moving gradient.

Finally, perhaps the greatest impact of software packages 
such as the Vision Egg has simply been as a proof of concept that 
using OpenGL and Python for creating visual stimuli is possi-
ble. Several people have told me that they looked at the Vision 
Egg to see how something was done and then re-implemented it 
themselves. Such a spread of ideas is one of the benefi ts of open 
source, although the diversity of similar but different solutions 
can also be a challenge, particularly for those attempting to pick 
a solution without investing too much in an evaluation process.

COMPARISON TO SIMILAR OPEN SOURCE SOFTWARE
PsychoPy is another Python-based open source visual stimulus 
system (BSD license). The author, Peirce (2007) says, “For a good 
programmer, Vision Egg achieves its goals very well, provid-
ing a powerful and highly optimized system for visual stimulus 
presentation and interactions with hardware (including the abil-
ity to run experiments remotely across a network). Straw does, 
however, adhere very strongly to an object-oriented model of 
programming which can be harder for relatively inexperienced 
programmers, like most scientists, to understand. For instance, 
the temporal control of experiments in Vision Egg is predomi-
nantly though the use of presentation loops, whereby the user 
sets an object to run for a given length of time, attaches stimuli 
to it, attaches it to a screen and then tells it to go.” I believe the 
criticism is directed not so much toward object oriented pro-
gramming (which is also employed at a fundamental level within 
PsychoPy) but rather Peirce’s concern is with the mainloop-
and-callback mechanism of fl ow control described in Section 
“Mid-level Software Overview: Controlling Program Flow.” As 
mentioned in that section, and demonstrated in Figure 2, this 
is only optional, and the user may also maintain full control of 
program execution. Nevertheless, in the early development of the 
Vision Egg, this mainloop-and-callback style was present in all the 
demonstration scripts, and was intrinsic to the  electrophysiology 
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With the continued increase in power of conventional con-
sumer graphics hardware, the use of such systems for vision 
science experiments will continue to become more common. 
This paper described a visual stimulus generation system that 
utilizes such hardware and addresses critical calibration issues 
in the luminance and time domains. Of course, such calibration 
also depends on the display device, which also has temporal, 
spatial, spectral, and polarization properties that need to be 
accounted for.

With powerful stimulus generation software and video cards 
now available, the greatest challenge of producing visual stim-
uli may now be fi nding an appropriate physical display device. 
CRTs are well understood (Bach et al., 1997; Brainard et al., 2002; 
Cowan, 1995) and would remain a popular stimulus presentation 
device, but are becoming increasingly more diffi cult to acquire as 
their production stops. LCD and DLP based devices are useful 
for many experiments (Packer et al., 2001). Finally, custom built 
LED devices may be constructed to address many issues faced 
with standard commercial technology (Lindemann et al., 2003; 
Reiser and Dickinson, 2008). Regardless of display technology, if 
the display device accepts standard inputs (e.g., VGA or DVI), a 
modular approach to stimulus generation may be used, and stim-
ulus generation software such as the Vision Egg may be used.
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