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 during neuronal activity has been shown both during fl icker 
stimuli in cat optic nerve (Buerk et al., 1996) and during fore-
paw stimuli in rat somatosensory areas (Buerk et al., 2003). There 
are mainly two hypotheses that are used to explain brain hemo-
dynamics in terms of these vasodilators (Estrada and DeFelipe, 
1998; Riera et al., 2008). According to the fi rst hypothesis, namely 
the metabolic hypothesis, local CBF increase is a result of sev-
eral vasodilators such as CO

2
, K+ and adenosine which are the 

metabolic products of neuronal activation (Estrada and DeFelipe, 
1998). Whereas according to the second hypothesis, the neurogenic 
hypothesis, local CBF is maintained via vasodilator neurotransmit-
ters that are ‘synaptic products’ released by the neurons as a result 
of neuronal activation (Estrada and DeFelipe, 1998; Riera et al., 
2008). However, recent studies have shown that the coexistence 
of both neurogenic and metabolic factors is needed to regulate 
cerebral perfusion (Ito et al., 2005; Riera et al., 2008). In this study 
we aim to compare the relative importance of these two neurov-
ascular coupling hypotheses in producing changes in CBF, blood 
volume, and oxygenation.

Brain hemodynamics is intensely studied using different neu-
roimaging modalities such as functional magnetic resonance 
imaging (fMRI), positron emission tomography (PET) and 
optical imaging. Each one of these modalities provides valuable 
insight into specifi c components of neurovascular coupling. 
Recent work in neuroimaging studies demonstrates that not 
only integration of multiple neuroimaging modalities is required, 
but that mathematical modeling is necessary to understand the 
 complex physiology underlying neurovascular coupling. There 
are numerous models aiming to explain either the vascular or the 

INTRODUCTION
In order to meet the expected increased demand of the brain for 
glucose and oxygen during neuronal activation, the activated area 
stimulates vasodilation which leads to an increase in local cer-
ebral blood fl ow (CBF) and cerebral blood volume (CBV), and 
hence an increased delivery of glucose and oxygen (Iadecola and 
Nedergaard, 2007; Irani et al., 2007; Metea and Newman, 2007). 
While neurons and astrocytes produce the signals of vasodilation, 
endothelial cells, pericytes and smooth muscle cells transduce these 
signals into a change in CBF in a healthy brain (Girouard and 
Iadecola, 2006; Drake and Iadecola, 2007; Schummers et al., 2008). 
This phenomenon is called neurovascular coupling. This coupling 
is tightly controlled via numerous biological signaling pathways. 
The control may be via metabolic factors (CO

2
, K+, adenosine etc.) 

or via neurogenic factors (neurotransmitters, NO etc.) (Estrada 
and DeFelipe, 1998).

Maintaining this synchronous control is vital, since any impair-
ment in it may lead to ischemic lesions and even toxicity due to 
excess of metabolic factors (Girouard and Iadecola, 2006). The 
dissynchrony may also occur under many pathological conditions 
such as Alzheimer disease, hypertension, ischemic stroke (Girouard 
and Iadecola, 2006), migraine (Akın et al., 2006) and Huntington’s 
disease (Clark et al., 2002). Importantly, understanding details of 
normal coupling and its disruption in disease will guide identifi ca-
tion of possible treatment options.

In spite of the knowledge of many vasodilators, such as nitric 
oxide, arachidonic acid, potassium (K+), CO

2
, bicarbonate and 

adenosine, their relationship to neurovascular coupling is not fully 
understood. Among them, the vasodilatory role of nitric oxide 
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neurometabolic response to brain activation. The Balloon and 
Windkessel models are among the ones describing the vascular 
response. According to the Balloon model, the venous compart-
ment expands as a result of the output of the capillary bed (Buxton 
et al., 1998). The Windkessel model extends the balloon model 
to incorporate vascular compliance (Mandeville et al., 1999). 
A neurometabolic model that couples brain electrical activity 
and energy metabolism via the Na+–K+ pump and mitochon-
drial respiration was developed by Aubert and Costalat (2002). 
They recently extended that model by adding an astrocytic com-
partment (Aubert and Costalat, 2005). There exist models that 
combine the vascular and metabolic compartments to investigate 
how CBF is controlled via metabolic and neurogenic pathways. 
Banaji’s model is a good example that focuses on autoregulation 
of the blood vessels via different feedback mechanisms (Banaji 
et al., 2005). While these are just a few of the numerous models 
described in the literature, in general there is a need for a model 
which describes CBF in terms of both neurogenic and metabolic 
mediators that are directly related to the neuronal stimulus as an 
input to the model.

We have constructed a biochemical model of neurovascular 
coupling which has the action potential fi ring frequency as an 
input. We have set CBF dependent on the neuronal signals resulting 
from synaptic activity, NO, and as a result of an energy metabolism 
product, CO

2
. We have chosen NO among the other vasodilators, 

since it has been shown by many studies that NO related increases 
in CBF is more dominant compared with other vasodilators at 
specifi c brain regions such as cerebellum (Yang et al., 1999, 2003) 
and somatosensory cortex (Lindauer et al., 1999). Our choice of 
CO

2
, which is a product of oxidative phosphorylation, is based 

on the fact that increases in CO
2
 decreases the pH of the medium 

(Chen and Anderson, 1997), leading to a signifi cant increase in 
CBF (Kety and Schmidt, 1948). The model input is the frequency 
of the action potentials generated by the neurons in response to a 
stimulus, and CBF, blood oxygenation level-dependent (BOLD) 
signal, CBV and the metabolite concentrations are the outputs 
of the system. This input triggers both the energy pathways and 
synaptic activity. We have fi rst tested the relative contributions of 
neurogenic and metabolic pathways for evoking changes in the 
CBF, BOLD and partial pressure of CO

2
 (pCO

2
) and interpret our 

fi ndings in the context of existing experimental fi ndings described 
in the literature (Hoge et al., 1999a,b; Kim et al., 1999; Uludağ 
et al., 2004; Wise et al., 2007), paying attention to differences that 
arise as stimulus duration increases from tens of seconds to a 
couple of minutes.

MATERIALS AND METHODS
MODEL DESCRIPTION
Our model is designed to explore the relative importance 
of two neurovascular coupling mechanisms in producing a 
blood fl ow response given changes in the frequency of action 
potentials: one of metabolic origin and the other neurogenic. 
The metabolic  mechanism is based on the product of oxida-
tive  phosphorylation, carbon dioxide; whereas the neurogenic 
mechanism is based on nitric oxide, a synaptic activity prod-
uct (Figure 1). These two  factors diffuse to the extracellular 

matrix and then to blood vessels and  produce vasodilation in 
the arterioles giving rise to changes in regional CBF and the 
BOLD signal.

The model has one input which is the frequency of action 
potentials. This can be kept constant or can be expressed as a 
time-dependent function throughout the stimulus duration. 
This frequency modulates the cell membrane potential by chang-
ing the fl ux of sodium and calcium ions across the membrane 
resulting in energy-product related and synaptic activity related 
vasodilation respectively. The sodium entry into the cell during 
an action potential increases the intra-cellular sodium concen-
tration, thus increasing the Na+–K+ pump rate and consumption 
of adenosine triphosphate (ATP). The ATP supply for Na+–K+ 
pump comes from the phosphocreatine buffer, glycolysis, and 
mitochondrial respiration. Glucose (GLC) is delivered to the 
tissue by the vessels, and it turns into pyruvate (PYR) by pass-
ing through the glycolysis intermediary steps: glyceraldehyde-
3-phosphate (GAP) and phosphoenolpyruvate (PEP). After 
this point PYR either goes to mitochondria and starts oxidative 
phosphorylation via aerobic respiration, or it turns into lactate 
(LAC) via anaerobic respiration. During these processes, there is 
a continuous electron transfer between nicotinamide adenine 
dinucleotide (NAD) and reduced nicotinamide adenine dinu-
cleotide (NADH), and a phosphate transfer between ATP and 
adenosine diphosphate (ADP).

The equations describing sodium membrane transport, the 
Na+–K+ pump, neuronal energy metabolism (phosphocreatine 
buffer, glycolysis), and blood-brain-barrier exchange reactions 
are provided by Aubert and Costalat (2002), and the equations 
for NADH kinetics and mitochondrial respiration

 
are provided by 

Aubert et al., (2007). The vasodilator carbon dioxide is produced as 
a result of oxidative phosphorylation. The other vasodilator nitric 
oxide, NO, is produced as a result of calcium (Ca2+) entry into 
the neuron which activates NO production. NO then diffuses to 
and enters the smooth muscle cells around the arterioles. It then 
inhibits Ca2+ effl ux from internal Ca2+ sources in these cells and so 
leads to vasodilation (Toda and Okamura, 1998). CBF is assumed 
to be dependent only on arteriolar diameter changes as given by 
Poiseuille’s equation, and the pressure drop between the two ends 
of the vessel is assumed to be constant. The BOLD signal is then 
derived from CMRO

2
 and CBF using Davis’ BOLD equation (Davis 

et al., 1998).
In the next subsections, we provide details of each step in our 

model. The initial conditions for the new variables added to Aubert’s 
model in this work are presented in Table 1, and all parameters 
are defi ned in Table 2. Unless otherwise stated, concentrations of 
metabolites are in mmol/L. The reaction rates are in mmol/L s. The 
subscripts within the tables and the text are a, arteriole; n, neuron; 
v, venule; c, capillary (in our case capillary stands for pre-capillary 
arteriole); sm, smooth muscle.

ACTION POTENTIALS MODULATE INTRA-CELLULAR NA+ AND CA2+ 
CONCENTRATIONS
Our model uses action potential frequency as an input. In our 
model, the action potential frequency is assumed to be almost 
0 before and after the stimulus and taken as 150 Hz during the 
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 stimulus. We have fi t a gaussian function to a generic action 
 potential (Bean, 2007) to obtain the membrane voltage changes 
as a function of time,
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Where V t( ) is the voltage in mV as a function of time t and the 
remaining parameters are specifi ed in Table 2. The voltage change 
for a train of action potentials is obtained by convolving Eq. 1 with 
the sequence of action potentials [S(t)] as:

V t V t S t t t( ) ,= ′( ) − ′( )
∞

∫ d
0

 (2)

where S(t) is equal to 0 unless t is at the onset of an action potential 
such that S t t t

n n( ) ( ).= −Σ δ  For example, for action potentials arriv-
ing at a frequency of 100 Hz, t

n
 = n Δt where Δt = 10 ms.
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FIGURE 1 | A Schematic representation of the proposed model. ADP, 
adenosine diphosphate; AP, action potential; ATP, adenosine triphosphate; 
BOLD, blood oxygenation level-dependent; Ca2+, calcium; CBF, cerebral blood 
fl ow; CBV, cerebral blood volume; CO2, carbon dioxide; dHb, deoxyhemoglobin; 

GAP, glyceraldehyde-3-phosphate; GLC, glucose; K, potassium; LAC, lactate; 
Na, sodium; NAD+, nicotinamide adenine dinucleotide; NADH, reduced 
nicotinamide adenine dinucleotide; NO, nitric oxide; PEP, phosphoenolpyruvate; 
PYR, pyruvate.

Table 1 | Initial values for the variables of the model.

Intracellular carbon dioxide (CO2n) 1.25 mM

Capillary carbon dioxide (CO2c) 1.23 mM

Intracellular calcium ( )Can
2+  6937 nM

Intracellular nitric oxide (NOsm) 0.18 nM

Neuronal nitric oxide (NOn) 0.21 nM

The concentrations above are obtained via equating Eqs. 4 and 6 to zero for CO2n 
and CO2c, Eq. 8 for Can

2+ and Eqs. 10 and 14 for NOn and NOsm (see Materials and 
Methods for the equations).
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Table 2 | Parameters for the rate equations.

Equation Constants Description Reference

1 a1 = 34.83 Fitting constants for a single action potential 

 b1 = 0.0001904  

 c1 = 0.001559  

 a2 = 37.97  

 b2 = 0.002051  

 c2 = 0.0002703  

 a3 = 40.96  

 b3 = 0.002259  

 c3 = 0.0001748  

 a4 = 75.48  

 b4 = 0.001903  

 c4 = 0.0005914  

 a5 = −9.597e + 015  

 b5 = −0.7747  

 c5 = 0.1367  

4 nAero = 3 Stoichiometric constant Aubert and Costalat (2002)

5a,b Dnew,CO2
 = 1.31s−1 Diffusion rate for CO2 See text for calculation

5b DCO2
 = 1.6 × 10−5 cm2/s Diffusion constant for CO2 Gros and Moll (1971)

5b deff = 35 µm Effective diffusion distance for CO2 The same value as for NO (see below)

7 CO2a = 0.635 mM CO2 concentration in arteriole Lumb (2003)

9 τ
Ca2 0.780s+ =  Decay constant for calcium Majewska et al. (2000)

12a,b Dnew, NO = 3.3 s−1 Diffusion rate for NO See text for calculation

12b DNO = 4 × 10−5 cm2/s Diffusion constant for NO Seraya and Nartsissov (2002), Kavdia 

   and Popel (2004)

12b deff = 35 µm Effective diffusion distance for NO Vaughn et al. (1998)

13, 15 τNO = 0.5 s Decay constant for NO Vaughn et al. (1998) (0.1–1 s−1)

17b αCO2
 = 0.0308 mmolL−1 mmHg−1 Solubility constant for CO2 Lumb (2003)

18b Ca ,max
2
sm

+  = 3563 nM Maximum Ca2+ concentration in smooth muscle Range in Wada et al. (1999)

20a ΔP = 266.6 kg/ms2 Pressure difference between the two ends of a Cabrales et al. (2005)

  precapillary arteriole

20a µ = 0.001 kg/ms (0% Hct) Viscosity Freitas (1999)

  = 0.01 kg/ms (45% Hct)

20b L = 1.8 mm Length of a precapillary arteriole BME Handbook

21 α = 2 Laminar fl ow Mandeville et al. (1999)

21 β = 1.6 taken 2 in the model Vascular compliance parameter Huppert et al. (2007)

21 Vν, 0 = 0.0237 Initial venous volume fraction Buxton et al. (1998)

21 Fin, 0 = 0.0217 s−1 Initial fl ow in Buxton et al. (1998)

23 O2a = 8.34 mM Total arterial oxygen concentration Vafaee and Gjedde (2000)

24b M = 0.25 M-value Pasley et al. (2007)

24b β′ = 1.5 Imaging parameter Davis et al. (1998)

This voltage change is then used to obtain the voltage-depend-
ent Na+ and Ca2+ channel activations. The Na+ infl ux [

Na
ν + ( )]t  as a 

function of voltage and time is obtained by the Hodgkin–Huxley 
equations (Hodgkin and Huxley, 1952). The current calculated 
using Hodgkin–Huxley equations is then converted from µA/cm2 
to mmol/L s considering a 5-µm radii spherical cell.

Calcium infl ux in the neuron is mediated through N-methyl-
d-aspartate receptor (NMDAR) channels that are voltage 
dependent (Shouval et al., 2002). This infl ux, the rate of Ca2+ 
concentration change in the neuron ( ),

,
ν

Ca2+ n
 is given as a product 

of the fraction of NMDARs that move from the closed to open 
state after each presynaptic action potential, the peak NMDA 
receptor conductance and the membrane potential (please see 
Shouval et al., 2002 for a detailed description of the equations 
and parameters).

The rate of intracellular sodium concentration change 
[

Na
ν + ( )],t  is used as an input to the metabolic rate equations 

described in Section ‘Results’. The rate of intracellular calcium 
concentration change ( ),

,
ν

Ca2+ n
 is used in the production of NO 

as described below.
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A BRIEF DESCRIPTION OF AUBERT AND COSTALAT’S MODEL OF 
STIMULUS INDUCED CHANGES IN OXYGEN CONSUMPTION
The portion of Aubert and Costalat’s model (Aubert and Costalat, 
2002) that we utilize here couples ionic current (Na ion fl ux) 
to brain energy metabolism (glycolysis, mitochondrial respira-
tion and the phosphocreatine buffer). An increase in intracellu-
lar Na+ activates the Na+–K+ pump and consumes more ATP. To 
compensate for the ATP decrease, the cell produces ATP through 
 glycolysis, mitochondrial respiration and the phosphocreatine 
buffer. The following equation from the work of Aubert et al., 
(2007), which is based on the respiratory chain equation from 
Holzhütter et al. (1985), is used to describe the CMRO

2
 (or ν

mito
) 

in the model. The description and values of the parameters V, 
nop, Km

ADP
, kr, phi, phi

0
, H, H

m
 and nr can be found in Aubert 

et al. (2007).

CMRO
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This oxygen consumption modulates the oxygen concentration 
in the tissue, altering the concentration gradient with respect to the 
blood vessel (Eq. 28 of Aubert and Costalat, 2002), thus changing 
the rate of oxygen extraction from the vessel (Eq. 43 of Aubert and 
Costalat, 2002).

CO2 KINETICS
The carbon dioxide concentration in the neuron increases 
with mitochondrial respiration and decreases with CO

2
 dif-

fusion from the neuron to the precapillary arterioles via the 
concentration gradient,

d

dt
n

V

V

CO2n
Aero mito

cap

n

CO2nc
= −ν ν .  (4)

The mitochondrial respiration rate (ν
mito

) is given by Eq. 23 from 
Aubert et al. (2007). According to the brain tissue compartmentali-
zation assumption of Aubert and Costalat (2002), V

cap
 and V

n
 are 

the volume fractions of the precapillary arterioles and neurons in 
the brain respectively, and n

Aero 
is the stoichiometric constant. The 

rate of CO
2
 diffusion from the neuron to the precapillary arterioles 

( )νCO2nc
 is given by:

νCO new CO

cap

2n 2c2nc
CO CO= −( )D

V, ,
2

1
 (5a)

D
D

dnew CO
CO

eff

2

, ,
2 2

=  (5b)

where Dnew CO, 2
 is the effective diffusion rate depending on the CO

2
 

diffusion coeffi cient ( )D CO2
 and effective distance that CO

2
 diffuses 

(d
eff

). CO
2n

 is the concentration of CO
2
 in the neuron and CO

2c
 is 

the concentration of CO
2
 in the precapillary arterioles.

This CO
2
 diffusion increases CO

2
 concentration in the pre-

capillary arterioles that is cleared by the in-fl owing blood from 
the artery,

d

dt

CO2c
CO CO2nc 2ca

= −ν ν .  (6)

The rate of change of CO
2
 in the precapillary arterioles due to 

the fl owing blood is given by:

νCO in

cap

2c 2a2ca
CO CO= −( )2

1
F

V
,  (7)

where CO
2a

 is the concentration of CO
2
 in the upstream artery.

CA2+ AND NO KINETICS
Calcium concentration in the neuron varies with the difference 
between calcium infl ux into the cell and the calcium decay,

d

dt

Can

Ca Ca decay

2

2 2

+

= −+ +ν ν .  (8)

Calcium infl ux ( )
Ca2+ν  is described in Section ‘Materials and 

Methods’. The calcium decay rate ( )
Ca decay2+ν  is given by Majewska 

(Majewska et al., 2000),

ν
Ca decay

Ca

nCa2

2

1 2
+

+

= +

τ
,  (9)

where Can
2+ is the calcium concentration in the neuron and τ

Ca2+  
is the decay time constant.

NO concentration in the neuron is determined by the rate of NO 
production (ν

NO,n
), the diffusion of NO from the neuron to smooth 

muscle (ν
NO,sm

), and the decay of NO in the neuron (ν
NO decay,n

):

d

dt

NOn
NO,n NO,sm NOdecay,n= + − −ν ν ν .  (10)

NO production is related to neuronal calcium concentration by 
Takahashi and Mendelsohn (2003), assuming that the maximum 
neuronal NO release is obtained during the maximal activation of 
nitric oxide synthase (Luiking and Deutz, 2003),

νNO n nCa,

.
. .= ( )+0 0053 2 0 4066

 (11)

The NO produced in the neuron then diffuses to the smooth 
muscle cells around arterioles:

νNO sm new NO n smD  NO NO, , ,= −( )  (12a)

D
D

dnew NO
NO

eff

, ,=
2

 (12b)
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where D
new,NO

 is the effective diffusion rate depending on the NO 
diffusion coeffi cient (D

NO
) and the effective distance over which 

NO diffuses (d
eff

). Some of the produced NO, on the other hand, is 
consumed by other reactions within the cell with a time constant 
(τ

NO
) (Vaughn et al., 1998),

νNOdecay,n

NO

nNO=
⎛
⎝⎜

⎞
⎠⎟

1

τ
.  (13)

NO concentration in smooth muscle is determined by the NO 
diffusion from the neuron (ν

NO,sm
) and the NO decay within the 

smooth muscle (ν
NO decay,sm

).

d

dt

NOsm
NO,sm NOdecay sm= + −ν ν , .  (14)

The NO decay in smooth muscle is given by Vaughn et al. 
(1998) as:

νNOdecay sm

NO

smNO, .=
⎛
⎝⎜

⎞
⎠⎟

1

τ  (15)

where NO
sm

 is the NO concentration in smooth muscle.
Using the results of a mathematical model of the nitric oxide/

cGMP pathway in the vascular smooth muscle cell (Yang et al., 
2005), NO inhibition of calcium in smooth muscle is obtained 
via a fi t:

Ca nM NO nMsm sm
2 1785 8630+ = − ( ) +ln .  (16)

MODULATION OF VASCULAR TONE
We relate the arteriolar diameter to the pCO

2
 in the precapillary 

arterioles using the information in Wang et al. (1992). Poiseuille’s 
law states that the fl ow of blood through a vessel is proportional 
to the fourth power of the vessel diameter. Using the PaCO

2
 ver-

sus CBF graph in Wang et al.’s work, we recalculated the PaCO
2
 

versus diameter graph with the assumption that 40 mmHg corre-
sponds to the normal CO

2
 levels in the vessel. We then fi t a curve to 

this new graph and the curve fi t formula is given in Eq. 17a where 
dCO2

 represents the fractional change in diameter. It well matches 
with former work of Muizelaar et al. where they fi nd a relationship 
directly between PaCO

2
 and diameter (Muizelaar et al., 1988).

d P PCO CO COmmHg mmHg
2 2 2

6 10 0 0027 0 25 2 2 1= × + −− − −. . ,  (17a)

PCO
c

CO

CO
2

2

2=
α

.  (17b)

We have related CO
2
 concentration to CO

2
 partial pressure ( )PCO2

 
using the carbon dioxide solubility coeffi cient ( ).αCO2

 Baseline CO
2
 

pressure in the vessel is assumed to be 40 mmHg (Lumb, 2003).
The fractional diameter change of the arteriole related to NO 

production is obtained in terms of the smooth muscle calcium con-
centration (Ca

sm
) using the data in Schuster et al.’s work (Schuster 

et al., 2001; Figure 4A). We selectively picked the diameter and cal-
cium values at various time instances in the above mentioned work. 
We then converted this data into percentage change of  diameter 

and calcium by normalizing it with the maximum fl uorescence 
intensity. Then a new graph of diameter versus Ca was obtained 
to which a curve was fi t to obtain Eq. 18a.

dNO

smCa
=

+ ( )+

631000

460600 12 2exp
 (18a)

Ca
Ca

Casm
sm

sm

2
2

2
+

+

+=
,max

 (18b)

where the value of Ca2+
sm,max

 is given in Table 2.
The vascular radii (in units of meters) is then calculated by 

simple addition of the CO
2
 effect (Eq. 17a) and the NO effect 

(Eq. 18a),

R d d= × + +( )−5 10 16

2
m NO CO

 (19)

MODEL OUTPUTS: FLOW, VENOUS VOLUME, DEOXY-HEAMOGLOBIN 
CONCENTRATION AND BOLD SIGNAL
In the model, a hypothetical brain volume is formed to include 
a neuron, pre-capillary arteriole and venous compartments that 
are forming a unit voxel. Assuming the total BOLD signal being a 
volume-weighted sum of the signals coming from individual voxels 
(Buxton et al., 1998) and using Davis’ equation (Davis et al., 1998) 
which links normalized CMRO

2
 and CBF changes to the BOLD 

signal change, we can then calculate the percent change in BOLD 
signal within a voxel due to neuronal activation. Hence, the CBF, 
CBV and BOLD are calculated as follows:

The fl ow (F
in

) in the precapillary arteriole is calculated using the 
Poiseuille equation with the parameters: radii (R), pressure differ-
ence across the two ends of the precapillary arteriole (ΔP), viscosity 
of the blood (µ) and the length of the vessel (L). We have normal-
ized this fl ow with arteriole volume in order to have dimensions 
consistent with Aubert’s model (Aubert and Costalat’s, 2002).

F
R P

LVin

arteriole

= π
μ

4

8

Δ
,  (20a)

V R Larteriole = π 2 .  (20b)

The output fl ow from the venous compartment is obtained 
from the following equation (Mandeville et al., 1999; Boas 
et al., 2003):

F
V

V
Fout in=

+

+
ν

ν

α β

α β
,

, .
0

0
 (21)

In Eq. 21 we assume laminar fl ow (α = 2), and constant β repre-
sents diminished volume reserve at elevated pressures. We are using 
β = 2 as representative of the range of 1 ≤ β ≤ 3 from the literature 
(Mandeville et al., 1999; Huppert et al., 2007).

The following equation (Buxton et al., 1998) is used for venous 
volume calculations,

dV

dt
F Fν = −in out ,  (22)

where F
in

 and F
out

 are calculated using Eqs. 20a and 21.
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The deoxy-Heamoglobin (dHb) concentration and the 
BOLD signal are calculated by Buxton et al. (1998), Davis et al. 
(1998), respectively:

d

dt
F F

V

dHb
O O

dHb
in 2a 2c out= −( ) −2

ν

 (23)

BOLD = ΔS

S0

 (24a)
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0

2
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⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′ − ′
CMRO

CMRO

CBF

CBF,

β α β

 (24b)

with the parameters O
2a

, M and β′ given in Table 2. O
2c

 is the pre-
capillary arteriole oxygen concentration.

SOLVING THE ORDINARY DIFFERENTIAL EQUATIONS
The model is comprised of 20 variables. Volumes, areas and CBF 
values are all expressed per unit tissue volume. In order to solve 
the ordinary differential equations, we have used the ode23s tool 
of MATLAB7.5 for stiff equations. Besides the equations given in 
sections above, the fi rst 13 equations in Table 1 in Aubert’s model 
(Aubert and Costalat, 2002) are used in this model with the cor-
responding parameters within the same work.

ASSUMPTIONS
We set CBF dependent solely on radii changes with the assumption 
that the local CBF changes in precapillary arterioles are dependent 
more on diameter changes of the vessels than the pressure differ-
ence between the two ends of them, which may not be the case 
during systemic changes (heart rate, stroke volume etc.) activated 
during brain function.

We have also assumed that the NO and CO
2
 effect on blood 

fl ow are independent of each other. Although previous research on 
rats suggest that inhibition of nitric oxide synthase reduces the CBF 
response to hypercapnia (Wang et al., 1995), more recent research 
on humans found no signifi cant change in CBF response to hyper-
capnia under NOS inhibitors (White et al., 1998). We base our 
model on this more recent fi nding.

The fourth assumption to be mentioned here is that the energy 
consumption during brain activation is solely due to the Na+–K+ 
pump. Actually when the Na+–K+-ATPase is blocked in the whole 
brain, the energy usage drops dramatically (Riera et al., 2008), a 
fact which makes this assumption acceptable.

We modeled the action of NO and Ca on pre-capillary arterioles 
since they have smooth muscle cells which dilate actively by using 
NO and Ca signaling pathways.

We have also assumed that Ca entry into channels is solely 
through NMDA channels. Our assumption is based on the stud-
ies which show that calcium elevation due to synaptic activity is 
almost totally blocked in the presence of NMDA channel blocker 
AP5 (Müller and Connor, 1991; Alford et al., 1993; Malinow 
et al., 1994).

RESULTS
We plot Ca2+ and Na+ dynamics in the neuron as a response to a 
stimulus lasting 20 and 100 s (Figure 2). A sample part from the 
stimulus in Figure 2A, shows the change in membrane voltage, i.e. 
action potentials, during the stimuli.

To explore the relative roles of the vasoactive agents NO and 
CO

2
 in the stimulus evoked change in CBF, in Figure 3 we plot the 

relative change in CBF (rCBF) for a short (20 s) and long (100 s) 
duration stimulus considering modulation of the vascular tone by 
NO only, CO

2
 only, and both NO and CO

2
.

The largest change in CBF is observed with NO only, while CO
2
 

alone is producing only a small increase in CBF. When both NO and 
CO

2
 effects on vascular tone are considered, the CBF response is 

reduced relative to NO alone. We observe a fl ow overshoot during 
the fi rst 10 s of the stimulus, a signifi cant post-stimulus under-
shoot for the short stimulus, and a slow post-stimulus recovery for 
the long-stimulus. These results reveal that the vessels may dilate 
or constrict depending on the balance of CO

2
 production by the 

mitochondria and washout by the fl owing blood.
In Figure 4 we plot the evoked changes in the BOLD signal cor-

responding to the differing fl ow responses from NO only, CO
2
 only, 

and both NO and CO
2
 modifi cation of vascular tone. Inhibiting the 

effect of NO signifi cantly reduces the fl ow response (see Figure 3) 
leading to a negative BOLD response as the reduced fl ow response 
does not oversupply the increased demand for oxygen. Considering 
the effects of both NO and CO

2
 compared with NO alone attenu-

ates the peak BOLD response during the stimulus and modifi es the 
post-stimulus BOLD undershoot, increasing the undershoot for a 
short stimulus and diminishing its duration for long stimulus. This 
modifi cation of the post-stimulus BOLD undershoot is due to a 
slow CMRO

2
 recovery and the post-stimulus fl ow undershoot.

The precapillary arteriole pCO
2
 pressure corresponding to the 

three different vasoactive effects is plotted in Figure 5. It is evident 
that the large fl ow response produced by NO is washing out more 
CO

2
 than is being produced by the increased oxygen consumption, 

causing a reduction in the pCO
2
 akin to the washout of deoxy-

genated hemoglobin during a stimulus. When the effect of NO 
on vascular tone is neglected, we observe that the pCO

2
 increases 

because the fl ow response is too small to wash out the extra CO
2
 

produced by the increased oxygen consumption, consistent with 
the negative BOLD signal in Figure 4. We also observe a post-
stimulus overshoot in the pCO

2
 arising from the slow recovery of 

oxygen consumption.
To provide support for the magnitude of the CO

2
 effect in vary-

ing vascular tone in our model, we simulated the change in fl ow 
and BOLD as the systemic pCO

2
 was increased, and compared our 

simulation results with experimental results. The simulated results 
are shown in Figure 6 compared with experimental data from Kety 
and Schmidt (1948), Grubb et al. (1974) and Hoge et al. (1999b). 
Our model results well match with the experimentally observed 
fl ow changes and the BOLD changes.

In Figure 7A, we plot the peak value of the post-stimulus CBF 
undershoot versus stimulus duration as predicted by our model 
compared with a survey of experimental data from the literature 
(Hoge et al., 1999b; Kim et al., 1999; Krüger et al., 1999; Rosengarten 
et al., 2001; Lu et al., 2004; Uludaǧ et al., 2004). We considered only 
human visual stimulation experiments for this comparison. The 
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FIGURE 2 | The input function of the model: a series of action potentials at 150 Hz (A), only a portion is shown as an example. The Ca2+ and Na+ 
concentration as a response to the stimulus. Results are given (B) and (D) for a 20-s stimulus and (C) and (E) for a 100-s stimulus.

specifi c studies and their associated data points are provided in 
Table 3. For both experimental studies and our model, the CBF 
undershoot reaches a maximum for a stimulus duration of ∼20 s, 
and slowly diminishes for longer duration stimuli.

Finally, we plot our model prediction of the post-stimulus BOLD 
undershoot versus stimulus duration in Figure 7B compared with a 
survey of experimental data from the literature in Table 4 (Hoge et al., 
1999a; Krüger et al., 1999; Royl et al., 2001). Our results show that 
BOLD undershoot increases during the fi rst 50 s of stimulus duration 
and then reaches a plateau around 100 s, while the literature suggests 
that the plateau is reached around 30 s and at a much smaller ampli-
tude. We note that we obtain better agreement between the model 
and experimental data if we force the model to have a faster CMRO

2
 

increase following stimulus onset and recovery post-stimulus.

We have performed a sensitivity analysis to verify the  robustness 
of the CBF post-stimulus behavior shown in Figure 3. The decay 
constants for Ca and NO were varied over their physiological 
range (τ

Ca2+: 0.5–1 s, Göbel and Helmchen, 2007, τ
NO

: 0.5–5 s, 
Vaughn et al., 1998). While there was a dramatic decrease in 
the CBF undershoot as we increased τ

Ca2+ , we none-the-less still 
observe an undershoot at τ

Ca
s.2 1+ =  We observed that τ

NO
 had no 

signifi cant effect on the CBF undershoot. In addition, the diffu-
sion constants for NO (3.3 × 10−5 to 4.8 × 10−5 cm2/s; Seraya and 
Nartsissov, 2002; Kavdia and Popel, 2004) and CO

2
 (1.14 × 10−5  

to 2.5 × 10−5; Geers and Gros, 2000) have a negligible effect on 
the undershoot results. Increasing the maximum Na conductance 
(g

Na
) decreases the undershoot, completely abolishing it when 

g
Na

 > 15 mS/cm2 (we used 4.4 mS/cm2 in Figure 7; Meyer et al., 
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FIGURE 3 | Our model results for an evoked change in CBF considering the 

vasoactive role of only NO (dashed line), only CO
2
 (dotted line), both NO 

and CO
2
 (solid line). The relative change in CMRO2 is indicated by the blue line. 

Results are given (A) and (B) for a 20-s stimulus and (C) and (D) for a 100-s 

stimulus. In each case we considered the stimulus as a train of action potentials 
at a repetition frequency of 150 Hz as input to our model. Note that in (A) we 
increased the scale of the only CO2 effect (dotted line) by ×20. CBF, cerebral 
blood fl ow; CMRO2, cerebral metabolic rate of oxygen.
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the vasoactive role of only NO (dashed line), only CO
2
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and (C) and (D) for a 100-s stimulus. In each case we considered the stimulus as 
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1997). Varying NMDA conductance (g
NMDA

) had no effect on the 
undershoot over the range of 500–1350 µM/(ms mV) (Shouval 
et al., 2002).

DISCUSSION
The results of our model confi rm the expected dominant vasodila-
tory role of NO, however CO

2
 is also important in modulating 

the shape of the response, in particular the initial overshoot and 
post-stimulus undershoot. Our results indicate that a washout of 

CO
2
 has a vasoconstrictive effect throughout the stimulus because 

NO dominates the blood fl ow response. While the vasoactive role 
of NO in producing a blood fl ow response is known experimentally 
(Morikawa et al., 1992; Iadecola et al., 1993; Akgören et al., 1994), 
there is no experimental support for the possible blood fl ow effects 
of locally-produced-CO

2
.

The transient increase in nitric oxide, as reported in the lit-
erature, varies widely. While there are some studies showing the 
change to be as low as 2.2 nM in rats after parallel fi ber stimulation 
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(Kimura et al., 1998) and 0.3 nM in cat nucleus tractus solitarius 
after arginine application (Wu et al., 2002), some values are as 
high as 80 nM in cat after visual stimulus (Buerk et al., 1996) and 
200 nM in rats after forepaw stimulus (Buerk et al., 2003). We also 
varied the decay constants for NO over their physiological range 
τ

NO
: 0.5–5 s (Vaughn et al., 1998). Our sensitivity analysis showed 

that τ
NO

 had no signifi cant effect on the CBF undershoot. The shape 
of the reported NO responses also varies as stimulus type changes. 
The shape of the NO change in our model is more similar to the 
experimentally measured response for a visual stimulus (Buerk 
et al., 1996), than for a forepaw stimulus (Buerk et al., 2003).

A post-stimulus CBF undershoot has been observed by numer-
ous groups. Specifi cally, the CBF undershoot has been observed in 
rat somatosensory cortex (Lindauer et al., 1993; Kida et al., 2007), 

cat visual cortex (Jin and Kim, 2008), and human visual cortex 
(Hoge et al., 1999a; Kim et al., 1999; Lu et al., 2004; Uludaǧ et al., 
2004; Chen and Pike, 2009). Our simulations also result in a post-
stimulus CBF undershoot. Our results show that the interplay 
between NO and CO

2
 is a possible explanation for this under-

shoot, without ruling out the effect of other possible confounding 
mechanisms such as neuronal inhibition.

Although there is no direct evidence for a hypocapnic vasocon-
strictive effect of CO

2
 washout during brain activation in the lit-

erature, our model provides a novel explanation for features of the 
CBF response observed in the literature. Inspecting the components 
of the CBF response for short and long stimuli, we observe a post-
stimulus undershoot for short stimulus while we see only a very 
brief and small undershoot for the long duration stimulus which 
is subsequently followed by a slow positive CBF recovery. For short 
stimuli, the increase in CBF during the stimulus has washed-out 
more CO

2
 than is being produced by the increased oxygen consump-

tion. This reduces tissue pCO
2
 such that when the NO vasodilation 

returns to baseline post-stimulus, the reduced pCO
2
 results in vaso-

constriction and an undershoot in CBF (see Figure 5C). For longer 
stimuli, the oxygen consumption increase is greater and takes a long 
time to recover post-stimulus. Thus more CO

2
 is produced than is 

being washed away, allowing pCO
2
 to increase relative to baseline 

and return slowly to baseline as oxygen consumption returns to 
baseline (see Figure 5D). This results in dilated vessels and a slowly 
recovering positive increase in CBF. These model results are consist-
ent with a CBF undershoot observed experimentally following a 20 s 
stimulation of the occipital cortex by a fl ickering radial checkerboard 
(Uludaǧ et al., 2004). Kim et al. found a modest undershoot in the 
primary visual cortex under 63 s of red/black reversing circular 
checkerboard stimulus (Kim et al., 1999). In a similar experiment 
with a longer stimulus duration (3 min), a mild CBF undershoot is 
observed in primary visual cortex under low-contrast radial check-
erboard (Hoge et al., 1999a), which are all consistent with the results 
of the model (see Figure 7A). The model underestimates the experi-
mental data which may be due to other possible mechanisms leading 
to CBF undershoot which are not considered in the model such as 
neuronal inhibition.

Our model also provides a novel explanation for an initial 
CBF overshoot during the first 10 s of a stimulus (see Figure 3) 
as observed by Krüger et al. (1999) arising from CO

2
  dynamics 
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FIGURE 7 | Peak CBF undershoot versus stimulus duration (A). BOLD undershoot versus stimulus duration (B). Experimental data (circles), model results (solid line), 
model results when the model is forced to have a faster CMRO2 increase following stimulus onset and recovery post-stimulus (dotted-line). CBF, cerebral blood fl ow.

Table 3 | Peak percentage CBF undershoot at various stimulus durations 

in literature.

Stimulus % CBF Reference

duration (s) undershoot

1 2 (10 Hz) Rosengarten et al. (2001)

20 10 (8 Hz) Uludaǧ et al. (2004)

30 13 (8 Hz) Lu et al. (2004)

63 7 (8 hz) Kim et al. (1999)

180 5 (4 Hz) Hoge et al. (1999a)

240 3 (5 Hz) Krüger et al. (1999)

Table 4 | Peak percentage BOLD undershoot at various stimulus 

durations in literature.

Stimulus duration (s) % BOLD undershoot Reference

1 0.3 Royl et al. (2001)

2 0.25 Royl et al. (2001)

4 0.5 Royl et al. (2001)

8 0.7 Royl et al. (2001)

16 0.8 Royl et al. (2001)

32 1 Royl et al. (2001)

180 1 Hoge et al. (1999a)

240 1 Krüger et al. (1999)
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rather than neuronal habituation. During the initial few  seconds 
of the stimulus, the CBF response is dominated by the NO effect. 
This increase in CBF, washes out CO

2
, the vessels constrict 

slightly because of the reduced pCO
2
, and thus CBF reduces 

slightly from the increased vascular resistance. Interestingly, 
closer inspection of our results for the longer duration stimulus 
(Figure 3C) shows a subsequent increase in CBF after reaching 
a minimum at 20 s, consistent with Hoge et al. (1999a), Krüger 
et al. (1999). This secondary increase in CBF arises from oxy-
gen consumption continuing to increase during the stimulus, 
producing more CO

2 
(see Figure 5D), dilating the vessels, and 

increasing CBF.
The positive BOLD response is determined by the relative 

contributions of CBV, CBF and CMRO
2
. When the effect of only 

NO and both NO and CO
2
 are considered, a positive BOLD 

response is obtained during the stimulus. Inhibiting the effect of 
NO diminishes the CBF increase signifi cantly and so results in a 
negative BOLD response due to the insuffi cient oxygen supply 
to the activation area. This result is supported by various experi-
mental efforts to determine the effect of NO in neurovascular 
coupling. Stevanovic et al. showed that inhibiting nitric oxide syn-
thase signifi cantly attenuates the CBV, CBF and BOLD responses 
(Stefanovic et al., 2007). Since this inhibition of nitric oxide is 
not 100%, and it also diminishes the neural activation though 
less strongly, they still obtained a very low but still positive BOLD 
response. Findings from other works also suggest that the posi-
tive BOLD response is abolished by the inhibition of nitric oxide 
(Burke and Bührle, 2006).

For the post-stimulus BOLD undershoot, three mechanisms 
have been suggested:

(1) sustained oxygen consumption after CBF has returned to 
baseline (Frahm et al., 1996; Schroeter et al., 2006), 

(2) a slow recovery of CBV to baseline compared to CBF 
(Mandeville et al., 1999), and

(3) a post-stimulus CBF undershoot (Hoge et al., 1999a).

Our model results suggest that the BOLD undershoot for short 
stimuli is mostly due to a CBF undershoot that arises from a reduced 
pCO

2
. Experimental data supporting the BOLD undershoot due 

to a CBF undershoot resulting from reduced pCO
2
 levels can 

be found in a recent work by Wise et al. (2007). In their work, 
the end-tital CO

2
 undershoot, after a fi xed-inspired hypercapnic 

challenge, precedes the BOLD undershoot. Although they do not 
show the CBF transients, a possible explanation for this is that, 
the CBF, before returning to baseline, washed-out the pCO

2 
below 

the baseline levels, and this, in response, caused an undershoot 
in CBF. For long stimuli, on the other hand, the post-stimulus 
BOLD undershoot in our model arises from a sustained oxygen 
consumption slowly recovering to baseline. Although this sus-
tained oxygen consumption raises pCO

2
 above baseline, resulting 

in an increase in CBV, this does not enhance the post-stimulus 
BOLD undershoot because the elevated pCO

2
 also increases 

CBF washing out more CO
2 
and deoxygenated hemoglobin. Our 

model results support the combined roles of a fl ow undershoot 
and a sustained post-stimulus increase in CMRO

2
 in produc-

ing a BOLD undershoot, with the former dominating for short-
stimuli and the latter for longer duration stimuli. We also want 

to point out that we have assumed a fl ow-volume relationship, 
which discarded any possible BOLD undershoot that could be 
produced by a slow volume recovery. The BOLD undershoot in 
our model would be enhanced by a slow volume recovery. We 
also note that our model does not comment on the possible role 
of active vasoconstriction related to inhibitory signals as recently 
suggested in Devor et al. (2007). Finally, the relative contribu-
tions of these different mechanisms of vasoregulation will likely 
be altered in cerebrovascular disease.

In addition, the model’s slow CMRO
2
 onset and recovery dynam-

ics require further support. We used in the model the CMRO
2
 kinet-

ics given in Aubert et al., (2007), which is based on the respiratory 
chain equation from the work of Holzhütter et al. (1985). The 
slow onset kinetics in CMRO

2
 used in this model is controversial 

and should be discussed. For example, a PET study from Mintun 
et al showed a 4.7% increase in CMRO

2
 60 s after the stimulus 

onset, while this value reaches 15% after 25 min of stimulation 
(Mintun et al., 2002). A recent work from Lin et al. also obtained 
slow CMRO

2
 onset kinetics using fMRI (Lin et al., 2009). The work 

of Prichard et al. confi rms this slow increase in CMRO
2
, showing a 

slow lactate decay after the onset of photic stimulation (Prichard 
et al., 1991). In contrary, other recent works show a much faster 
increase in CMRO

2
 (Davis et al., 1998; Maciejewski et al., 2004; 

Shen et al., 2008; Wu et al., 2009). For example; Wu et al. calculated 
the CMRO

2
 from CBF and BOLD signals using a biophysical model. 

They obtained a CMRO
2
 increase, reaching a steady state within a 

few seconds as a response to visual stimulation. We tried different 
CMRO

2
 onset kinetics in our model to see the possible changes in 

our results (data not shown). The BOLD percentage increase was 
lower for the fast kinetics than for the slow kinetics, and in bet-
ter agreement with literature. The CMRO

2
 onset kinetics also has 

an effect on tissue pO
2
. With a slow onset we do not observe any 

transient decrease in tissue pO
2
 (data not shown), as opposed to 

the existing literature on the topic (Ances et al., 2001; Offenhauser 
et al., 2005). This is also supported by two recent studies, which use 
pharmacological agents to eliminate the blood fl ow response, and 
measure the BOLD signal in response to stimulation as an indica-
tive of CMRO

2
. Time to peak values obtained by these studies are 

around 10 s, supporting a faster CMRO
2
 onset kinetics (Nagaoka 

et al., 2006; Zappe et al., 2008). However, the increasing kinetics for 
CMRO

2
 did not have much of an effect on the CBF onset, and CBF 

and BOLD post-stimulus transients, the parameters altering the 
shaping of the hemodynamic response on which we have focused 
our discussion.

In summary, the increase in CBF during stimulation likely 
reduces local tissue pCO

2
. This is another possible explanation for 

the post-stimulus CBF undershoot that has been described in the 
literature. It should also be added that the relative contributions of 
these different mechanisms of vasoregulation will likely be altered 
in cerebrovascular diseases.
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